1. Field of the Invention
The present invention relates generally to cooling systems, and more particularly to a liquid cooling system for rapidly cooling an electronic component such as a Central Processing Unit (CPU).
2. Related Art
With the continuing development of computer electronics technology, new electronic packages such as the latest CPUs can perform more and more functions. Heat generated by these modern electronic packages has increased commensurately. The heat must be removed from the CPUs to prevent them from becoming unstable or being damaged. The traditional cooling means such as any combinations of heat sinks and cooling fans are increasingly unable to provide satisfactory cooling performance. To obtain an enhanced cooling performance, cooling systems that using liquid cooling technology have been developed for cooling the CPUs.
Chinese patent numbers 98248834.3 and 99210734.2 respectively disclose one kind of these cooling systems. These cooling systems generally each comprise a cooling base contacting the CPU for absorbing heat generated by the CPU. The cooling base generally defines a cavity containing liquid coolant therein, and an inlet and an outlet both in communication with the cavity. The cooling system also comprises a heat sink and a pump arranged at proper locations within a computer enclosure. A first tube connects the inlet of the cooling base with the pump, so that the coolant enters the cavity along the first tube by the driving force of the pump. A second tube connects the outlet of the cooling base with the pump, so that the heated coolant exits from the cavity along the second tube by the driving force of the pump. The second tube extends through the heat sink, whereupon heat of the heated coolant is transferred to the heat sink to radiate to ambient air. Thus, the heat of the CPU is continuously taken away by circulation of the coolant.
However, the cooling base, the tubes, the heat sink, and the pump are discrete components prior to attachment within the computer enclosure. Installation and removal of the cooling system can be troublesome and time-consuming. In addition, a large space for these discrete components is required. This militates against the minimization trend of electronic devices.
Accordingly, an object of the present invention is to provide a integrated liquid cooling system which can be rapidly and easily installed to or removed from an electronic enclosure.
To achieve the above-mentioned object, a liquid cooling system in accordance with a preferred embodiment of the present invention comprises a container defining communicable first and second chambers therein, a flow driver mounted on the container and having an entrance port in flow communication with the second chamber, and an exit port in flow communication with the first chamber so that the driver, the first chamber, and the second chamber together form a loop for circulation of coolant, and a heat dissipation unit located at the loop that is outside the container and between the driver and the second chamber for cooling the coolant.
Other objects, advantages and novel features of the present invention will be drawn from the following detailed description of the preferred embodiment of the present invention with attached drawings, in which:
Referring to
Referring to
Further referring to
One wall 122 defines an outlet 127 therein, communicating with the second chamber 125b. The outlet 127 is connected to one end of the pipe 3. The coolant can exit the second chamber 125b via the outlet 127, and flows to the heat dissipation unit 2 through the pipe 3. The spacing wall 123 forms a guide groove 126 in its underside, corresponding to the outlet 127 to guide the coolant out of the second chamber 125b via the outlet 127. A pair of screw holes 128 is defined in each of two opposite walls 122. The depth of the screw holes 128 is smaller than the thickness of these two walls 122, so that the screw holes 128 do not extend through the corresponding vertical walls 122 respectively.
Referring back to
The top cover 13 defining an inlet 130 via which the coolant can enter the first chamber 125a. The top cover 13 is mounted onto the main body 12 by soldering. Riveting means or screw means may alternatively be adopted.
Referring back to
A positioning assembly for the pump 15 comprises a bearing block 14 fixed on the top cover 13, and a positioning bracket 16 detachably mounted onto the main body 12. The bearing block 14 has an arcuate bearing surface, corresponding to the periphery of the mounting portion 154 of the pump 15. The positioning frame 16 has a U-shaped configuration, and comprises a pair of opposite sidewalls 162 cooperatively defining a space therebetween for accommodating the pump 15 therein. A pair of through apertures 164 is defined at a free edge of each sidewall 162, corresponding to the screw holes 128 of the container 10 respectively. After the pump 15 is disposed on the bearing block 14, the positioning frame 16 is attached to the container 10 by using four screws (not labeled) extending through the through apertures 164 and being fixed in the screw holes 128 respectively, thereby positioning the pump 15 on the container 10.
In operation of the liquid cooling system, the coolant in the second chamber 125b absorbs heat from the bottom plate 11 which absorbs the heat from the heat generating component. Then the heated coolant exits the second chamber 125b from the outlet 127 and enters the heat dissipation unit 2 for cooling via the pipe 3 by the driving force of the pump 15. Afterwards, the coolant is pumped into the first chamber 125a from the pipe 3 by the pump 15, and then flows into the second chamber 125b via the through hole 124 of the spacing plate 123 for a next circulation. In this way, circulation of the coolant can continuously remove the heat from the heat generating component.
In the present invention, the container 10 forms first and second chambers 125a, 125b therein, and the pump 15 communicates directly with the first chamber 125a, thereby eliminating the need for additional ducting means. In addition, the entire cooling system is subdivided into two modules, namely the heat absorbing unit 1 and the heat dissipation unit 2, before using. Installation or removal of the liquid cooling system within any electronic device enclosure is simplified.
In the present invention, the pump 15 communicates directly with the first chamber 125a, and communicates with the second chamber 125b by the pipe 3. Therefore, the pipe 3, the pump 15, the first and second chambers 125a, 125b together form a loop for circulation of the coolant. The heat dissipation unit 2 is located at the path along which the pipe 3 extends, for cooling the coolant. The heat dissipation unit 2 defines a heat exchange channel for receiving the pipe 3, thereby cooling the coolant flowing in the pipe 3. Another alternative arrangement is that the heat dissipation unit 2 defines a heat exchange cavity for directly receiving the coolant. In the latter embodiment, two separate pipes 3 are needed, wherein one pipe 3 is connected between the second chamber 125b and the heat exchange cavity of the heat dissipation unit 2, and the other pipe 3 is connected between the pump 15 and the heat exchange cavity of the heat dissipation unit 2.
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. The above-descinner walled examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given above.
Number | Date | Country | Kind |
---|---|---|---|
92219772 U | Nov 2003 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3524497 | Chu et al. | Aug 1970 | A |
5005640 | Lapinski et al. | Apr 1991 | A |
5309319 | Messina | May 1994 | A |
5349831 | Daikoku et al. | Sep 1994 | A |
5731954 | Cheon | Mar 1998 | A |
5763951 | Hamilton et al. | Jun 1998 | A |
5964206 | White et al. | Oct 1999 | A |
6019165 | Batchelder | Feb 2000 | A |
6702002 | Wang | Mar 2004 | B1 |
6745823 | Brost | Jun 2004 | B1 |
6778394 | Oikawa et al. | Aug 2004 | B1 |
6860242 | Schenk | Mar 2005 | B1 |
Number | Date | Country |
---|---|---|
ZL98248834.3 | Nov 1999 | CN |
ZL99210734.2 | Apr 2000 | CN |
Number | Date | Country | |
---|---|---|---|
20050098305 A1 | May 2005 | US |