This invention relates generally to personnel or baggage screening systems, and more particularly to, an integrated passenger identity verification and screening kiosk.
The Transportation Security Administration (TSA) has recently mandated more stringent inspection procedures be implemented by the travel industry to reduce the possibility of passengers boarding a carrier such as a plane, for example, carrying concealed weapons, explosives, or other contraband. To facilitate preventing passengers boarding a plane carrying concealed weapons, explosives, etc., the TSA requires that all passengers be screened prior to boarding the aircraft.
For example, passengers arriving at the airport terminal first submit to a manual verification process that generally includes presenting their boarding pass and a form of identification such as a driver's license or passport, for example, to security personnel. The security personnel then manually verify that the passenger has a valid boarding pass, the name on the identification corresponds to the name on the boarding pass, and that the picture on the license or passport corresponds to the passenger presenting the license and boarding pass to the security personnel.
After the manual verification process is completed, the passenger is requested to walk through a metal detector to ensure that the passenger is not carrying any concealed weapons. While the metal detector is reasonably effective at detecting specific quantities of metal, the metal detector can not distinguish between a possible weapon or other non-threatening items such as shoes that may include metallic portions. As a result, security personnel frequently request that passengers remove their shoes and place their shoes into the baggage screening system such that security personnel can visually verify the metallic object prior to the passenger boarding the plane and to also ascertain whether the shoes may conceal any explosive material or devices. Passengers are also asked to remove coats and jackets, passing them through the baggage screening system. This has the effect of making it easier for checkpoint personnel to observe possible concealed objects, such as explosives, under their remaining clothes, which are now less bulky and thus less likely to obscure the presence of concealed items.
As such, at least one known airport screening system relies on manual observations to verify the identity of the passenger and also utilizes electronic scanners and metal detectors to ascertain whether the passenger or the luggage includes any weapons or explosives. Moreover, each passenger is subjected to the same level of screening without regard to the threat that may be posed by the passenger. As a result, the known system is time-consuming for the passengers, and does not alert the security personnel when a low threat passenger or high threat passenger is being screened such that the security personnel may either increase or decrease the level of screening that the passenger or the passenger's personal effects are subjected to.
In one aspect, an inspection system is provided. The inspection system includes a passenger identity verification system, a passenger screening system, and a computer coupled to the passenger verification system and the passenger screening system, the computer configured to receive information from the passenger verification system and operate the passenger screening system based on the information.
In another aspect, an inspection kiosk is provided. The inspection kiosk includes a passenger identity verification system, a passenger screening system, and a computer coupled to the passenger verification system and the passenger screening system, the computer configured to receive information from the passenger identity verification system and operate the passenger screening system based on the information.
In a further aspect, a method for inspecting a subject within a kiosk is provided. The method includes prompting a passenger to select one of the plurality of passenger identity verification systems, operating the at least one passenger identity verification system based on the passenger's input, transmitting the information generated by the passenger identity verification system to the computer, and operating the passenger screening system based on the information received from the computer.
As shown in
In the exemplary embodiment, kiosk 22 includes a first wall 24, a second wall 26 that is positioned substantially parallel to first wall 24, and a third wall 28 that is positioned substantially perpendicular to first and second walls 24 and 26, respectively. Kiosk 22 also includes a floor 30 extending between first, second, and third walls 24, 26, and 28, that, in one exemplary embodiment, includes an inductive sensor unit 32 that is described in further detail below. For example, and as shown in
In the exemplary embodiment, modality 12, modality 14, and modality 16 may be implemented utilizing a plurality of technologies, a few examples of which are illustrated in Table I shown below.
As shown in Table I, modality 12 is utilized to perform a passenger verification to properly verify the true identity of any passenger seeking to board the aircraft. For example, modality 12 may be implemented utilizing a card reader system 40 whereby passenger information may be encoded on a magnetic strip, optical read codes, an RF-read memory chip, or other embedded media. Modality 12 may also include biometric means to verify that the person presenting the card is the same individual whose identity is encoded on the card.
Passenger verification modality 12 may be implemented utilizing a keypad entry system 42 wherein a passenger enters a keycard into a receptacle provided with kiosk 22, modality 12 compares the keycard information with information that is stored within a database, for example a database stored within computer 18, and then either verifies the passenger identity or issues an alarm indication that the passenger's identity cannot be verified.
