This invention relates to an array antenna, and more particularly to an integrated mm-wave planar array antenna based on a multilayer ceramic technology such as Low Temperature Co-fired Ceramic (LTCC) technology.
With the increasing demands of commercial mm-wave application such as Collision Avoidance Radar and Local Multi-points Distribution System (LMDS), a multi-layered large-scale array antenna has attracted some attention due to its flexibility in manufacturing, the capability of passive integration, and the low production cost. One potential application is to build a microstrip patch array antenna in a multilayer ceramic substrate. However, operating at mm-wave frequencies, a conventional microstrip patch array antenna on multilayer ceramic substrate would be less attractive because of its low element radiation efficiency and the loss from feeding network, which are caused by the relative high dielectric constant of a ceramic substrate.
Moreover, the bandwidth of a traditional patch antenna is proportional to the substrate thickness. To achieve a wider bandwidth, a thicker substrate can be used. However, working with the high dielectric constant substrate, a thicker substrate will lead to a higher surface wave loss and consequently degrade the radiation efficiency. For example, an antenna capable of achieving a 4% 2:1 VSWR bandwidth about 29 GHz on Dupont® 943 LTCC substrate (with dielectric constant of 7.5, a loss tangent of 0.002, and a thickness of 0.447 mm), the simulated radiation efficiency using IE3D™, is less than 78%.
It would, therefore, be desirable to provide an array antenna having relatively high radiation efficiency and relatively low cost.
The references cited herein are explicitly incorporated by reference in its entity.
It is an object of the present invention to provide an array antenna working at mm-wave frequency band with high radiation efficiency and low loss from feeding network by using quasi-cavity-backed patch elements and a mixed feeding network configuration.
To accomplish the object of the present invention, a novel configuration of integrated LTCC array antenna working at mm-wave frequency band has been proposed by exploiting the flexibility of LTCC technology for three-dimensional integration. The antenna array uses quasi-cavity-backed patches as radiating elements. This configuration can be used in various integrated mm-wave antenna module. In order to reduce the loss from feeding network, a mixed configuration of feeding network is proposed and verified by experiment.
According to one aspect of the present invention, an array antenna comprises a first substrate comprising a first plurality of low temperature co-fired ceramic layers; a second substrate comprising a second plurality of low temperature co-fired ceramic layers; a bottom ground plane stacked on the bottom of the second ceramic substrate; a plurality of patch antennas mounted on a top surface the first substrate, each of the patch antennas including a radiating element and two grounded grid-like conductor walls; and a feeding network coupled to each of the patch antennas.
According to another aspect of the present invention, the two grounded grid-like conductor walls are located close to two radiation edges of each of the radiating elements, respectively, and each of the grounded grid-like conductor walls comprises a plurality of metal strips and a plurality of via-holes coupling the top surface of the first substrate to the bottom ground plane.
According to another aspect of the present invention, the feeding network comprises a plurality of microstrip lines disposed in the top surface of the first substrate; and a plurality of laminated waveguides constructed in the second substrate, which is defined by an internal ground plane disposed between the first and the second substrates, the bottom ground plane; the second substrate; and a plurality of via-holes extending through the second substrate for electrically connecting the internal ground plane to the bottom ground plane, and for coupling the via-holes to each other.
In the present invention, a large scale and high gain array antenna can be built and be integrated with other mm-wave functional components in same ceramic tile by using the LTCC multilayer technology.
a is a perspective view showing a T-junction configuration for coupling a laminated waveguide to a microstrip line;
b is a schematic view showing a cross section of the T-junction configuration of
The present invention and various advantages thereof will be described with reference to exemplary embodiments in conjunction with the drawings.
As shown in
Referring to
According to the present embodiment, the QCBP antenna 200 having the above-mentioned configuration can achieve a better radiation performance than that of its counterpart without the cavity.
