1. Field Of the Invention
The present invention relates generally to storage device controllers, and more particularly, to integrated memory controllers.
2. Background
Conventional computer systems typically include several functional components. These components may include a central processing unit (CPU), main memory, input/output (“I/O”) devices, and streaming storage devices (for example, tape drives) (referred to herein as “storage device”). In conventional systems, the main memory is coupled to the CPU via a system bus or a local memory bus. The main memory is used to provide the CPU access to data and/or program information that is stored in main memory at execution time. Typically, the main memory is composed of random access memory (RAM) circuits. A computer system with the CPU and main memory is often referred to as a host system.
The storage device is coupled to the host system via a controller that handles complex details of interfacing the storage devices to the host system. Communications between the host system and the controller is usually provided using one of a variety of standard I/O bus interfaces.
Typically, when data is read from a storage device, a host system sends a read command to the controller, which stores the read command into the buffer memory. Data is read from the device and stored in the buffer memory.
Buffer memory may be a Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (referred to as “DDR”). In SDRAM communication occurs at the positive end of a clock signal, i.e. data is received and read at the positive edge of a clock. Hence, SDRAM is a single data rate memory device.
DDR is a type of SDRAM that supports data transfers on both edges of each clock cycle (the rising and falling edges), effectively doubling the memory chip's data throughput. In DDR address and commands are similar to SDRAM, but the data is handled differently by using a separate clock (“DQS”). DQS is used for receiving and sending data from the DDR.
Modern storage systems may use either SDRAM or DDR and it is desirable to have a single interface that supports both DDR and SDRAM read and write operations. Conventional systems do not provide this option.
Therefore, there is a need for a method and system to support both DDR and SDRAM using the same hardware in the controller.
A system for writing data to a buffer memory, which is Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (“DDR”) is provided. The system includes, means for managing programmable clock signal relationships such that data arrives at an optimum time for writing. Data that is to be written at DDR is moved from a first buffer clock to a DDR write clock and to a DQS signal that is based on a SDRAM clock signal.
A circuit for writing data to a buffer memory, which is Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (“DDR”) is provided. The circuit includes logic for managing programmable clock signal relationships such that data arrives at an optimum time for writing. Data that is to be written at DDR is moved from a first buffer clock to a DDR write clock signal and to a DQS signal that is based on a SDRAM clock signal. Also, plural tap-cells may be used to delay clock signals such that data and clock signals are aligned.
A circuit for reading data from a buffer memory, which is Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (“DDR”) is provided. The circuit includes logic for managing programmable clock signal relationships such that data that is read from the DDR is centered within a DQS signal, which is generated from the DDR and then appropriately delayed. The DQS signal is delayed with respect to the data that is read from the DDR and data from the DDR is placed in a register that is controlled by a delayed DQS signal.
A system for reading data from a buffer memory, which is Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (“DDR”) is provided. The system includes means for managing programmable clock signal relationships such that data that is read from the DDR is centered within a DQS signal generated from the DDR and then appropriately delayed. The DQS signal is delayed with respect to the data that is read from the DDR and data from the DDR is placed in a register that is controlled by a delayed DQS signal. Also, an emulated DQS signal in an SDRAM clock signal is used for reading from a SDRAM and a DDR capture scheme is used for reading data from an SDRAM.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof concerning the attached drawings.
The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:
To facilitate an understanding of the preferred embodiment, the general architecture and operation of a controller will initially be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture.
The system of
As shown in
Controller 101 can be an integrated circuit (IC) that comprises of various functional modules, which provide for the writing and reading of data stored on storage device 115. Microprocessor 100 is coupled to controller 101 via interface 118 to facilitate transfer of data, address, timing and control information. Buffer memory 111 is coupled to controller 101 via ports to facilitate transfer of data, timing and address information. Buffer memory 111 may be a DDR or SDRAM.
Data flow controller 116 is connected to microprocessor bus 107 and to buffer controller 108. A DMA interface 112 is connected to microprocessor bus 107 and to data and control port 113.