Passenger verification modality 12 may be implemented utilizing an exemplary biometric scan device 44 such as, but not limited to an iris scan device 44, to generate biometric information that is then compared to the information on the Registered Traveler's registration card in order to verify that the person with the card is the person to whom the card in fact belongs. In the exemplary embodiment, biometric device 44 includes an illuminating device 46 that directs light having desired characteristics to the eye under observation such that at least one of the iris and/or pupil of the eye under observation take a characteristic shape. The exemplary iris scan device 44 also includes a light imaging apparatus (not shown) to generate an image of the iris and/or pupil. The generated image is then compared to a verified image that may be stored within computer 18 to identify the eye and thus verify the identity of the passenger. It should be realized that in the exemplary embodiment, the generated images described herein are computer generated images that are stored within the computer and not physical images. Specifically, the systems described herein generate an electronic image that is compared to an electronic image stored within the system to verify the identity of the passenger.
Passenger verification modality 12 may be implemented utilizing a fingerprint scan device 50 wherein a passenger places a finger on the fingerprint scan device 50 such that the device obtains an image of the fingerprint of the passenger being verified. The generated image is then compared to a verified image of the fingerprint that may be stored within computer 18 in order to identify the fingerprint and thus verify the identity of the passenger.
Passenger verification modality 12 may be implemented utilizing a hand scanning device 52 wherein a passenger places their hand on the scan device 53. The device is then activated to scan the passenger' hand and thus obtain an image of the passenger's hand. The generated image is then compared to a verified image that may be stored within computer 18 in order to identify the handprint or other hand shape parameterization and thus verify the identity of the passenger.
Passenger verification modality 12 may be implemented utilizing a facial image recognition system 54 that includes an illuminating or scanning device 55 that is configured to generate an image or parameterization of the passenger's facial features. The generated image is then compared to a verified image that may be stored within computer 18 in order to identify the facial features and thus verify the identity of the passenger.
Passenger verification modality 12 may also be implemented utilizing a voice recognition system 56 that includes a microphone 57 wherein the passenger provides a voice sample that is compared to a verified voice sample that may be stored within computer 18 in order to identify the identity of the passenger.
It should be realized that the above described verification modalities 12 each generally require a passenger to be prescreened in order to generate the information that is stored within computer 18. For example, passengers may participate in the government's Registered Traveler Program whereby an initial, relatively thorough, screening of the passenger is conducted to generate information about the passenger that may be utilized by system 10 at a later date. As such, the passenger may choose to have a fingerprint scan completed, an iris scan, a hand scan, a voice scan, and/or a facial recognition scan completed. The information collected during the prescreen procedure is then stored within or provided to system 10, e.g. via a card reader reading a registration card, such that when a passenger enters kiosk 22, the verified information may be compared to the information presented by the passenger within kiosk 22 to facilitate reducing the amount of time to complete passenger screening and thus improve the convenience of passenger screening. Moreover, prescreening facilitates shifting limited security resources from lower-risk passengers to passengers that have not be prescreened.
When the passenger's identity has been verified using modality 12 this information may be utilized by system 10 to determine the level of passenger threat screening that may be conducted on the passenger utilizing modality 14. For example, the results of this screening may be used to affect the passenger's subsequent traversal of the remainder of the checkpoint (metal detector portal, X-ray system, hand wanding, pat-down, trace detection, etc). For example, system 10 may determine that based on the passenger's verified identity as determined by modality 12 that no threat screening is required to be accomplished by modality 14. Optionally, system 10 may determine that a limited or full threat screening is required on the passenger. As described herein, since modality 14 is housed within the same kiosk, i.e. kiosk 22, as passenger screening modality 14, modality 14 may accomplish either a metal detection screening and/or an explosives screening of at least a portion of the passenger without the passenger exiting the kiosk thus decreasing the amount of time required to verify the passenger and perform passenger screening, thus further improving convenience to the passenger.
In one exemplary embodiment, passenger screening modality 14 may be implemented utilizing a quadrupole resonance (QR) detection system 60 that utilizes quadrupole resonance to detect explosives such as, but not limited to C4, Semtex, Detasheet, TNT, ANFO, and/or HMX since the quadrupole resonance signature of these explosives is unique and measurable in seconds.
As such, Nuclear Quadrupole Resonance (NQR) is a branch of radio frequency spectroscopy that exploits the inherent electrical properties of atomic nuclei and may therefore be utilized to detect a wide variety of potentially explosive materials. For example, nuclei having non-spherical electric charge distributions possess electric quadrupole moments. Quadrupole resonance arises from the interaction of the nuclear quadrupole moment of the nucleus with the local applied electrical field gradients produced by the surrounding atomic environment. Any chemical element's nucleus which has a spin quantum number greater than one half can exhibit quadrupole resonance. Such quadrupolar nuclei include: 7Li, 9Be, 14N, 17O, 23Na, 27Al, 35Cl, 37Cl, 39K, 55Mn, 75As, 79Br, 81Br, 127I, 197Au, and 209Bi. Many substances containing such nuclei, approximately 10,000, have been identified that exhibit quadrupole resonance.
