Interactive gaming toy

Information

  • Patent Grant
  • 9446319
  • Patent Number
    9,446,319
  • Date Filed
    Thursday, June 25, 2015
    9 years ago
  • Date Issued
    Tuesday, September 20, 2016
    8 years ago
Abstract
An interactive gaming toy is provided for playing a game having both physical and virtual gameplay elements. The gaming toy comprises a physical toy, such as a toy wand, doll or action figure, having an RFID tag pre-programmed with a unique identifier that identifies the toy within an associated computer-animated game. The RFID tag stores information describing certain attributes or abilities of a corresponding virtual character or object in the computer-animated game. Additional information may be stored on the RFID tag as the corresponding virtual character evolves or changes over time based on player performance and/or gameplay progression. The interactive gaming toy thus allows developed character attributes and the like to be stored and easily transported to other games and compatible gaming platforms. One or more optional auxiliary components may be attached to the gaming toy to selectively create a modified gaming toy having additional desired functionality and/or aesthetics.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to children's games and, in particular, to interactive games, toys and play systems utilizing wireless transponders and receivers for providing a unique interactive game play experience.


2. Description of the Related Art


Games, toys, play systems and other similar entertainment devices are well known for providing play and interaction among children and adults. A variety of commercially available play toys and games are also known for providing valuable learning and entertainment opportunities for children, such as role playing, reading, memory stimulation, tactile coordination and the like. However, there is always a demand for more exciting and entertaining games and toys that increase the learning and entertainment opportunities for children and stimulate creativity and imagination.


SUMMARY OF THE INVENTION

Embodiments of the present invention provide a unique play experience carried out utilizing an interactive gaming toy that allows play participants to wirelessly interact with their surrounding play environment(s). The gaming toy may be used to play a game carried out in a physical play environment, such as a play structure, play area or other area (either commercial or residential), as desired. It may also be used to play a game carried out in non-physical play environments, such as television, radio, virtual reality, computer games and the like. The physical play environment may be simply a themed play area, or even a multi-purpose area such as a restaurant dining facility, family room, bedroom or the like. The non-physical play environment (sometimes referred to herein as a “virtual” play environment) may be an imaginary environment (i.e., computer/TV generated). For example, a virtual play environment may be visually/aurally represented via computer animation. Optionally, multiple play participants, each provided with a suitable interactive gaming toy, may play and interact together to achieve desired goals, master certain skills and/or produce desired effects within the play environment.


In one embodiment an interactive gaming toy is provided comprising a physical toy, such as a toy wand, doll or action figure, configured with an RFID (radio frequency identification) transponder (sometimes referred to herein as a “tag”) pre-programmed with a unique identifier. The unique identifier may uniquely identify the toy within an associated game, for example. The RFID tag may also be configured to store information describing certain attributes or abilities of a corresponding virtual character or object in a computer-animated game. The information stored on the RFID tag may also be supplemented or updated as the corresponding virtual character or object evolves or changes over time based on player performance and/or gameplay progression. The interactive gaming toy thus allows developed character attributes and the like to be stored and easily transported to other games and compatible gaming platforms.


In accordance with another embodiment an interactive gaming toy comprises a toy wand or other seemingly magical object which provides a basic foundation for a complex, interactive entertainment system. In one embodiment the toy wand comprises an elongated hollow pipe or tube having a proximal end or handle portion and a distal end or transmitting portion. An internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power long-range transmissions such as via an infrared LED transmitter device or RF transmitter device. The handle portion and/or distal end of the toy wand may be fitted with an RFID transponder that is operable to provide relatively short-range RF communications (<60 cm) with one or more compatible receivers or transceivers. In one embodiment the transponder is pre-programmed with a unique identifier which may be used, for example, to identify and track individual play participants and/or wands within a play facility.


The RFID transponder or other identifying device is preferably used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by an imaginary role-play character. In one embodiment players may advance in a magic-themed adventure game by finding clues, casting spells and solving various puzzles presented. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, and combinations of the same or the like. All of this information is preferably stored on the RFID transponder and/or an associated database indexed by the unique RFID tag identifier so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a transponder device that is able to seamlessly transcend from one play environment to the next.


In accordance with another embodiment one or more adjunct gaming items are provided, comprising collectable/tradable character cards, trinkets, tokens, coins, or the like. Each character card (or trinket, token, coin, etc.) may be configured with an RFID tag that stores certain information describing the powers or abilities of an imaginary role-play character that the gaming toy represents. In one embodiment, as each play participant uses a favorite character card to play a game in a compatible play facility, for example, the character represented by the card gains (or loses) certain attributes, such as magic skill level, magic strength, flight ability, various spell-casting abilities, etc. All of this information is preferably stored on the card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.


In accordance with another embodiment one or more adjunct gaming items are provided, comprising trading cards depicting various real or imaginary persons, characters and/or objects. In one embodiment each card has recorded or stored thereon in an electronically readable format certain selected information pertaining to the particular person, character or object, such as performance statistics, traits/powers, or special abilities. The information is preferably stored on an RFID tag associated with each card and which can be read electronically and wirelessly over a predetermined range preferably greater than about 1 cm when placed in the proximity of a suitably configured RF reader. Optionally, the RFID tag may be read/write capable such that the information stored thereon may be changed or updated in any manner desired.


In accordance with another embodiment a computer adventure game is provided wherein game participants use RFID-enabled tokens as player tracking devices within the game. Each token has an RFID tag that uniquely identifies a corresponding player in the game and also preferably stores the player's progress in the game. Each player begins the adventure with essentially the same powers, skills and abilities. Each player may also receive an interactive gaming toy which the player must learn to use to accomplish certain goals set out in the game.


An authenticating password system may be used to verify or authenticate game events and to thereby discourage cheating. Authenticating passwords may be unique or semi-unique to the player(s) who possess them. For example, each password may be an encrypted alpha-numeric code that is mathematically derived from a unique ID number stored on each participating player's token. When the alpha-numeric number is subsequently re-entered into another device (for example, a home game console or home computer) by the authorized player, the game software can reverse the mathematical encryption algorithm using the player's unique ID number and thereby determine and/or validate the game event(s) that generated the authenticating password.


In accordance with another embodiment an RFID-enabled gaming system is provided that allows a game participant to earn points, levels, or upgrades in a first game, which are stored on an associated RFID-enabled token. The game participant is then able to use the RFID-enabled token and the stored points, levels, or upgrades to advance in a second RFID-enabled game. Players may also earn upgrades by purchasing certain retail items from a participating retail vendor, such as a fast-food restaurant. For example, a player may receive a token and/or an authenticating code in one or more retail transactions that enables the game participant to access levels, or upgrades in a popular video game. Authenticating codes may be printed on an ordinary cash register receipt, for example.