SCSI controller 105 includes programmable registers and state machine sequencers that interface with SCSI port 102 on one side and to a fast, buffered direct memory access (DMA) channel on the other side.
Sequencer 106 supports customized SCSI sequences, for example, by means of a 256-location instruction memory that enables users to customize command automation features. Sequencer 106 support's firmware and hardware interrupts schemes. The firmware interrupt enables microprocessor 100 to initiate an operation within Sequencer 106 without stopping sequencer operation. Hardware interrupt comes directly from SCSI controller 105.
Buffer controller (also referred to as “BC”) 108 connects to buffer memory 111, DMA I/F 112, a SCSI channel of SCSI controller 105 and bus 107. Buffer controller 108 regulates data movement into and out of buffer memory 111.
To read data from storage device 115, a host system sends a read command to controller 101, which stores the read, commands in buffer memory 111. Microprocessor 100 then read the command out of buffer memory 111 and initializes the various functional blocks of controller 101. Data is read from device 115 and is passed through DMA I/F 112 to buffer controller 108.
Controller 101 also includes a clock distribution module (“CDM”) 120 that handles clock variation, according to one aspect of the present invention.
BC 108 also includes a multi-channel memory controller 108B that provides a common interface to either SDRAM or DDR buffer memory 111.
Before describing the adaptive aspects of the present invention, the following describes some of the clock signals that are used for buffer 111 read and write operations:
BUFCLK (Buffer Clock Signal): This is a clock signal that is used for running various modules of the memory controller 108B.
SDRAMCLK (SDRAM Clock Signal): This is a clock signal for SDRAM 111B.
DQS: This signal is used for sampling data.
DDR Write CLK: This clock signal is used for writing to DDR 111A.
BD_O: This is a buffer data output signal.
In one aspect of the present invention, a system is provided such that a buffer clock (BUFFCLCK), SDRAM clock (SDRAMCLK) and a DDR data clock (“DQS”) are handled in such a way that the same system (or logic) can be used to support either a DDR or SDRAM version of buffer memory 111.
DDR Write Operation:
In one aspect of the present invention a DDR write operation is conducted using programmable delay so that data arrives at the correct time outside controller 101. Data that is to be written at DDR 111A is moved according to BUFCLK to DDR Write CLK, and DQS is appropriately delayed for data sampling, as discussed below.
For DDR write, all signals go from controller 101 to DDR 111A. The arrival time for data and DQS signal 718 are based on the timing diagram shown in
Data that is written in DDR 111A is stored in registers 711 and 712 that are controlled by BUFCLK 701A using logic 710. In one aspect, registers 711 and 712 are 64 bits wide to hold data. Data from registers 711 and 712 (shown as 712A and 712B via logic 711A and 711B) is moved to registers 713 and 714 that receive the DDR Write CLk 720 from tap cell 702. Signal 720 may be delayed using cell 702A.
BD_O 715 (data output) is generated based on inputs 713A and 714A from registers 713 and 714 (via multiplexer 715A), respectively. Input/Output (“I/O”) cell 724 generates BD 716, which is the actual data that is sent to DDR 111A.
DQS_O (DQS output) signal 719 is generated based on DQS free running signal 704A generated from tap cell 704 and 701B signal from DQS enable logic 701. DQS enable logic 701 receives BUFCLK 701A and generates signal 701B to enable the DQS signal. Signal 704A and 701B are “ANDED” by gate 720A to generate DQS_O 719. Thereafter, DQS_O 719 is sent to I/O cell 723 that generates DQS 718 that is sent to DDR 111A.
SDRAMCLK 707 is generated by input/output (I/O) cell 721 based on signal 706 generated (or delayed using cell 705A) by tap cell 705.
Control address logic 709 receives BUFCLK 701A and delay signal 708 from tap-cell 704B. I/O cell 722 generates control address 722A that is sent to DDR 111A that determines where data is written.
BUFCLK 701A is re-timed to DDR write clock 720 that is generated by tap cell 702. DQS 718 is aligned to the center of BD_O 715. DQS signal 718 is timed so that it is later than SDRAMCLK_O 706 to provide set-up time from the start of the “data valid” window. The negative edge of BUFFCLK 701A is used to control the enabling of DQS_O clock 719. The timing for DQS 718 is optimum so that it is not too early or late.
