The embodiments of the invention provide improved integrated processes for NGL recovery in the production of LNG that simplify the equipment configuration by eliminating the need for feed expansion and scrub column overhead compression. In addition, when the scrub column utilizes reflux comprising scrub column overhead that is condensed in a wound coil main heat exchanger, there is no need for splitting the warm bundle of the heat exchanger to partially condense the column overhead, and a phase separator to recover the liquid required for reflux is not required. In addition, there is no need for compression and condensation of deethanizer overhead vapor to provide scrub column reflux.
Reflux for the scrub column in the embodiments described below is provided by various combinations of condensed scrub column overhead vapor and unrecovered liquid hydrocarbons from the NGL recovery system. In the present disclosure, the terms “recovered hydrocarbon” and “recovered hydrocarbons” are equivalent and mean any hydrocarbon stream withdrawn from the integrated LNG production and NGL recovery system as a product that is exported from the integrated system. The recovered hydrocarbons may be exported as one or more product streams enriched in any of the hydrocarbons in the natural gas feed. The exported streams may include, for example, any of an enriched ethane stream, an enriched propane stream, an enriched butane plus isobutane stream, an enriched pentane plus isopentane stream, and a mixed methane-ethane stream enriched in ethane. The LNG product may be considered as a recovered hydrocarbon. The term “unrecovered liquid hydrocarbon” and “unrecovered liquid hydrocarbons” are equivalent and mean any liquid portion of the hydrocarbons separated in the NGL recovery system that are not immediately present in the product streams of the recovered hydrocarbons that are exported from the integrated LNG production and NGL recovery system. Unrecovered liquid hydrocarbons may be considered as internal recycle streams within the integrated LNG production and NGL recovery system.
The term “enriched” as applied to any stream withdrawn from a process means that the withdrawn stream contains a concentration of a particular component that is higher than the concentration of that component in the feed stream to the process. Reflux is defined as a stream introduced into a distillation column at any location above the location at which the feed is introduced into the column, wherein the reflux comprises one or more components previously withdrawn from the column. Reflux typically is liquid but may be a vapor-liquid mixture.
The indefinite articles “a” and “an” as used herein mean one or more when applied to any feature in embodiments of the present invention described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated. The definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used. The adjective “any” means one, some, or all indiscriminately of whatever quantity. The term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity.
A first embodiment of the invention is shown in the integrated LNG production and NGL recovery system illustrated by
Scrub column 118 separates the feed provided via line 116 into a bottoms liquid product in line 134 that is enriched in hydrocarbons heavier than methane and an overhead vapor product in line 120 that is enriched in methane. A portion of the bottoms liquid may be withdrawn via line 130 and vaporized in reboiler 132 to provide boilup for the scrub column. The reboiler may cool a portion (not shown) of stream 100 to provide heat therein for vaporizing the liquid in line 130. The scrub column may also have an intermediate reboiler (not shown) above the bottom of the column and below the location of feed line 116, and this reboiler also may be heated by a portion of the feed stream.
The bottoms liquid in line 134 flows to generic NGL fractionation system 136. The NGL feed stream typically is reduced in pressure (not shown) and separated in or more additional distillation columns including any of a demethanizer, a deethanizer, a depropanizer, a debutanizer, and a depentanizer to provide two or more hydrocarbon fractions. In the exemplary generic NGL fractionation system of
The overhead vapor stream enriched in methane is withdrawn from scrub column 118 via line 120 and may be warmed by indirect heat exchange with the feed stream in line 112 in economizer heat exchanger 114. The resulting warmed overhead vapor stream in line 122 is cooled, totally condensed, and optionally subcooled in passage 123 of the first or warm (lower) bundle of wound coil main heat exchanger 124 to provide a condensed methane-enriched stream in line 125. A first portion of the liquid in line 125 is withdrawn from line 125 downstream of passage 123 and pumped by pump 127 to provide a liquefied methane-containing reflux stream. The liquefied methane-containing reflux stream is combined with the unrecovered liquid hydrocarbons in line 138 and returned to the top of scrub column 118 as a combined liquid reflux steam. Alternatively, liquefied methane-containing reflux stream from pump 127 may be introduced into the top of scrub column 118 and the unrecovered liquid hydrocarbons in line 138 may be introduced into scrub column 118 at a separate location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116. In another alternative, the liquefied methane-containing reflux stream from pump 127 and the unrecovered hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown).