For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Having thus summarized the general nature of the invention and its essential features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:



FIG. 1A is an exploded assembly view of one embodiment of an interactive gaming toy configured with an RFID tag;



FIG. 1B is a front plan view of the interactive gaming toy of FIG. 1A;



FIG. 2A is an exploded assembly view of an alternative embodiment of an interactive gaming toy having modular components configured with mating magnets for facilitating detachable assembly thereof;



FIG. 2B is front plan view of a further alternative embodiment of an interactive gaming toy having an intermediate auxiliary component configured with a second RFID tag;



FIGS. 3A and 3B are front and back views, respectively, of a further alternative embodiment of an interactive gaming toy comprising an RFID-enabled key chain trinket;



FIG. 4 is an exploded assembly view of a further alternative embodiment of an interactive gaming toy comprising an RFID-enabled toy figure or doll;



FIG. 5 is a partially exploded assembly view of a further alternative embodiment of an interactive gaming toy comprising an RFID-enabled toy action figure;



FIG. 6 is a partially exploded assembly view of a further alternative embodiment of an interactive gaming toy comprising an RFID-enabled toy wand;



FIGS. 7A and 7B are time-sequenced illustrations of one embodiment of a magic-themed play environment configured to be used with the toy wand of FIG. 6 and comprising various interactive play effects;



FIG. 8A is a partial schematic and exploded assembly view of one embodiment of the toy wand of FIG. 6;



FIG. 8B is a detail view of the handle portion and touch sensor elements of the toy wand of FIG. 8A;



FIGS. 9A-9B are time-sequenced illustrations of one embodiment of an interactive play effect configured to be actuated by the toy wand of FIG. 6;



FIG. 9C is an alternative embodiment of an interactive play effect configured to be actuated by the toy wand of FIG. 6;



FIG. 10 is an exploded assembly view of a further alternative embodiment of an interactive gaming toy comprising a toy wand configured to be assembled from interchangeable modular components;



FIGS. 11A-11E are illustrations showing various possible constructions, configurations and finishes of the modularly constructed toy wand of FIG. 10;



FIG. 12 is a schematic illustration of an alternative embodiment of a magic-themed play environment configured to be used with the toy wand of FIG. 6;



FIGS. 13A and 13B are front and back views, respectively, of one embodiment of an adjunct gaming item comprising an RFID-enabled character card;



FIG. 13C is a screen shot of an embodiment of a computer-animated role-play adventure game configured to be used with the RFID-enabled character card of FIGS. 13A-13B;



FIGS. 14A and 14B are front and back views, respectively, of one embodiment of an adjunct gaming item comprising an RFID-enabled trading card;



FIGS. 14C and 140 illustrate alternative embodiments of an adjunct gaming item comprising an RFID-enabled trading card;



FIG. 15A is a partial schematic illustration of an embodiment of a peripheral gaming device configured to be used with one or more associated RFID-enabled gaming toys or gaming items as disclosed herein;



FIG. 15B is a partial schematic illustration of an alternative embodiment of a peripheral gaming device configured to be used with one or more associated RFID-enabled gaming toys or gaming items as disclosed herein;



FIG. 15C is a partial schematic illustration of a further alternative embodiment of a peripheral gaming device configured to be used with one or more associated RFID-enabled gaming toys or gaming items as disclosed herein;



FIG. 16A is a detail view of one embodiment of an RFID transponder device configured to be used in an RFID-enabled gaming toy or gaming item as disclosed herein;



FIG. 16B is a schematic illustration of an RFID read/write unit configured for use with the RFID transponder device of FIG. 16A;



FIG. 16C is a simplified circuit schematic of the RFID read/write unit of FIG. 16B;



FIG. 17A is a detail view of an alternative embodiment of an RFID transponder device configured to be used in an RFID-enabled gaming toy or gaming item as disclosed herein;



FIGS. 17B and 17C are schematic illustrations of an RFID read/write unit configured for use with the RFID transponder device of FIG. 17A;



FIG. 17D is a simplified schematic diagram illustrating the basic organization and function of the electronic circuitry comprising the RFID tag illustrated in FIG. 17A;



FIG. 18A is a simplified schematic diagram of an RF/IR transmitter module;



FIG. 18B is a simplified schematic diagram of an RF/IR receiver module and controller configured for use with the RF/IR transmitter module of FIG. 18A;



FIG. 18C is a simplified schematic diagram of an alternative embodiment of a portion of the RF/IR receiver module of FIG. 18B;



FIG. 19 is a detailed electrical circuit schematic of an RF transmitter module configured to be incorporated into an interactive gaming toy as disclosed herein; and



FIG. 20 is a detailed electrical circuit schematic of an RF receiver module configured for use with the transmitter module of FIG. 19.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For convenience of description and for better clarity and understanding of the invention similar elements to those previously described may be identified with similar or identical reference numerals. However, not all such elements in all embodiments are necessarily identical as there may be differences that become clear when read and understood in the context of each particular disclosed preferred embodiment.


Interactive Gaming Toys



FIGS. 1A and 1B illustrate the basic construction of one embodiment of an interactive gaming toy 100a having features and advantages in accordance with the present invention. The gaming toy 100a generally comprises a portable toy figure or object 110a embodying, for example, a mythical creature such as a dragon 110a. Preferably, the toy figure or object 110a is small enough to be easily transported and manipulated by play participants, but not so small as to present a choking hazard for young children. If desired, the toy figure or object 110a may be mounted on and/or supported by a supporting structure 115a, as illustrated. This may be separately formed or integrally formed with the toy figure or object 110a as expedient or desired.


The toy figure or object 110a is preferably uniquely identified using one or more embedded or affixed RFID tags (described in more detail later). In one embodiment a glass-encapsulated RFID transponder 118 is disposed within an inner cavity formed within the toy figure or object 110a and/or supporting structure 115a. Transponder 118 is preferably passive (batteryless) and is operable to provide relatively short-range RF communications (less than about 200 cm) using one or more compatible RFID reader units or reader/writer units (described in more detail later). In one embodiment the transponder 118 is pre-programmed with a unique tag identifier and comprises non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character.


For example, players may advance in a magic-themed adventure game by finding clues, casting spells and solving various puzzles presented. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, combinations of the same or the like, based on game play, skill-level and/or the purchase of collateral play objects. Some or all of this information is preferably stored on the RFID transponder 118 so that the character attributes may be easily and conveniently transported to various compatible play facilities, games, video games, home game consoles, hand-held game units, and the like. Alternatively, some or all of this information may be stored on a computer-accessible database indexed by the unique tag identifier.


The toy figure or object 110a and/or supporting structure 115a may further include securement means, such as threaded stud 121, snap latches, mating magnets or the like, for receiving and securing one or more auxiliary components, such as a detachable knob 123a. For example, such auxiliary components may be purchased, selected and/or earned by play participants as they advance in a game and/or when they play different games. One example of an assembled gaming toy 100a is shown in FIG. 1B.