DDR Read Operation:
Registers 202 and 202A are used to capture data and in one aspect operate as a first in first out (“FIFO”) buffer. The delayed DQS 211A signal that is referenced as BDIN_CLK 212 and 212B (that is generated after 211A passes through an inverter 211B) is used to control registers 202 and 202A, respectively. It is noteworthy that the delay in the DQS signal may be programmed using cells 211C and 211D by controller 101 firmware.
Data 206 from DDR 111A via I/O cell 205 (as output BD_I 207) is sent to registers 202 and 202A, via logic 207A and 207B. Once data is captured in registers 202 and 202A, it is moved (shown as 213 and 214) to another FIFO 201 that operates under BUFCLK 701A.
DQS 209 generated from DDR 111A may have plural alignments. Logic 203 and 204 controls the alignment of DQS 209 based on selected latency. For example, in one aspect (CL3,
DQS 211A can vary by tDQSCK 400. Although the alignment of DQS 211A to SDRAMCLK 707 does not directly affect the loading of data into registers 202 and 202A, it does affect the positioning of BDIN_REG CLK 212 with respect to BUFCLK 701A.
SDRAM Write Operation:
SDRAM 111B write SDRAM CLK 707 that operates synchronously with BUFCLK 701A controls operation. SDRAM CLK 707 may be delayed from BUFCLK 701A to gain some set-up and hold time for the read operation.
SDRAM Read Operation:
SDRAM read operation is synchronous with SDRAMCLK 707 and BUFCLK 701A. In some instances, for example, at 183 MHZ, the data read delay (tSDRAC) from SDRAM 111B is equal to the clock period.
In one aspect of the present invention, the same logic is used to read and/or write data to DDR or SDRAM, hence overall controller cost is reduced.
Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3800281 | Devore et al. | Mar 1974 | A |
3823393 | Norris | Jul 1974 | A |
3836891 | McDaniel | Sep 1974 | A |
3988716 | Fletcher et al. | Oct 1976 | A |
4001883 | Strout et al. | Jan 1977 | A |
4002827 | Nevin et al. | Jan 1977 | A |
4016368 | Apple, Jr. | Apr 1977 | A |
4050097 | Miu et al. | Sep 1977 | A |
4080649 | Calle et al. | Mar 1978 | A |
4156867 | Bench et al. | May 1979 | A |
4225960 | Masters | Sep 1980 | A |
4275457 | Leighou et al. | Jun 1981 | A |
4390969 | Hayes | Jun 1983 | A |
4451898 | Palermo et al. | May 1984 | A |
4486750 | Aoki | Dec 1984 | A |
4500926 | Yoshimaru | Feb 1985 | A |
4587609 | Boudreau et al. | May 1986 | A |
4603382 | Cole | Jul 1986 | A |
4625321 | Pechar et al. | Nov 1986 | A |
4667286 | Young et al. | May 1987 | A |
4680647 | Moriyama | Jul 1987 | A |
4777635 | Glover | Oct 1988 | A |
4805046 | Kuroki et al. | Feb 1989 | A |
4807116 | Katzman et al. | Feb 1989 | A |
4807253 | Hagenauer et al. | Feb 1989 | A |
4809091 | Miyazawa et al. | Feb 1989 | A |
4811282 | Masina | Mar 1989 | A |
4812769 | Agoston | Mar 1989 | A |
4860333 | Bitzinger et al. | Aug 1989 | A |
4866606 | Kopetz | Sep 1989 | A |
4881232 | Sako et al. | Nov 1989 | A |
4920535 | Watanabe et al. | Apr 1990 | A |
