Abrams et al. “Comprehensive Detection of Single Base Changes In Human Genomic DNA Using Denaturing Gradient Gel Electrophoresis & a GC Clamp”. Genomics, 7, 1990, 463-475. |
Anand and Southern “Pulsed Field Gel Electrophoresis,” Gel Electrophoresis of Nucleic Acids—A Practical Approach, 2d. Ed., D. Rickwood and B.D. Hames (New York:IRL Press 1990), pp 101-123. |
Anderson and Young, “Quantitative Filter Hybridization,” Nucleic Acid Hybridization—A Practical Approach, Eds. B.D. Hames and S.J. Higgins (Washington, D.C. :IRL Press 1985) pp 73-111. |
Bains, “Setting a Sequence to Sequence a Sequence,” Bio/Technology, 10:757-758 (1992). |
Barinaga, “Will ‘DNA Chip’ Speed Genome Initiative?”, Science, 253:1489 (1991). |
Beattie et al., “Genosensor Technology,” The 1992 San Diego Conference: Genetic Recognition, pp 1-5 (Nov., 1992). |
Beltz et al., “Isolation of Multigene Families and Determination of Homologies by Filter Hybridization Methods,” Methods in Enzymology, 100:266-285 (1983). |
Brown et al. “Electrochemically Induced Adsorption of Radio-Labelled DNA on Gold and HOPG Substrates for STM Investigations”. Ultramicroscopy, 38, 1991, 253-264. |
Burns, et al., “An integrated nanoliter DNA analysis device,” Science, 282, pp. 484-487, 1998. |
Conner et al., “Detection of Sickle Cell β3-Globin Allele by Hybridization With Synthetic Oligonucleotides,” Proc. Natl. Acad. Sci. USA, 80:278-282 (1983). |
Drmanac et al., “Sequencing of Megabase Plus DNA by Hybridization: Theory of the Method,” Genomics, 4:114-128 (1989). |
Drmanac et al., “DNA Sequence Determination by Hybridixation: A Strategy for Efficient Large-Scale Sequencing,” Science, 260: 1649-1652 (1993). |
Eggers et al. “Biochip Technology Development”, BioChip Technology Development, Lincoln Laboratory Technical Report 901, Nov. 9, 1990. |
Fiaccabrino et al., “Array of Individually Addressable Microelectrodes”, Sensors and Actuators B, 18-19 (1994) 675-677. |
Fodor et al., “Multiplexed Biochemical Assays With Biological Chips,” Nature, 364:555-556 (1993). |
Fodor et al., “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Science, 251:767-773 (1992). |
Horejsi, “Some Theoretical Aspects of Affinity Electrophoresis,” Journal of Chromatography, 178:1-13 (1979). |
Horejsi et al., Determination of Dissociation Constants of Lectin Sugar Complexes by Means of Affinity Electrophoresis, Biochimica at Biophysica Acta, 499:200-300 (1977). |
Jacobson et al., “Integrated microdevice for DNA restriction fragment analysis,” Anal. Chem., 68, pp. 720-723, 1996. |
Kakerow et al., “A Monolithic Sensor Array of Individually Addressable Microelectrodes”, Sensors and Actuators A, 43 (1994) 296-301. |
Li et al., “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem., 69, pp. 1564-1568, 1997. |
Manz et al., in “Miniaturized Total Chemical Analysis System: A Novel Concept For Chemical Sensing”, Sensors And Actuators, B1(1990), pp. 244-248. |
Mathews, Kricka. “Analytical Strategies For The Use Of DNA Probes”. Analytical Biochemistry, 169, 1988, 1-25. |
Palecek. “New Trends in Electrochemical Analysis of Nucleic Acids”. Bioelectrochemistry and Bioenergetics, 20, 1988, 179-194. |
Ranki et al., “Sandwich Hybridization as a Convenient Method for the Detection of Nucleic Acids in Crude Samples,” Gene, 21:77-85 (1983). |
Saiki, “Amplification of Genomic DNA,” PCR Protocols: A Guide to Methods and Applications, (Academic Press, Inc. 1990), pp 13-20. |
Southern et al., “Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides Evaluation Using Experimental Models,” Genomics, 13:1008-1017 (1992). |
Strezoska et al., “DNA Sequencing by Hybridization: 100 Bases Read by a Non-Gel-Based Method”, Proc. Natl. Acad. Sci. USA, 88:10089-93 (1991). |
Wallace et al., “Hybridization of Synthetic Oligodexribonucleotides to φ × 174 DNA: The Effect of Single Base Pair Mismatch,” Nucleic Acid Res., 6:3543-3557 (1979). |
Washizu, “Electrostatic Manipulatiaon of Biological Objects,” Journal of Electrostatics, 25:109-123 (1990). |
Washizu and Kurosawa, “Electrostatic Manipulation of DNA in Microfabricated Structures,” IEEE Transactions on Industry Applications, 26:1165-1172 (1990). |
Waters et al., “Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing,” Anal. Chem., 70, pp. 158-162, 1998. |
Wilding, et al., “Integrated cell isolation and PCR analysis using silicon microfilter-chambers,” Anal. Biochem. 257, pp. 95-100, 1998. |
Woolley et al., “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device,” Anal. Chem., 68, pp. 4081-4086, 1996. |
Patrick N. Gilles et al., Single Nucleotide Polymorphic Discrimination by an Electronic Dot Blot Assay on Semiconductor Microchips, Nature Biotechnology, Apr. 1999, vol. 17, pp. 365-370. |
Ronald G. Sosnowski et al., Rapid Determination of Single Base Mismatch Mutations in DNA Hybrids by Direct Electric Field Control, Proc. Natl. Acad. Sci. USA, Feb. 1997, vol. 94, pp. 1119-1123. |
Sergei M. Gryaznov et al., Enhancement of Selectivity in Recognition of Nucleic Acids Via Chemical Autoligation, Nucleic Acids Research, 1994, vol. 22, No. 12, pp. 2366-2369. |