FIGS. 2A and 2B illustrate possible alternative embodiments of an interactive gaming toy 100b (FIG. 2A), 100c (FIG. 2B) having features and advantages in accordance with the present invention. As with the gaming toy 100a illustrated and described above, each interactive gaming toy 100b and 100c comprises a portable toy FIG. 110b, 110c embodying a mythical creature, such as a pixie 110b (FIG. 2A) or a unicorn 110c (FIG. 2B). These may be the same size or different sizes than the toy FIG. 110a (see FIG. 1), as desired.


The gaming toy 100b (FIG. 2A) also includes a glass-encapsulated transponder 118 pre-programmed with a unique tag identifier and having non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character. Transponder 118 is disposed within an auxiliary component comprising a detachable knob 123b. For example, the transponder 118 may be encapsulated in a colored epoxy, Lucite® acrylic glass (polymethyl methacrylate or PMMA) or the like and thereby disguised as a natural crystal or mineral/stone forming part of the detachable knob 123b. The knob 123b may include a magnet 117a and the toy figure or object 110b and/or supporting structure 115b may include a mating magnet 117b configured to removably secure the knob 123b and/or other compatibly-configured auxiliary components.


The gaming toy 100c (FIG. 2B) may share a similar construction to the gaming toy 100a or 100b illustrated and described above. The gaming toy 100c further comprises an intermediate auxiliary component 125 positioned between the supporting structure 115c and the detachable knob 123c. This may be used as a handle, for example, for holding or carrying the gaming toy 100c. Optionally, the intermediate auxiliary component 125 may include a second RFID tag, such as an adhesive-backed RFID tag inlay 128 (described in more detail later) which may be affixed to the intermediate auxiliary component 125 and covered with an adhesive paper label 127. Alternatively, the RFID tag inlay 128 may be molded directly into a substrate from which the intermediate auxiliary component 125 is formed.


Another possible embodiment of an interactive gaming toy is illustrated in FIGS. 3A-3B. The interactive gaming toy 100d generally comprises a key chain trinket 110d depicting, for example, a mythical character such as a magical wizard. The key chain trinket 110d may be mounted on a key chain 115d, as illustrated, for removably attaching the gaming toy 100d to a key ring (not shown). The key chain trinket 110d is uniquely identified by an adhesive-backed RFID tag inlay 128 which is affixed to the back side of the key chain trinket 110d, as illustrated in FIG. 3B. Alternatively, the RFID tag inlay 128 may be molded directly into the substrate from which the key chain trinket 110d is formed. The RFID tag 128 is preferably pre-programmed with a unique tag identifier and contains non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character.


For example, character attributes developed during a play participant's visit to a local play facility may be stored on the tag 128. When the play participant then revisits the same or another compatible play facility, all of the attributes of his character are “remembered” on the tag 128 so that the play participant is able to continue playing with and developing the same role-play character. Similarly, various video games, home game consoles, and/or hand-held game units can be and preferably are configured to communicate with the tag 128 in a similar manner as described above and/or using other well-known information storage and communication techniques. In this manner, a play participant can use the same role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game or the like.


Another possible embodiment of an interactive gaming toy is illustrated in FIG. 4. The interactive gaming toy 100e generally comprises a toy figure or doll 110e embodying, for example, a mythical character such as a gnome. The toy figure or doll 110e may be mounted on and/or supported by a supporting structure 115e, in this case a simulated stack of books. The supporting structure 115e may be separately formed or integrally formed with the toy figure or doll 110e as expedient or desired. The toy figure or doll 110e is uniquely identified using an adhesive-backed RFID tag inlay 128 which is affixed to an outer surface of the toy FIG. 110e or supporting structure 115e. Alternatively, the RFID tag inlay 128 may be molded directly into the substrate from which the toy FIG. 110e or supporting structure 115e is formed. The RFID tag 128 is preferably pre-programmed with a unique tag identifier and contains non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character.


Another possible embodiment of an interactive gaming toy is illustrated in FIG. 5. The interactive gaming toy 100f generally comprises a toy action FIG. 110f embodying, for example, a mythical creature such as a dragon. The toy action FIG. 110f is uniquely identified using a glass-encapsulated RFID transponder 118 which is disposed within an inner cavity formed within the toy action FIG. 110f. The transponder 118 is preferably pre-programmed with a unique tag identifier and comprises non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character.


For example, play participants may use the gaming toy 100f to electronically and “magically” interact with their surrounding play environment to achieve desired goals or produce desired effects within a suitably-configured play environment. Use of the gaming toy 100f may be as simple as touching it to a particular surface or “magical” item within the play environment or it may be as complex as moving or shaking the gaming toy 100f in a particular manner and/or orienting it relative to a certain item desired to be “magically” transformed or otherwise affected. For example, various wireless receivers (described in more detail later) may be provided within a physical play environment and configured so as to allow play participants to activate various associated play effects and/or to play a game using the gaming toy 100f. As play participants play and interact within each play environment they learn more about the “magical” powers possessed by the gaming toy 100f and become more adept at using the gaming toy 100f within various game contexts to achieve desired goals or produce desired play effects. Optionally, play participants may collect points or earn additional magic levels or ranks for each play effect or task they successfully achieve. In this manner, play participants may compete with one another to see who can score more points and/or achieve the highest magic level.


If desired, an optional RF/IR module 150 (described in more detail later) may be provided for long-range wireless communications (up to about 100 meters). If line of sight or directional actuation is desired, an infrared LED transmitter of the type employed in standard television remote controls may be provided instead of or in addition to an RF transmitter, as those skilled in the art will readily appreciate. Of course, a wide variety of other wireless communications devices, as well as various optional sound and lighting effects may also be provided, as desired.


Operation of the RF/IR module 150 (and/or other wireless communication devices described herein) may be controlled by motion-sensitive internal activation circuitry 120 (described in more detail later). For example, activation circuitry 120 may be configured to allow the gaming toy 100f to be operated by moving or manipulating it in a particular manner. If provided, these operational aspects would need to be learned by play participants as they train in the various play environments. One goal, for example, may be to become a master dragon trainer. This means that the play participant has learned and mastered every aspect of operating the gaming toy 100f to produce desired effects within each play environment. Of course, additional effects and operational nuances can (and preferably are) always added over time in order to keep the interactive experience fresh and continually changing. The gaming toy 100f may also be configured to respond to other signals, such as light, sound, or voice commands as will be readily apparent to those skilled in the art.


Another possible embodiment of an interactive gaming toy is illustrated in FIG. 6. The interactive gaming toy 100g generally comprises a toy wand comprising a wand shaft 110g and one or more auxiliary components such as a detachable handle 115g and a detachable knob 123g. The toy wand 100g is uniquely identified using a glass-encapsulated RFID transponder 118 which is disposed within an inner cavity formed in the wand shaft 110g or detachable handle 115g. Preferably the transponder 118 is pre-programmed with a unique tag identifier and comprises non-volatile memory configured to store certain information identifying a play participant and/or describing certain powers or abilities possessed by an imaginary role-play character.