4949342 | Shimbo et al. | Aug 1990 | A |
4970418 | Masterson | Nov 1990 | A |
4972417 | Sako et al. | Nov 1990 | A |
4975915 | Sako et al. | Dec 1990 | A |
4989190 | Kuroe et al. | Jan 1991 | A |
5014186 | Chisholm | May 1991 | A |
5023612 | Liu | Jun 1991 | A |
5027357 | Yu et al. | Jun 1991 | A |
5050013 | Holsinger | Sep 1991 | A |
5051998 | Murai et al. | Sep 1991 | A |
5068755 | Hamilton et al. | Nov 1991 | A |
5068857 | Yoshida | Nov 1991 | A |
5072420 | Conley et al. | Dec 1991 | A |
5088093 | Storch et al. | Feb 1992 | A |
5109500 | Iseki et al. | Apr 1992 | A |
5117442 | Hall | May 1992 | A |
5127098 | Rosenthal et al. | Jun 1992 | A |
5133062 | Joshi et al. | Jul 1992 | A |
5136592 | Weng | Aug 1992 | A |
5146585 | Smith, III | Sep 1992 | A |
5157669 | Yu et al. | Oct 1992 | A |
5162954 | Miller et al. | Nov 1992 | A |
5193197 | Thacker | Mar 1993 | A |
5204859 | Paesler et al. | Apr 1993 | A |
5218564 | Haines et al. | Jun 1993 | A |
5220569 | Hartness | Jun 1993 | A |
5237593 | Fisher et al. | Aug 1993 | A |
5243471 | Shinn | Sep 1993 | A |
5249271 | Hopkinson | Sep 1993 | A |
5257143 | Zangenehpour | Oct 1993 | A |
5261081 | White et al. | Nov 1993 | A |
5271018 | Chan | Dec 1993 | A |
5274509 | Buch | Dec 1993 | A |
5276564 | Hessing et al. | Jan 1994 | A |
5276662 | Shaver, Jr. et al. | Jan 1994 | A |
5276807 | Kodama et al. | Jan 1994 | A |
5280488 | Glover et al. | Jan 1994 | A |
5285327 | Hetzler | Feb 1994 | A |
5285451 | Henson et al. | Feb 1994 | A |
5301333 | Lee | Apr 1994 | A |
5307216 | Cook et al. | Apr 1994 | A |
5315708 | Eidler et al. | May 1994 | A |
5339443 | Lockwood | Aug 1994 | A |
5361266 | Kodama et al. | Nov 1994 | A |
5361267 | Godiwala et al. | Nov 1994 | A |
5408644 | Schneider et al. | Apr 1995 | A |
5410554 | Watanabe | Apr 1995 | A |
5420984 | Good et al. | May 1995 | A |
5428627 | Gupta | Jun 1995 | A |
5440751 | Santeler et al. | Aug 1995 | A |
5450546 | Krakirian | Sep 1995 | A |
5465343 | Henson et al. | Nov 1995 | A |
5487170 | Bass et al. | Jan 1996 | A |
5488688 | Gonzales et al. | Jan 1996 | A |
5491701 | Zook | Feb 1996 | A |
5500848 | Best et al. | Mar 1996 | A |
5506989 | Boldt et al. | Apr 1996 | A |
5507005 | Kojima et al. | Apr 1996 | A |
5519837 | Tran | May 1996 | A |
5523903 | Hetzler et al. | Jun 1996 | A |
5544180 | Gupta | Aug 1996 | A |
5544346 | Amini et al. | Aug 1996 | A |
5546545 | Rich | Aug 1996 | A |
5546548 | Chen et al. | Aug 1996 | A |
5563896 | Nakaguchi | Oct 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5574867 | Khaira | Nov 1996 | A |
5581715 | Verinsky et al. | Dec 1996 | A |
5583999 | Sato et al. | Dec 1996 | A |
5592404 | Zook | Jan 1997 | A |
5600662 | Zook et al. | Feb 1997 | A |
5602857 | Zook et al. | Feb 1997 | A |
5615190 | Best et al. | Mar 1997 | A |
5623672 | Popat | Apr 1997 | A |
5627695 | Prins et al. | May 1997 | A |
5629949 | Zook | May 1997 | A |
5640602 | Takase | Jun 1997 | A |
5649230 | Lentz | Jul 1997 | A |