Typically, depending on the composition of the feed in line 100, the molar flow rate of the unrecovered liquid hydrocarbons in line 138 is less than about 25% of the molar flow rate of the methane-rich stream in line 126. If the natural gas feed in line 100 does not contain a sufficient amount of the components needed to provide the unrecovered liquid hydrocarbon stream in line 138, the necessary components may be imported from any appropriate source.
The second portion of the condensed methane-enriched stream in line 125 is further cooled in passage 128 the second or cold (upper) bundle of wound coil main heat exchanger 124 and withdrawn as LNG product via line 129. The LNG may be reduced in pressure before and/or after subcooling in the cold bundle if desired. If the LNG product is stored at high pressure (PLNG), there is no need for subcooling, and the cold bundle is not required. It is possible to use a portion of the LNG product in line 129 as a methane-rich reflux to scrub column 118 if desired, but such a configuration would waste refrigeration by providing reflux at a temperature much lower than required.
The temperature of the liquefied methane-containing reflux stream withdrawn from main heat exchanger 124 via line 126 and pump 127 in
Refrigeration to main heat exchanger 124 may be provided by any known refrigeration system used in the production of LNG. For example, as shown in
The refrigerant streams are completely vaporized and leave main heat exchanger 124 as refrigerant vapor via line 150. The mixed refrigerant vapor flows to a refrigeration system (not shown) where it is compressed, cooled by multiple stages of vaporizing propane, and separated to provide liquid refrigerant 152 and lighter vapor refrigerant 156.
Any other refrigeration system or a combination of systems known in the art may be used to provide refrigeration to main heat exchanger 124. For example, the pure fluid cascade and isentropic vapor expansion process may be used as described in U.S. Pat. No. 6,308,531, which is incorporated herein by reference.
Using a portion of condensed scrub column overhead as methane-enriched reflux via line 126 in the embodiment of
The use of unrecovered liquid hydrocarbons via line 138 as additional reflux to scrub column 118 eliminates the need for expanding the column feed and recompressing the column overhead. To minimize power consumption, the natural gas feed pressure should be significantly above the critical pressure of methane. At the same time, the scrub column must be operated below the critical pressure of the feed mixture in order to achieve separation. A common solution known in the art is to isentropically expand the scrub column feed and then to recompress the overhead vapor product. Work obtained from the isentropic expansion of the feed can be used to at least partially drive the overhead compressor or compressors. Such a solution is shown, for example, in U.S. Pat. No. 4,065,267 and in
Another embodiment of the invention is illustrated in
Alternatively, the liquefied methane-containing reflux stream from heat exchanger 200 may be introduced into the top of scrub column 118 and the unrecovered liquid hydrocarbons in line 138 may be introduced into scrub column 118 at a separate location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116. In another alternative, the liquefied methane-containing reflux stream from heat exchanger 200 and the unrecovered liquid hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown).
Refrigeration for main heat exchanger 124 is provided in the same manner as described above with reference to
In an alternative version of the process described above with reference to
An alternative embodiment of the invention is illustrated in
Alternatively, the condensed methane-rich stream from heat exchanger 300 may be introduced into the top of scrub column 118 and the unrecovered hydrocarbons in line 138 may be introduced into scrub column 118 at a location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116. In another alternative, the liquefied methane-containing reflux stream from heat exchanger 300 and the unrecovered liquid hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown). All other process features of
In an alternative version of the process described above with reference to
Throttling valve 426 and drum 427 can be avoided by detecting liquid in line 126 (for example with a thermocouple) and redirecting vapor or two-phase flow from the main heat exchanger 124 at a startup situation (at normal operation it is subcooled liquid) to another existing drum such as helium recovery or fuel gas flash drum or simply by flaring it. In another alternative, the system can be simplified by using a type of pump 127 that can tolerate two-phase flow at off-design conditions, such as a cryogenic gear or screw pump or a centrifugal pump with a high-performance inducer.