Play participants may use the toy wand 100g to electronically and “magically” interact with a suitably configured play environment to achieve desired goals or produce desired effects. For example, FIGS. 7A-7B illustrate one embodiment of a magic-themed play environment comprising multiple play effects 200, such as a talking rabbit 201, a magic hat 202, a crystal ball 203, an enchanted book 204, and a shooting-gallery-style play effect 205 having one or more targets 206. These may be physical play objects configured with special effects and/or they may be graphical or computer-generated images displayed, for example, on one or more associated computer monitors, TV monitors, DVD display monitors, or computer gaming consoles and the like. Those skilled in the art will readily appreciate from the disclosure herein that all of these effects and many other possible play effects may be actuated or controlled by toy wand 100g in conjunction with one or more RF receivers, RFID reader/writers and/or other devices disclosed and described herein.


Use of the toy wand 100g may be as simple as touching it to a particular surface or “magical” item within the play environment or it may be as complex as moving or manipulating the toy wand 100g in a particular manner and/or pointing it accurately at a certain item desired to be “magically” transformed or otherwise affected. For example, various wireless receivers (described in more detail later) may be distributed throughout a play facility so as to allow play participants to activate various associated play effects and/or to play a game using the toy wand 100g. As play participants play and interact within each play environment they learn more about the “magical” powers possessed by the toy wand 100g and become more adept at using the toy wand 100g within various game contexts to achieve desired goals or produce desired play effects. Optionally, play participants may collect points or earn additional magic levels or ranks for each play effect or task they successfully achieve. In this manner, play participants may compete with one another to see who can score more points and/or achieve the highest magic level. Play participants may also access a web site in order to register the toy wand and play an online interactive game. Preferably this is a relatively simple game intended to provide a basic training session. In this on-line game session, the player may learn how to use the toy wand 100g to cast various spells and trigger various effects within an interactive computer-gaming environment provided by an ordinary home computer. The player may also learn how to discover important clues needed to advance in the game and to solve various puzzles or challenges presented by the game.


If desired, an optional RF/IR module 150 (described in more detail later) may be provided for long-range wireless communications (up to about 100 meters), as illustrated in FIG. 6. If line of sight or directional actuation is desired, an infrared LED transmitter of the type employed in standard television remote controls may be provided instead of or in addition to an RF transmitter, as those skilled in the art will readily appreciate. Of course, a wide variety of other wireless communications devices, as well as various optional sound and lighting effects may also be provided, as desired. Operation of the RF/IR module 150 (and/or other wireless communication devices described herein) may be controlled by motion-sensitive internal activation circuitry 120 (described in more detail later). For example, activation circuitry 120 may be configured to allow the toy wand 100g to be operated by waving, shaking, stroking and/or tapping it in a particular manner. If provided, these operational aspects would need to be learned by play participants as they train in the various play environments. One goal, for example, may be to become a “grand wizard” or master of the wand. This means that the play participant has learned and mastered every aspect of operating the toy wand 100g to produce desired effects within each play environment.


Of course, additional effects and operational nuances can (and preferably are) always added over time in order to keep the interactive experience fresh and continually changing. Optionally, the toy wand 100g may be configured with an LCD display screen (not shown). The toy wand 100g may also be configured to respond to other signals, such as light, sound, or voice commands as will be readily apparent to those skilled in the art. Additional preferred embodiments, details and functionalities of the toy wand 100g are described below, having reference to FIGS. 8-12.


As illustrated in more detail in FIG. 8A, the toy wand 100g essentially comprises an elongated hollow pipe or tube 111 having a proximal end 112 and a distal end 114. An internal cavity 116 is preferably provided to receive and safely house various circuitry for activating and operating the toy wand and various wand-controlled effects (described later). Batteries, optional lighting, laser or sound effects and/or the like may also be provided and housed within cavity 116, if desired, as will be described in more detail later. An optional button (not shown) may also be provided, if desired, to enable particular desired functions, such as sound or lighting effects or longer-range transmissions. While a hollow metal or plastic tube 111 is preferred, it will be appreciated that virtually any other mechanical structure or housing may be used to support and contain the various components and parts described herein, including integrally molded or encapsulated containment structures such as epoxy resins and the like. If a metal tube is selected, care must be taken to ensure that it does not unduly interfere with any of the magnetic, RFID or RF/IR devices described herein. Thus, for example, any RF antennas should preferably be mounted near or adjacent an end opening and/or other opening of the tube 111 to ensure adequate operating range and desired directionality.


The proximal end 112 of tube 111 is preferably adapted to secure the tube 111 to an optional handle 115g or other mating component. The handle 115g may further include securement means, such as threaded stud, snap latches, mating magnets 117a, 117b or the like, for receiving and securing an optional decorative knob 123g. For example, knobs 123g may be purchased, selected and/or earned by play participants as they advance in a game and/or when they play different games. An RFID transponder 118 is provided and contained within the wand shaft 110g and/or in the handle 115g, as illustrated. The transponder 118 is pre-programmed with a unique identifier such as a unique person identifier number (“UPIN”). The UPIN may be used to identify and track individual toy wands 100g and/or play participants. Optionally, each tag 118 may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined or desired relationship.


The RFID transponder 118 is preferably used to store certain information identifying each play participant and/or describing certain powers or abilities possessed by an imaginary role-play character. For example, players may advance in a magic adventure game by finding clues, casting spells and solving various puzzles presented. Players may also gain (or lose) certain attributes, such as magic skills, magic strength, fighting ability, various spell-casting abilities, combinations of the same or the like, based on game play, skill-level and/or the purchase of collateral play objects. Some or all of this information is preferably stored on the RFID transponder 118 so that the character attributes may be easily and conveniently transported to various compatible play facilities, games, video games, home game consoles, hand-held game units, and the like. Alternatively, only the UPIN and/or UGIN are stored on the transponder 118 and all other desired information is stored on a computer-accessible database indexed by UPIN and/or UGIN, for example. Placing the RFID tag 118 in the handle 115g, as illustrated, allows for modular construction and functionality of the toy wand 100g as auxiliary handles may be interchanged having other unique RFID tags with unique stored information. Optionally, the tag-containing handle 115g and knob 123g may be omitted altogether in the case, for example, where a less expensive toy wand is desired.


An optional RF/IR module 150 (described in more detail later) may be provided for long-range wireless communications (up to about 100 meters). If line of sight or directional actuation is desired, an infrared LED transmitter of the type employed in standard television remote controls may be provided instead of or in addition to an RF transmitter, as those skilled in the art will readily appreciate. In the latter case, a hole (not shown) would preferably be provided in the distal end 114 of the shaft 110g to accommodate the transmitting LED of the IR transmitter circuit (described in more detail later). Of course, a wide variety of other wireless communications devices, as well as various optional sound and lighting effects may also be provided, as desired.