5664121 | Cerauskis | Sep 1997 | A |
5689656 | Baden et al. | Nov 1997 | A |
5691994 | Acosta et al. | Nov 1997 | A |
5692135 | Alvarez, II et al. | Nov 1997 | A |
5692165 | Jeddeloh et al. | Nov 1997 | A |
5719516 | Sharpe-Geisler | Feb 1998 | A |
5729718 | Au | Mar 1998 | A |
5740466 | Geldman | Apr 1998 | A |
5745793 | Atsatt et al. | Apr 1998 | A |
5754759 | Clarke et al. | May 1998 | A |
5758188 | Applebaum et al. | May 1998 | A |
5784569 | Miller et al. | Jul 1998 | A |
5794073 | Ramakrishnan et al. | Aug 1998 | A |
5801998 | Choi | Sep 1998 | A |
5818886 | Castle | Oct 1998 | A |
5822142 | Hicken | Oct 1998 | A |
5822777 | Leshem et al. | Oct 1998 | A |
5831922 | Choi | Nov 1998 | A |
5835930 | Dobbek | Nov 1998 | A |
5841722 | Willenz | Nov 1998 | A |
5844844 | Bauer et al. | Dec 1998 | A |
5850422 | Chen | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5890207 | Sne et al. | Mar 1999 | A |
5890210 | Ishii et al. | Mar 1999 | A |
5907717 | Ellis | May 1999 | A |
5912906 | Wu et al. | Jun 1999 | A |
5925135 | Trieu et al. | Jul 1999 | A |
5937435 | Dobbek et al. | Aug 1999 | A |
5950223 | Chiang et al. | Sep 1999 | A |
5968180 | Baco | Oct 1999 | A |
5983293 | Murakami | Nov 1999 | A |
5991911 | Zook | Nov 1999 | A |
6029226 | Ellis et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6041417 | Hammond et al. | Mar 2000 | A |
6065053 | Nouri et al. | May 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6070200 | Gates et al. | May 2000 | A |
6078447 | Sim | Jun 2000 | A |
6078546 | Lee | Jun 2000 | A |
6081849 | Born et al. | Jun 2000 | A |
6092231 | Sze | Jul 2000 | A |
6094320 | Ahn | Jul 2000 | A |
6124994 | Malone, Sr. | Sep 2000 | A |
6134063 | Weston-Lewis et al. | Oct 2000 | A |
6145042 | Walton | Nov 2000 | A |
6157984 | Fisher et al. | Dec 2000 | A |
6178486 | Gill et al. | Jan 2001 | B1 |
6192499 | Yang | Feb 2001 | B1 |
6201655 | Watanabe et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Mar 2001 | B1 |
6278567 | Nagasawa | Aug 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6297926 | Ahn | Oct 2001 | B1 |
6330626 | Dennin et al. | Dec 2001 | B1 |
6381659 | Proch et al. | Apr 2002 | B1 |
6401149 | Dennin et al. | Jun 2002 | B1 |
6470461 | Pinvidic et al. | Oct 2002 | B1 |
6477110 | Yoo et al. | Nov 2002 | B1 |
6487631 | Dickinson et al. | Nov 2002 | B1 |
6490635 | Holmes | Dec 2002 | B1 |
6530000 | Krantz et al. | Mar 2003 | B1 |
6574676 | Megiddo | Jun 2003 | B1 |
6662334 | Stenfort | Dec 2003 | B1 |
6826650 | Krantz et al. | Nov 2004 | B1 |
20010044873 | Wilson et al. | Nov 2001 | A1 |
20030037225 | Deng et al. | Feb 2003 | A1 |
20040179109 | Kurosawa | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
0528273 | Feb 1993 | EP |
0622726 | Nov 1994 | EP |
0718827 | Jun 1996 | EP |
2285166 | Jun 1995 | GB |
63-292462 | Nov 1988 | JP |
01-315071 | Dec 1989 | JP |
03183067 | Aug 1991 | JP |
9814861 | Apr 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050276151 A1 | Dec 2005 | US |