It so happens that some of these quadrupolar nuclei are present in explosive and narcotic materials, among them being 14N, 17O, 23Na, 35Cl, 37Cl, and 39K. The most studied quadrupolar nucleus for explosives and narcotics detection is nitrogen. In solid materials, electrons and atomic nuclei produce electric field gradients. These gradients modify the energy levels of any quadrupolar nuclei, and hence their characteristic transition frequencies. Measurements of these frequencies or relaxation time constants, or both, can indicate not only which nuclei are present but also their chemical environment, or, equivalently, the chemical substance of which they are part.
When an atomic quadrupolar nucleus is within an electric field gradient, variations in the local field associated with the field gradient affect different parts of the nucleus in different ways. The combined forces of these fields cause the quadrupole to experience a torque, which causes it to precess about the electric field gradient. Precessional motion generates an oscillating nuclear magnetic moment. An externally applied radio frequency (RF) magnetic field in phase with the quadrupole's precessional frequency can tip the orientation of the nucleus momentarily. The energy levels are briefly not in equilibrium, and immediately begin to return to equilibrium. As the nuclei return, they produce an RF signal, known as the free induction decay (FID). A pick-up coil detects the signal, which is subsequently amplified by a sensitive receiver to measure its characteristics.
As shown in
Inductive sensor 32 may be configured in such a manner that both current branches 90 and 92 experience current flow that is generally or substantially parallel to the left and right walls 24 and 26. For example, the current branches 90 and 92 may be placed in communication with an electrical source (not shown in this figure). During operation, current flows through current branch 90 in one direction, while current flows through current branch 92 in substantially the opposite direction. The term “anti-symmetric current flow” may be used to refer to the condition in which current flows through the current branches in substantially opposite directions.
Inductive sensor 32 may be implemented using a quadrupole resonance (QR) sensor, a nuclear magnetic resonance (NMR) sensor, a metal detection sensor, and the like. For convenience only, various embodiments will be described with reference to the inductive sensor implemented as a QR sensor 32, but such description is equally applicable to other types of inductive sensors.
In the exemplary embodiment, current branches 90 and 92 collectively define a QR sheet coil that is shown as sensor 32 in
As shown in
In the exemplary embodiment, QR sensor 32 utilizes an EMI/RFI (electromagnetic interference/radio frequency interference) shield to facilitate shielding sensor 32 from external noise, interference and/or to facilitate inhibiting RFI from escaping from the inspection system during an inspection process. In the exemplary embodiment, walls 24, 26, and 28 are configured to perform RF shielding for QR sensor 32. Specifically, walls 24, 26, and 28 are electrically connected to each other, to entrance ramp 82, and to sensor housing 80 to form an RF shield 100.
Each of the shielding components, i.e. walls 24, 26, and 28 may be fabricated from a suitably conductive material such as aluminum or copper. Typically, the floor components, i.e. ramp 82 and sensor housing 80 are welded together to form a unitary structure. Additionally, walls 24, 26, and 28 may also be welded to the floor components, or secured using suitable fasteners such as bolts, rivets, and/or pins. QR sensor 32 may be secured within sensor housing 80 using, for example, any of the just-mentioned fastening techniques. If desired, walls 24, 26, and 28, entrance ramp 82, and the QR sensor 32 may be covered with non-conductive materials such as wood, plastic, fabric, fiberglass, and the like.
No particular length or width for the current branches 90 and 92 is required. In general, each current branch may be dimensioned so that it is slightly larger than the object or specimen being inspected. Generally, current branches 90 and 92 are sized such that a person's left foot and right foot (with or without shoes) may be respectively placed in close proximity to the left and right current branches 90 and 92. This may be accomplished by the person standing over the left and right current branches. In this scenario, the left and right branches may each have a width of about 4-8 inches and a length of about 12-24 inches. It is to be understood that the terms “left” and “right” are merely used for expositive convenience and are not definitive of particular sides of the structure.
Upper and lower conductive elements 110 and 112 are shown electrically coupled by fixed-valued resonance capacitor 118 and tuning capacitor 120, which is a switched capacitor that is used to vary tuning capacitance. Upper and lower conductive elements 114 and 116 may be similarly configured.