Operation of the RF/IR module 150 (and/or other wireless communication devices described herein) may be controlled by internal activation circuitry comprising, in the particular embodiment illustrated, a pair of series-connected tilt sensors 122 and 124 (represented in the corresponding schematic diagram as switches S1 and S2, respectively). For example, a pair of micro-ball tilt sensors may be arranged within the cavity 116 in opposite orientations and spaced apart, as illustrated. Those skilled in the art will appreciate that in virtually any static position of the toy wand 100g at least one of tilt sensors 122, 124 will be in the OFF state. Thus, the RF/IR module 150 can essentially only be activated when the toy wand 100g is in a non-static condition or, in other words, when it is in motion. The placement and orientation of the tilt sensors 122, 124 is preferably such that different accelerations or motions are required at the proximal and distal ends 112 and 114 in order for both tilt sensors 122, 124 to be in their ON positions (or OFF positions, as the case may be) and, thus, to enable or activate RF/IR module 150 (or other wireless communication devices described later).


Of course, those skilled in the art will appreciate from the disclosure herein that the activation circuitry is not limited to those including micro-ball tilt sensors, as illustrated, but may be practiced using a wide variety of other motion and/or tilt sensors and/or other supporting circuitry elements and components that are selected and adapted to the purposes described herein. These include, without limitation, gyro-sensors, vibration sensors, and accelerometers. Moreover, any one or more of these and/or other similar sensor devices may also be used in conjunction with other supporting circuitry elements or components (either internal or external to the toy wand 100g) as desired, including microprocessors, computers, controller boards, PID circuitry, input/output devices, combinations of the same and the like.


Those skilled in the art will also readily appreciate and understand from the disclosure herein that various additional and/or alternative activation circuits can be designed and configured so as to respond to different desired motions. For example, this may be achieved by adding more sensors and/or by changing sensor positions and orientations. For example, one motion may trigger a first activation circuit (and a first interactive play effect) while a different motion may trigger a second activation circuit (and a second interactive play effect). The number, type and complexity of motions and corresponding activation circuits are limited only by design and cost considerations and user preferences. Of course, those skilled in the art will recognize from the disclosure herein that multiple activation circuits may share one or more sensors and/or other supporting circuitry and components, as required or desired. Alternatively, a single, multi-mode activation circuit may be provided that can respond to multiple motions.


Furthermore, the activation circuit may comprise a microprocessor that communicates with the sensors 122, 124 and the transmitter module 150. In one embodiment, the microprocessor receives at least one signal from the sensors 122, 124 indicative of the state of the sensors. For instance, the microprocessor may determine when each of the sensors 122, 124 are in an ON or an OFF state or when one of the sensors 122, 124 switches states. Based on the states of the sensors 122, 124, the microprocessor then outputs a signal to the transmitter module 150 that causes activation or deactivation of the transmitter module 150.


In another embodiment, the microprocessor is capable of measuring a duration of time related to the operational states of the sensors 122, 124. For example, the microprocessor may use a clock signal or an external timer to determine the duration of time during which at least one of the sensors 122, 124 is in an ON state. The microprocessor may then use this duration of time when outputting a signal to the transmitter module 150. For example, the microprocessor may correlate the duration of time that a sensor 122, 124 is activated (for example, in an ON state) with an intensity, level, or type of a “spell” being cast by the user. For instance, if the user, while “casting a spell,” is able to move the toy wand 100g so as to keep at least one of the sensors 122, 124 activated for a certain period of time, the microprocessor may assign a particular level or intensity to the spell being cast. Thus, the microprocessor may output different signals, which represent different spells or spell intensities, to the transmitter module 150 based on the length of time of the sensor activation. In one embodiment, the microprocessor may associate longer durations of sensor activation with higher intensity spells.


In yet other embodiments of the invention, the duration of time during or between activation of the sensors 122, 124 is output to a receiver external to the wand 100. The receiver then processes the duration of time in determining which effect, or which level of an effect, is caused by the particular wand activation motions and associated duration(s) of time. In yet other embodiments, the foregoing microprocessor may be used in a toy wand 100g comprising a transponder 118 instead of, or in combination with, the transmitter module 150.


If desired, the RFID transponder 118 may also be electronically interlocked and controlled by an activation circuit such as illustrated and described above. For example, the RFID transponder 118 may be selectively activated or deactivated via an optional external interrupt/disable line 260 (see FIG. 15A). More preferably, however, the tag 118 is not interlocked, but is always activated. In this manner, transponder 118 can be easily read at short range (<60 cm) using an RFID reader/writer (described later) to sense and track play participants and/or to activate various simple effects.


In another embodiment, the wand 100g may be configured to operate in an “active” mode or a “sleep” mode. During the sleep mode, the activation circuit does not engage in significant activity, which reduces the energy consumption of the toy wand 100g. However, when the RFID tag 118 is brought within range of an RF transmitter, such as positioned near an effects controller, the RFID tag 118 receives a transmitted RF signal and “awakens” the activation circuit into the “active” state. If desired, the toy wand 100g may be further configured with a light or sound effect capable of producing a perceptible signal, such as a light or a noise, to alert the user when the toy wand 100g awakens to an “active” mode.


The toy wand 100g may be powered by one or more internal batteries (not shown). Optionally, it may be powered by an external energy source such as via a magnetic inductance energy generator 162. The magnetic inductance energy generator 162 comprises an inductance coil L1 sized and arranged such that when it is exposed to a fluctuating magnetic field (for example, a moving permanent magnet 164 rubbed back and forth and/or an externally generated electromagnetic field) an alternating current is generated. This generated current is rectified by diode D1 or, alternatively, a full wave bridge rectifier (not shown), and charges preferably an electrolytic capacitor C1 until it reaches a predetermined operating voltage (V+). If desired, a voltage regulator device, such as a zener diode (not shown) and/or active regulation circuitry may be added to stabilize and increase the efficiency of the magnetic inductance energy generator 162.


Alternatively, those skilled in the art will appreciate from the disclosure herein that various magnetic field effect sensors, such as Wiegand sensors and the like, may readily be used in place of or in addition to inductor L1 where, for example, it is desired to increase the energy-generating efficiency of the circuit 162. For example, U.S. Pat. No. 6,191,687 to Dlugos discloses a Wiegand effect energy generator comprising a Wiegand wire that changes its magnetic state in response to being exposed to an alternating magnetic field. The Wiegand wire has core and shell portions with divergent magnetic properties. The magnetic properties of the wire are such that it produces an output power signal that corresponds to the strength and rate of change of a magnetic field to which the Wiegand wire is exposed. Such energy pulses generally are between about 5 and 6 volts and 10 microseconds in width. Such energy pulses have sufficient voltage and duration to power a low power transmitter such as RF/IR module 150. One suitable Wiegand sensor that may be utilized in accordance with the present invention is the series 2000 sensor sold by EHD Corp. The Series 2000 Wiegand sensor produces pulses in response to alternating magnetic fields or permanent magnets that pass near the sensor. Alternatively, a piezoelectric energy generator (not shown) may be substituted for the magnetic inductance energy generator 162. See, for example, FIGS. 9-11 of U.S. Pat. No. 9,039,533 and the accompanying discussion.


