The present invention relates to providing automated nursing care, and more particularly, to an intelligent nurse robot for providing automated nursing care.
The average age of nurses in hospitals and retirement homes is steadily increasing, however, fewer people become nurses every year. Meanwhile, the average age of the population is also increasing and therefore there is a larger demand for nursing services. This has led to an increasing shortage of trained nurses in health systems in almost every industrialized country. Accordingly, there is a need for a solution to this deficiency of the number of working nurses assisting our elderly population.
One solution is to use a robotic nurse as a remote presence in hospitals and retirement homes. In the past, these robots have been designed to be teleoperated by a qualified person not physically located in the same location as the robot. Essentially, the robot acts as a medium to allow communication between the operator and the patient. This still requires, however, a continuous monitoring presence by the teleoperator as the teleoperator controls the robot and, therefore, many of the same problems still exist (i.e. a shortage of qualified operators). Accordingly, there is a need in the art for an improved solution to the nursing shortage.
A robotic nursing system for use with a patient comprises a nursing robot having at least one patient condition sensor, a transmitter, and a receiver mounted therein. A display device for displays data sensed by the patient condition sensor. The display device includes a receiver in communication with the nursing robot. The nursing robot senses patient physiological conditions using the patient condition sensor and transmits the physiological conditions to the display device using the transmitter. The display device then displays the physiological conditions for review by a user.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
With reference to
Turning now to
The patient condition sensors 28 generally include a plurality of devices used to measure the patient's 26 physiological indicators. For example, these indicators may include blood pressure, sugar in blood, or temperature. It should be appreciated that various other physiological indicators might also be sensed. These sensed indicators are then processed by the CPU 24. The robot 12 then makes an internal decision using an algorithm (built with decision trees, neural networks, or other techniques) to decide whether to do further measurements, administer medicine, or alert a nurse or doctor as to the patient's 26 condition. This independent decision making allows for the robot 12 to be semi-autonomous, as will be described in greater detail below.
The patient voice identification 30 is used to identify the patient 26 using voice identification. For example, this may be accomplished with a password trained in advance that also identifies the voice of the speaker. This assures that patient confidentiality (as required by HIPAA standards) is assured. In an alternate embodiment, the patient condition sensors 28 are also used to identify various biometric factors to be used in an authentication technique (e.g. fingerprints, blood DNA analyses, etc.) either along with or instead of voice identification. Specifically, the patient condition sensors 28 include a biometric identification module used to sense a physiological condition or characteristic of the patient 26 (e.g., such as a camera for facial recognition or an electronic scanning pad for fingerprint identification). The sensed physiological characteristic is then used to identify or recognize a given patient 26. If the patient 26 is new to the intelligent nurse robotic system 10, voice and physiological characteristics may be stored in a patient database 40. The patient database 40 is a data store stored on a server within the hospital or retirement home, though the patient database 40 may also be located within the robot 12 itself. The CPU 24 is in direct communication with the transmitter/receiver 38 and is able to access the patient database 40 to recognize the patient 26 after initial voice and physiological characteristics specific to the patient 26 have been stored therein. The patient database 40 may also include various information specific to a patient 26. For example, such information can include the patient's 26 medical history, the patient's 26 dialogue related preferences (e.g., language and style of interaction), and any other relevant medical information. As will be discussed below, access to the patient database 40 allows the intelligent nurse robotic system 10 to have a great degree of specialization when interacting with a given patient 26.
The automatic speech recognition 32 allows the robot 12 to interact with the patient 26. In this way, the patient 26 may be instructed to use simple word commands in order to communicate with the robot 12. Furthermore, the automatic speech recognition 32 may be relayed through the CPU 24 through the transmitter/receiver 38 and to the teleoperator or monitor such that the teleoperator may hear or see written text of the patient's 26 communications.
The text speech synthesis 34 is used to communicate with the patient 26 using speech. The robot 12 may then inform the patient 26 of any procedures it is performing or any relevant biometric data using a synthesized voice rather than text messages. Moreover, the teleoperator 14 through the transmitter/receiver 38 and the text speech synthesis 44 may directly communicate with the patient 26 through the robot 12. Alternatively, text may be displayed on a screen located on the robot 12 for patient's 26 who are unable to hear or understand audio communication.
The patient manipulators 36 include the actual physical manipulators used to interact with the patient 26 and any services related thereto. These physical manipulators 36 may include arms, trays, sensors or any other interactive device. For example, in order to take the patient's 26 blood pressure, the physical manipulators 36 may include a tray having an automated arm compression portion and sensors that determine the blood pressure of the patient 26.
In retirement homes, the robot 12 may act as a form of entertainment device and companion, used to interact with the patients 26 in various personalized ways. This may include telling stories or adjusting comfort levels for bedridden patients. Entertainment preferences relating to a given patient 26 may be uploaded into the patient database 40.
In the event that the CPU 24 cannot come to a decision or in the event that the CPU 24 determines that further assistance is needed from a human, the robot 12 may communicate directly with a doctor/nurse 16 using the transmitter/receiver 38. The doctor/nurse 16 may receive information from the robot 12 through a PDA, cellular phone or a similar device. The data stream from the patient condition sensors 28 may also be transmitted directly to a device such as a PDA in the doctor/nurse's 16 possession such that the doctor/nurse 16 may look at a patient's 26 physiological measurements in real time or have the robot 12 perform an additional measurement upon request.
With reference to
If, however, the threshold is exceeded at step 106, then the robot 12 then determines if the physiological data is consistent with the patient's medical history by accessing the patent database 40 at step 110. If the physiological data is consistent, then the robot 12 takes no further action. If, however, the physiological data is not consistent, then the robot 12 decides to contact a physician or nurse at step 112.
Similarly, at step 114, the robot 12 can determine if medication used to decrease the patient's pain is consistent with the medical history from the patient database 40. If not consistent, the robot 12 may contact a physician or nurse at step 112. If, however, medication is consistent with the patient's medical history and condition, then the robot 12 may autonomously administer medication to the patient at step 116 and update the patient database with the new medical history at step 118.
Using the above exemplary decision tree, the robot 12 is able to take over many of the tasks currently performed by nurses. Moreover, the physician can tailor the decision tree by altering the thresholds or adding certain medical markers to watch out for (e.g., for a given patient, the physician may want the robot 12 to contact him/her if the patient's heart-rate exceeds a given value, regardless of any other factors). The teleoperator 14 may monitor more than one robot 12 at any given time and take over any given robot 12 as the need arises even if the robot 12 has not decided to contact a physician or nurse, thereby providing a backup to the semi-autonomous robot 12.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.