In accordance with the exemplary embodiment, current flows between the left and right current branches 90 and 92 during operation since these components are electrically coupled via ramp 82 and the sensor housing 80. During operation, a person may place their left foot over left current branch 90 and their right foot over right current branch 92. In such a scenario, current is directed oppositely through each branch resulting in current flowing from toe to heal along left current branch 90, and from heal to toe along right current branch 92. In the exemplary embodiment, QR sensor 32 is positioned within sensor housing 80 to form a non-conductive gap between current branches of the QR sensor. This gap allows the magnetic fields to circulate about their respective current branches.
In contrast to conventional inductive sensor systems, the counter-directed magnetic fields generated by QR sensor 32 are well-attenuated and have a topography that is especially suited for use with a kiosk that includes a first wall 24, a second wall 26 that is opposite to first wall 24, and a third wall 28 that is substantially perpendicular to first and second walls 24 and 26, and a floor 30 that is connected to first wall 24, second wall 26, and third wall 28.
As an example of a practical application, the left and right current branches 90 and 92 may be positioned about 2-7 inches from respective walls 24, 26, and 28 using a plurality of non-conductive regions. In addition, current branches 90 and 92 may be positioned about 4-14 inches from each other using a non-conductive region.
Operation of QR inspection system 60 in accordance with embodiments of the invention may proceed as follows. First, a person may be directed to enter QR inspection system 10 at entrance ramp 82. The person proceeds up entrance ramp 82 and stands with their feet positioned over QR sensor 32. To maximize the accuracy of the inspection process, the person may stand with their left foot positioned over left current branch 90 and their right foot over right current branch 92. The person will then be prompted by modality 12 to complete the verification screening process as described above. After the verification screening process is completed, modality 14 may prompt a passenger to ensure that their left foot is positioned over left current branch 90 and their right foot is positioned over right current branch 92. In the exemplary embodiment, labels are attached to the floor indication where the passenger's feet should be placed.
At this point, the lower extremities of the person are QR scanned by the inductive sensor 32 to determine the presence of a target substance such as, for example, an explosive, contraband, an illegal drug, a controlled substance, or a conductive object. In the case of QR detectable objects, this may be accomplished by a QR sensor providing RF excitation signals at a frequency generally corresponding to a predetermined, characteristic NQR frequency of the target substance. For example, RDX-based plastic explosives have a resonant frequency of approximately 3.410 MHz, while PETN-based plastic explosives have a resonant frequency of approximately 890 KHz. Note that the excitation frequency need not be exactly the same as the target substance NQR frequency, but it is typically within about 500-1000 Hz. The resonant frequencies of the various target substances that may be detected using NQR are well known and need not be further described. After the threat screening is completed, system 10 will direct the passenger to exit the kiosk 22.
In the exemplary embodiment, system 60 may also be configured to perform metal detection. Specifically, inductive sensor 32 may be configured as a pickup coil that is utilized to detect any inductive signals from the target specimen. To enhance the metal detection capability of system 60, system 60 may also include at least one, and preferably, a plurality of separate metal detection sensors 128 that are utilized in conjunction with inductive sensor 32. Each of the metal detection sensors 128 may be configured to detect conductive objects present within the vicinity of the lower extremities of the inspected person. These signals may be communicated to a suitable computing device for example computer 18.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a fingertip trace explosive detection system 220 (shown in
In the exemplary embodiment, trace explosive detection system 220 includes an ion trap mobility spectrometer that is utilized to determine whether any substantially minute particles of interest such as traces of narcotics, explosives, and other contraband is found on the passenger's finger. For example, the ion trap mobility spectrometer is preferentially useful in identifying trace explosives or other contraband on a passenger's finger that may be indicative of the passenger recently manipulating explosives or other contraband and as such does not require imaging or localization.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a backscatter X-ray imaging system 130 as shown in
In the exemplary embodiment, system 130 includes an X-ray source 132 that transmits at least one X-ray beam, or a plurality of X-ray beams 134 that are scattered or reflected from the passenger as beams 136 to at least one X-ray detector 138 that is positioned on the same side of the passenger as is X-ray source 132. As described herein, system 130 may be positioned in any of walls 24, 26, or 28, or optionally in floor 30. Signals generated by the X-ray detectors 138 are transmitted or routed to a computer such as computer 18 for example. Computer 18 then automatically determines whether the passenger has any concealed objects by comparing the generated data to data that is stored in a database within computer 18.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing an ultrasonic inspection system.