The energy generating circuit 162 is preferably such that the toy wand 100g has no movable parts and requires no maintenance such as replacing batteries or the like over its anticipated life. All energy is generated, for example, by placing the toy wand within an externally generated electromagnetic field. Preferably, the inductor L1 (or Wiegand wire) and capacitor C1 are selected such that 5-10 seconds of exposure to an external fluctuating magnetic field will fully charge the capacitor C1, thus enabling the RF/IR transmitter 150 to be activated at least once and preferably 5-20 times without having to recharge. Advantageously, the absence of replaceable batteries or other visible electronic technology significantly increases the reality and full immersion experience of the magical fantasy and gives users the feeling of practicing, performing and mastering “real” magic using a “real” magic wand. Optionally, a non-replaceable permanent rechargeable battery and/or a factory replaceable battery (not shown) may be provided in place of or in addition to the energy generating circuit 162 where it is desired to provide long-term energy storage.


In certain applications, it may be desirable to wirelessly communicate specific data and commands to achieve different or varied interactive effects. For example, it may desirable to wirelessly send one command signal that turns a certain object (for example, a lamp) “OFF” and another command signal that turns an object “ON.” As described above, this functionality may be achieved using multiple activation circuits (or a single multi-mode activation circuit) responsive to various motions whereby each motion, if executed successfully, causes a different RF or IR signal to be transmitted to control or activate the desired effect (for example, turning a light ON or OFF or simulating the levitation of an object).


Another convenient way to achieve similar functionality is to load data bits representing specific desired commands directly into a data buffer of RF/IR module 150 and then, using only a single wand activation circuit and a single learned wand motion, cause an RF or IR signal to be transmitted, thereby carrying the command signal and data to an RF or IR receiver and associated effect. In one embodiment, one or more tilt sensors 192, 194 (illustrated schematically as switches S3/S4) may be provided in a convenient location within the toy wand 100g (for example, within the handle 115g). These sensors are preferably mounted and oriented at different angles from one another such that axial rotation of the wand shaft 110g and/or wand handle 115g causes the sensors to alternately switch from their ON to their OFF state. As illustrated in the circuit schematic accompanying FIG. 8A, each sensor controls one data input bit of the RF/IR module data bus (for example, S3, S4). Those skilled in the art will readily appreciate that in this manner, four possible wand orientations are possible resulting in four unique sensor pair states as follows: ON/ON; OFF/OFF; ON/OFF and OFF/ON. These four sensor states can represent, for example, four unique command signals sent using the RF/IR module 150. Where it is desired to send a larger number of unique command signals, various combinations of additional orientation sensors and/or activation circuits may be added, as desired. Alternatively, various dials, switches and/or other inputs may be provided for selecting from a number of unique commands or “spells.”


In one embodiment an auxiliary component 207 is provided and is configured with optional touch sensor elements 208, 210, 212 for selecting one or more commands. Touch sensor elements 208, 210, 212 (represented in the accompanying schematic as S3, S4, S5) comprise solid-state electronic switches (no buttons or moving parts) that are activated by the simple touch of a finger. Most preferably, these are solid state touch switches of the type illustrated and described in U.S. Pat. No. 4,063,111 to Dobler et al., the entire contents of which are incorporated herein by reference. As illustrated in more detail in FIG. 8B, each touch switch contact element 208, 210, 212 is preferably formed from a pair of conductive electrodes 211 surrounded by, and preferably flush with, an insulating material 213. If desired, the electrodes 211 may be shaped in the form of magic symbols or other shapes consistent with a desired magic theme, as illustrated. During use, the user's finger is placed over the pair of electrodes 211 and thereby forms a portion of an electronic circuit to change the state of a corresponding solid state electronic switching device Q1, Q2, Q3 in communication therewith, such as a MOSFET or PNP transistor. The touch sensor is thereby actuated.


Each touch sensor preferably controls one data input bit of the RF/IR module data bus (for example, S3, S4, S5). One or more touch switches 208, 210, 212 may be activated during a single transmission. Thus, those skilled in the art will readily appreciate that eight possible combinations of touch switch activations are possible corresponding to eight unique command input data sets as follows: ON/ON/ON; OFF/OFF/ON; ON/OFF/ON, OFF/ON/ON, ON/ON/OFF; OFF/OFF/OFF; ON/OFF/OFF, and OFF/ON/OFF These eight sensor states can represent, for example, eight unique command signals sent using the RF/IR module 150.


Optionally, toy wand 100f may include a magnetic tip 216, as illustrated in FIG. 8A. This can be especially useful and entertaining for close-range activation of various play effects, such as turning lights on/off, triggering special sound and/or lighting effects. For example, FIGS. 9A-9B are time-sequenced illustrations of one embodiment of a magnetically actuated lighting effect using the interactive wand toy 100g with optional magnetic tip 216. A magnetic reed switch 218 is provided in series between the desired lighting effect 226 and a power source (V+). The reed switch is constructed in the normal fashion. Contacts 222, 224 are normally open and, thus, the lighting effect 226 is in its OFF state. But, when the magnetic tip 216 of wand 100g is brought into relatively close proximity (2-3 cm) with the reed switch 218, contact elements 222, 224 are magnetized by the magnetic field lines and are drawn toward each other. This causes the contacts 222, 224 to immediately attract, closing the gap and completing the circuit to turn on the lighting effect 226. Of course, those skilled in the art will appreciate from the disclosure herein that various relays, power controllers and the like may be required or desirable to provide adequate control of larger, more complex effects. But all such effects, no matter how small/simple or large/complex, may be triggered with a simple reed switch 218 and a wand 100g having a magnetic tip 216, as described above.


The magnetic tip 216 is especially useful and synergistic in combination with the other disclosed functions and features of wand 100g. Thus, for example, as illustrated in FIG. 9C, a desired lighting effect 226 is controlled by RF/IR receiver 250 (described in more detail later), which is adapted to receive an RF and/or IR command signal from wand 100g. The RF/IR receiver 250 (and/or the lighting effect 226) is also controlled by series-connected magnetic reed switch 218, as illustrated and described above (FIGS. 9A, 9B). Desirably, this allows a user to use the wand 100g and the magnetic tip 216 thereof to select one or more effects he or she wishes to control or activate. For example, the closure of the magnetic reed switch 218 may send an activation signal to RF/IR receiver 250. In response, the receiver initiates a timer (for example, 5-10 seconds) wherein its RF and/or IR receiver circuitry is activated and ready to receive one or more transmitted commands for controlling the associated effect 226. Thus, a user may select to control the lighting effect 226 by activating the reed switch 218 with the magnetic tip 216 of toy wand 100g. Then the user may cast a spell (cause the wand 100g to transmit an RF or IR command signal) that commands the RF/IR receiver 250 to turn the lighting effect ON or OFF, to change the lighting effect (for example, change its color or intensity), and/or launch a related effect (for example, simulated levitation of the lighting source or other desired effects). In this manner, users can maintain direct and precise control over any number of individual play effects as may be desired.