According to the present invention, a feeding network is provided in the LTCC substrate 500 and coupled to the patch antennas 200 to transmit a signal with the patch antennas 200. Owing to the feature of no radiation loss and low insertion loss, a laminated waveguide (LWG) is considered as one of the most effective transmission lines for LTCC mm-wave applications. However, as compared to the size of patch element, laminated waveguide is still too bulky to feed each element directly. To consolidate the features of laminated waveguide and patch array antenna, a mixed feeding network that consists of laminated waveguide and microstrip line is proposed in the present invention, in which the main trunk of the feeding network is implemented by laminated waveguide, whereas the branch sub feeding networks are constructed by microstrip line.
As shown in
According to the present embodiment, a through hole 420 extending throughout the 12 layers of the LTCC substrate 500 is provided to couple the laminated waveguide with the microstrip line. The through hole 420 is coupled to the microstrip line 301 and penetrated inside the laminated waveguide 530 through an opening 410 formed on the internal ground plane 521 of the second substrate 520. Four metallic pads 531, 532, 533, 534 are coupled to the filled through hole, which are stacked on a lower four layers of the second substrate 520. The dimensions of the metallic pads 531, 532, 533, 534 are configured, so that the diameter of the pad 531≦the diameter of the pad 532≦the diameter of the pad 533≦the diameter of the pad 534, which thereby forms a bell-shape probe end.
As shown in
According to another embodiment of the invention, the T-junction is built in a 12-layers LTCC substrate with the thickness of 4.4 mils for each layer. The cross-section of the laminated waveguide 530 is 140 mils by 32.5 mils. The via-holes 523 are provided with 3.5 mils in diameter and 15 mils center-to-center distance. The microstrip line used is a 4 mils wide metal strip with impedance of 100Ω. The diameters of the through hole 420, the opening 410, and the metallic pads 531, 532, 533, 534 are (unit: mils) 2.75, 13, 4.8, 5.8, 7.8, and 7.8, respectively.
A prototype of a patch antenna array with proposed quasi-cavity-backed elements and a prototype of the same patch antenna array without cavity-backing are fabricated using a 12-layer substrate of Dupont® 943 Green Tape™. An identical feeding network structure is used in the two prototypes. In the 12-layer substrate, the LWG feeding network is built in the lower eight layers and the antenna elements and microstrip line feeding network is built in the upper four layers. The thickness for each layer is 0.11 mm. The 16×16 elements in the array antenna are excited equally. To prove the concept of the proposed mixed feeding network and also save the real estate for other loaded LWG components, only the first branch of the main trunk is implemented by LWG in the experimental array. The two types of required transitions, namely the transition from air waveguide to LWG and the T-junction from LWG to microstrip line, have been integrated in the experimental feeding network.
Simulated results obtained from ANSOFT® HFSS™ show that the insertion losses of the proposed mixed feed network, and a traditional microstrip edge feeding network are 3.7 dB and 9.6 dB respectively, where the cross-sectional dimension of LWG is 2.5 mm by 0.22 mm, and the microstrip trace width of 100 ohm microstrip line used in the microstrip line feeding network is 0.1 mm. The simulated insertion loss of the experimental feeding network is 6.63 dB. Although the experimental feeding network is just a portion of the proposed mixed feeding network, the improvement over the microstrip line feeding network is significant enough to verify the concept of the proposed mixed feeding network. Based on the calculated radiation efficiency presented in Table 1, it can be concluded, by simulation, that the gain of a QCBP array with mixed feeding network and a conventional element array with a microstrip line feeding network is about 26.46 dB and 20.42 dB, respectively. Even for the experimental array, in which LWG is used only for the first branch of the feeding network and the quasi-cavity-backed elements are used, about 24.23 dB gain can be achieved.
Although the preferred embodiments of the present invention have been disclosed for illustrative purpose, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
This application claims the benefit of U.S. provisional patent application No. 60/663,139 filed Mar. 17, 2005 which is explicitly incorporated by reference in its entity.
Number | Date | Country | |
---|---|---|---|
60663139 | Mar 2005 | US |