A user input device, such as computer 18 for example, may be used to control operation of ultrasound system 150 and to process the acquired ultrasound information (i.e., RF signal data or IQ data pairs) and prepare frames of ultrasound information for display on a display system coupled to computer 18. Computer 18 is adapted to perform one or more processing operations according to a plurality of selectable ultrasound modalities on the acquired ultrasound information. Acquired ultrasound information may be processed in real-time during a scanning session as the echo signals are received. Additionally or alternatively, the ultrasound information may be stored temporarily in RF/IQ buffer 164 during a scanning session and processed in less than real-time in a live or off-line operation. In the exemplary embodiment, probe 154 is housed on one of walls 24, 26, and 28 and/or within floor 30. In the exemplary embodiment, probe 154 is mounted in a fixed position. Optionally, probe 154 may be movable along a linear or arcuate path, while scanning the passenger within kiosk 22.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a millimeter wave imaging system.
Electromagnetic radiation may be selected from an appropriate frequency range, such as in the range of about 200 megahertz (MHz) to about one terahertz (THz), generally referred to herein as millimeter-wave radiation. Satisfactory imaging may be realized using electromagnetic radiation in the reduced frequency range of one gigahertz (GHz) to about 300 GHz. Radiation in the range of about 5 GHz to about 110 GHz may also be used for producing acceptable images. Such radiation may be either at a fixed frequency or over a range or set of frequencies using several modulation types, e.g. chirp, pseudorandom frequency hop, pulsed, frequency modulated continuous wave (FMCW), or continuous wave (CW).
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a terahertz spectroscopy imaging system.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a Time Domain Reflectometry (TDR) system.
Although the exemplary passenger screening modalities 14 described herein are generally directed toward scanning the lower region of the passenger while the passenger is still wearing shoes, it should be realized that at least some of modalities 14 may be implemented to scan the entire passenger with or without the passenger wearing shoes. Such systems include for example, whole body QR scanning, whole body metal detection, whole body trace explosive detection, and whole body metal detection.
In the exemplary embodiment, passenger screening modality 14 may be implemented utilizing a whole-body trace explosive detection system 200. For example, and referring to
The jets function to disturb the clothing of the human subject in the passage sufficiently to dislodge particles of interest that may be trapped in the clothing of the inspected person. However, the short puffs of air are controlled to achieve minimum disruption and minimum dilution of the human thermal plume. The dislodged particles then are entrained in the human thermal plume that exists adjacent the human subject. The air in the human thermal plume, including the particles of interest that are dislodged from the clothing, are directed to trace detection system 200 for analysis.
During operation, a person may be instructed to enter passage 214. Visual signals or voice prompts may be used to instruct the person to remain in the passage for the duration of the inspection process, which is typically about 5-10 seconds. The jets may then fire sequentially from bottom to top. More particularly, the four lower tier jets may fire simultaneously for about 50 ms. There then may be a pause of about 100 ms, and the four jets in the second tier may fire for about 50 ms. This process will continue until the four jets in the top tier have fired. Particles displaced by the jets will be entrained in the human thermal plume and will flow naturally upward through the hood-shaped ceiling 206 wherein the particles are utilized by trace detection system 200 to determine if the passenger is carrying any explosive articles or other contraband. In another embodiment, whole body kiosk may be modified to include sensors that conduct whole body QR detection, whole body metal detection, and/or whole body trace explosive detection, as described above.
Although the exemplary embodiment illustrates a plurality of systems that may be utilized to implement screening modality 14, it should be realized a wide variety of systems may be utilized to identify any explosives or metallic objects carried by a passenger. Moreover, elements of each described system may be combined with elements of other described systems to further refine the screening process. Moreover, behavioral indications such as sweating, rapid eye movements, etc. may be utilized in conjunction with the systems described above to further optimize the screening process.
In the exemplary embodiment, modality 12 and/or modality 14 may be utilized in conjunction with a third modality 16 that, in the exemplary embodiment, may include other passenger services such as at least one of a boarding pass inspection system, a check-in system, a seat selection system, a vending system for vending coffee, insurance, etc., or internet access.
Described herein is a kiosk that combines any one or few of a number of passenger identity verification modalities with any one or a few of a number of threat screening modalities, with the option of adding one or a few other services. While the exemplary embodiment, illustrates the kiosk including a modality configured to scan only the lower portion of the passenger's legs and shoes, the kiosk may include a portal or phone booth-like enclosure to inspect the whole body.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application claims the benefit of U.S. provisional application Ser. No. ______, filed on Mar. 10, 2006, under client docket number 206025, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60781057 | Mar 2006 | US |