Preferably, all or most of the components comprising toy wand 100g are standardized, modularized and interchangeable, as illustrated in FIG. 10, so that various prefabricated components and starting materials can be stocked (for example, in a “wizards workshop”) and individually purchased by users to create an endless variety of unique and individualized finished toy wands having evolving powers, abilities and/or aesthetics. Materials and components may be simple in outward appearance and preferably contain no conspicuous outward manifestations (or have only minimal outward manifestations) of the technology within. Materials and components fabricated from natural or simulated natural materials, such as wood, bone and leather, minerals (metals) and crystals are particularly preferred, although certainly not required.


The base component may comprise the wand shaft 110, for example. This may be a hollow plastic, wood or metal shaft provided in various materials and colors. For beginners or entry level users, a finished toy wand may be constructed by simply selecting a wand shaft 110 and then fitting it with one or more magnetic end caps 216, as illustrated. This provides an entry level toy wand (Level-1) that can be used to activate a variety of simple effects such as illustrated and described above in connection with FIGS. 9A-9B. A Level-1 toy wand constructed in this fashion preferably facilitates basic game play within a compatible play facility, but is not fully functional and, therefore, may not be capable of achieving some of the more desirable play effects or play experiences available.


The next level toy wand (Level-2) would preferably include, in addition, a simple passive RFID transponder 118 inserted and secured at one end thereof. The transponder 118 provides relatively short-range RF communications and also stores a unique person identifier number (“UPIN”) and an optional unique group identifier number (“UGIN”). The UPIN and UGIN may be used to identify and track individual wands and play participants. The RFID transponder 118 also stores certain information identifying each play participant and/or describing certain powers or abilities possessed by an imaginary role-play character represented by the wand. These stored character attributes may be easily and conveniently transported with the wand to various compatible play facilities, games, video games, home game consoles, hand-held game units, and the like. If desired, the transponder 118 may be encapsulated in a colored epoxy, Lucite® acrylic glass (polymethyl methacrylate or PMMA) or the like and thereby disguised as a natural crystal or mineral/stone. A Level-2 wand preferably facilitates basic and intermediate game play within a compatible play facility. It has more functionality than a Level-1 wand, but is still not fully functional and, therefore, may not be capable of achieving some of the most desirable play effects or play experiences available.


The next level toy wand (Level-3) would preferably include, in addition, an active RF/IR module 150 and associated activation circuitry 120 for wirelessly casting a simple spell (for example, ON/OFF) over longer distances. Preferably, a Level-3 toy wand would be self-powered, requiring no batteries or other replaceable internal power source. However, if replaceable batteries are desired, they may optionally be encapsulated in a colored epoxy, Lucite® acrylic glass or the like and thereby disguised and sold in the form of a natural “energy crystal” or mineral/stone. A Level-3 toy wand preferably facilitates basic, intermediate and some advanced game play within a compatible play facility. It has more functionality than a Level-1 and Level-2 toy wand and can cast simple spells over long distances, but is not able to cast more complex spells. Therefore, it may not be capable of achieving some of the most advanced and desirable play effects or play experiences available.


The highest level toy wand (Level-4) would preferably include, in addition, circuitry and/or structure(s) (for example, auxiliary component 207) for selecting and casting more advanced and/or complex spells (for example, ON/OFF, increase/decrease, UP/DOWN, change colors, simulated levitation, or the like). For example, this would be similar to the toy wand 100g, illustrated and described above in connection with FIGS. 6-8. Preferably, a Level-4 toy wand would be self-powered, requiring no batteries or other replaceable internal power source. A Level-4 toy wand preferably facilitates basic, intermediate and all advanced game play within a compatible play facility. It has more functionality than a Level-1, Level-2 and Level-3 toy wand and can cast a variety of simple or complex spells over long distances to achieve the most advanced and spectacular magical play effects.


Preferably, in all cases described above, the wand shaft 110, handle 115 and/or knob 123 may be further decorated and/or individualized, as desired, with various decorative elements 129, monograms 131, engravings, stickers, stains, custom paint and the like, to suit the tastes of each individual user. For example, various assembly and fabrication stations may preferably be provided within a dedicated “workshop” area whereby wand purchasers may personally attend to the selection, fabrication, assembly and final detailing of their personal toy wands. Similarly, toy wand “kits” may also be selected, packaged and sold whereby purchasers can assemble and decorate their own toy wands in the convenience of their own home using the wand components, materials and decorative elements illustrated and described above. FIGS. 11A-11E illustrate various examples of toy wands that have been fabricated, assembled and detailed in a manner as described above.


In a further alternative embodiment, the RF/IR module 150 may be replaced (or complimented) with a laser or light emitting module for providing an alternative (or additional) mode of operation. This would have particular advantage where, for example, it is desired to provide directional control of a transmitted command signal such as may be useful for directional spell casting, target practice, or a shooting-gallery-style play effect.



FIG. 12 illustrates one possible embodiment of a light-activated interactive play system comprising a toy wand 100h configured with a light emitting module 215, an image preparation device 220, a display device 225, a camera 230, and a control system 235. The light emitting module 215 preferably emits a directional signal, such as, for example, visible or infrared light. The signal may be triggered by particular motions of the toy wand 100h, as described herein, or by other input provided by the user. Those skilled in the art will appreciate that movements of the toy wand 100h will cause corresponding movements of the signal emitted by the light emitting module 215, as illustrated in FIG. 12. The camera 230 preferably captures, detects and/or records the position of the signal emitted by the light emitting module 215 and communicates the captured image data to the control system 235. The control system 235 processes the image data by analyzing the position and/or movement of the light signal and then controls or triggers one or more effects based thereon.


For example, a user may move the toy wand 100h in a predetermined pattern to initiate a “magic spell.” The movement of the wand 100h causes a corresponding movement of the signal emitted by the light emitting module 215, which is captured by the camera 230. The control system 235 then processes the image data received from the camera 230 to determine which “spell” was cast and to cause or trigger the special effect(s) associated with that particular spell. For example, the control system 235 may cause the image preparation device 220 to modify the displayed image so that flowers appear to “magically” sprout from a hat 202. Another spell may cause an image of a wizard to magically appear within a crystal ball 203 (with optional sound and lighting effects), or a candle 206 to magically light.


In one embodiment the image preparation device 220 may comprise a video projector or an LCD projector, and the display device 225 may comprise a projection screen, a wall, or a translucent material upon which a projected image may be displayed. In another embodiment the image preparation device 220 may comprise a digital video source such as a memory, and the display device 225 may comprise a liquid crystal display (LCD) screen coupled to the digital video source. For example, the image preparation device 220 may be electrically coupled to the display device 225 through a wired or wireless transmission medium. In other embodiments, the image preparation device 220 may comprise multiple devices usable to project or to cause an image to appear on the display device 225.