An exemplary NGL recovery system that can be used with embodiments of the present invention is illustrated in
High purity ethane vapor is withdrawn from the column via line 523 and is condensed in overhead condenser 525. A portion of the condensed liquid is returned as reflux via line 527 and another portion is withdrawn via line 529 as a recovered hydrocarbon comprising high purity ethane typically containing greater than 98 mole % ethane. The bottoms liquid from the deethanizer via line 531 is partially vaporized in heat exchanger 533, boilup vapor is returned to the column via line 535, and the remaining stream flows via line 537 and valve 539 into depropanizer column 505. High purity propane vapor is withdrawn from the column via line 541 and is condensed in overhead condenser 543. A portion of the condensed liquid is returned as reflux via line 545 and another portion is withdrawn via line 547 as a recovered hydrocarbon comprising high purity propane typically containing greater than 98 mole % propane.
The bottoms liquid from the depropanizer via line 549 is partially vaporized in heat exchanger 551, boilup vapor is returned to the column via line 553, and the remaining stream flows via line 555 and valve 557 into debutanizer column 507. High purity butane (plus isobutane if present) vapor is withdrawn from the column via line 559 and is condensed in overhead condenser 561. A portion of the condensed liquid is returned as reflux via line 563 and another portion is withdrawn via line 565 as a recovered hydrocarbon comprising high purity butane (plus isobutane if present) typically containing greater than 98 mole % butane plus isobutane. The bottoms liquid from the debutanizer is withdrawn via line 567 and partially vaporized in heat exchanger 569, boil up vapor is returned to the column via line 571, and the remaining stream is withdrawn via line 573 as a recovered hydrocarbon comprising pentane (plus isopentane if present) and heavier hydrocarbons.
In this illustration, propane and butane liquid streams may be withdrawn as unrecovered liquid hydrocarbons via lines 575 and 577, respectively, and mixed in line 579. The mixed unrecovered liquid hydrocarbon stream is cooled to temperature of vaporizing propane refrigerant in heat exchanger 581, is pumped to scrub column pressure in pump 583, and flows via line 138 to the scrub column in any of the embodiments of
Other NGL fractionation systems may be used depending on the particular hydrocarbons to be recovered. For example, the system may utilize a depentanizer column to recover high purity pentanes and a residual product containing hydrocarbons heavier than pentane. A portion of the pentanes may be returned as an unrecovered hydrocarbon to scrub column 118. In another alternative, the demethanizer is not used and the deethanizer is operated to withdraw the ethane liquid product at an intermediate stage and to withdraw a mixture of methane and ethane vapor from the reflux drum as a recovered hydrocarbon product. A portion of this vapor may be withdrawn as an unrecovered hydrocarbon product and dissolved in the unrecovered liquid hydrocarbon mixture as described above.
The following Example illustrates an embodiment of the present invention but does not limit embodiments of the invention to any of the specific details described therein.
A process simulation was carried out to illustrate the embodiment of
The scrub column bottoms stream is withdrawn via line 134 at a flow rate of 1862 lbmol/hr and is sent to NGL fractionation system 136, which is a series of distillation columns as shown in
Unrecovered liquid propane and butane in lines 575 and 577 are combined in line 138, cooled by propane refrigeration to −32.3° F. in heat exchanger 581, and pumped to the scrub column pressure in pump 583. The unrecovered propane in line 575 is 50% of the overhead stream in depropanizer overhead line 541 and the unrecovered butane in line 577 butane is 60% of the overhead stream in debutanizer overhead line 559. The combined unrecovered hydrocarbon stream in line 579 has a flow rate of 1116 lbmol/hr and a composition (in mole %) of 39% propane, 60% butane plus isobutanes, and 1% components heavier than butane. The pumped unrecovered liquid hydrocarbon is combined with the liquefied methane-containing reflux stream from pump 127 and the combined stream is introduced into the top of scrub column 118.