The image preparation device 220 is preferably configured to cause at least one video image and/or still image to appear on the display device 225. A skilled artisan will recognize from the disclosure herein that a wide variety of objects, characters, and/or images may be displayed on the display device 225. For instance, these may include images of mythical creatures, such as a dragon or a unicorn; magical objects, such as a flying carpet; or fantasy characters, such as a wizard or an elf; and combinations of the same or the like.


In one embodiment the camera 230 may comprise a high-speed still camera or a specialized video camera. In one embodiment the camera 230 may be configured to record the signal emitted by the light emitting module 215 as it is intercepted or reflected by the display device 225. In another embodiment the camera 230 may be located within a substantially enclosed area, such as, for example, a room, and configured to detect the signal emitted by the light emitting module 215 within the room and/or directed at objects or effects within the room. Optionally, multiple cameras 230 may be used to record or capture image data from different angles. Optionally, optical or infrared sensors may be used in place of, or in combination with, the camera 230 to detect the position and/or movement of the signal emitted by the light emitting module 215.


In one embodiment, the control system 235 may comprise a general purpose or a special purpose processor. In other embodiments, the control system 235 may comprise an application-specific integrated circuit (ASIC) or one or more modules configured to execute on one or more processors. The control system 235 receives and processes the image data received from the camera 230 by analyzing the position and/or movement of the signal emitted by the light emitting module 215. Based on this analysis the control system 235 determines modifications to be made to subsequent images prepared by the image preparation device 220. Optionally, the control system 235 may communicate with a central system or database and/or other devices capable of causing play effects other than modifications to the image displayed on the display device 225.


While an interactive gaming toy comprising a toy wand is specifically contemplated and described herein in detail, those skilled in the art will readily appreciate that the teachings herein are not limited to toy wands, but may be carried out using any number or variety of other objects and toys for which it may be desirable to imbue special “magic” powers or other functionalities described herein. For example, the activation circuit described above may be implemented in a variety of other gaming and entertainment applications such as, for example, a wireless or hard-wired input device for a video game, computer game or home game console, an arcade or redemption challenge device, home-operated amusement device using simple bells and buzzers, or the like. Alternatively, some or all of the various circuitry and components described herein above may be externally implemented such that an interactive gaming toy may not be entirely self-contained, but may rely on certain external components and circuitry for some or all of its functionality. Alternatively, some or all of the various circuitry and components described herein can be implemented in a user-wearable format such that various interactive play effects and the like, as described herein, may be actuated through particular hand or arm motions. Other suitable interactive gaming toys may include, for example and without limitation, sporting items such as paddles, nunchucks, simulated fishing rods, bats, and various sporting balls; household items such as candles, candle sticks, brooms, feather dusters, and paint brushes; writing implements such as pens, pencils, and crayons; musical instruments such as flutes, recorders, and drum sticks; educational items such as books and diaries; wearable items such as tassels, gloves, coats, hats, shoes and clothing items; role-play toys such as dolls, action figures, and stuffed animals; jewelry items such as rings, bracelets necklaces, and trinkets; natural items such as sticks, flowers, rocks, and crystals; and simulated food items such as apples, oranges, bananas, carrots, and celery.


Adjunct Gaming Items


If desired, one or more adjunct gaming items may also be provided and utilized as part of an interactive role-playing game such as disclosed herein. These may be used instead of or as an adjunct to other interactive gaming toys described herein. For example, FIGS. 13A-13B illustrate one embodiment of an adjunct gaming item comprising an RFID-enabled character card. Each card 325a preferably comprises a paper, cardboard or plastic substrate having a front side 328 and a back side 330. The front side 328 of each card 325a may be imprinted with graphics, photos, or any other information as desired. In the particular embodiment illustrated, the front side 328 contains an image of a particular character 345 from the Pajama Sam computer game series representing, for example, a role-play character desired to be imagined by a play participant. In addition, the front side 328 may include any number of other designs or information pertinent to its use and application in the game. For example, the character's powers, skills and experience level may be indicated, along with any other special powers or traits the character 345 may possess.


The back side 330 of the card preferably contains the card electronics comprising an RFID tag 128 pre-programmed with the pertinent information for the particular person, character or object portrayed on the front side 328 of the card. Preferably, the tag 128 is passive (requires no batteries) and has a read range greater than about 1 cm. RFID tags having read ranges of between about 10 cm to about 100 cm are particularly preferred, although shorter or longer read ranges will also work. The particular tag illustrated is a 13.56 MHz RFID tag inlay which has a useful read/write range of about 25 cm. It is sold under the brand name Tag-It™ and is available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A). The tag 128 may be “read/write” or “read only”, depending on its particular gaming application. Optionally, less expensive chipless tags (described in more detail later) may also be used. If desired, the tag 128 may be covered with an adhesive paper label 344 or, alternatively, the tag may be molded directly into a plastic sheet substrate from which the card is formed.


Those skilled in the art will readily appreciate from the disclosure herein that a variety of character cards and/or other gaming items having features and advantages as disclosed herein may be used to play a wide variety of unique and exciting games within an RFID-enabled play facility and/or using an RFID-enabled gaming device or game console. For example, such games may be carried out using a specially configured gaming device or, alternatively, using a conventional computer gaming platform, home game console, arcade game console, hand-held game device, internet gaming device or other gaming device that includes an RFID interface that is able to communicate with RFID tag 128. Advantageously, play participants can use character cards 325a and/or other RFID-enabled gaming items to transport information pertinent to a particular depicted person, character or object to a favorite computer action game, adventure game, interactive play facility or the like. For example, as illustrated in FIG. 13C, a suitably configured video game console and video game may be provided which reads the card information and recreates the appearance and/or traits of the particular depicted person, character or object within the game (for example, the “Pajama Sam” character 345).


If desired, the game console may be further configured to write information to the card in order to change or update certain characteristics or traits of the character, person or object depicted by the card 325a in accordance with a predetermined game play progression. For example, in the course of playing a typical Pajama Sam game, players must “find” certain objects or tools (for example, flash light 346, lunch box 347 and PajamaMan mask 348) that they will use to solve certain puzzles or tasks presented by the game. Players “pick up” these objects or tools by clicking their mouse on the desired object. The computer game software then keeps a record of which objects have been collected and displays those objects on the computer screen when requested by the player. This information can also advantageously be stored on the RFID tag 128 associated with the character card 325a so that in future game sessions the card information can be automatically read and the computer experience can be modified or updated in accordance with the new information recorded on the card 325a. In this manner, the character role-play experience becomes portable, personal and long-term. This, in turn, facilitates the development of even more sophisticated and complex role-play characters and longer, more enjoyable role play experiences as players are able to continue playing with and developing the same role-play character(s) over long periods of time and in different and varied play environments.



FIGS. 14A-14B are front and back views, respectively, of an alternative embodiment of an adjunct gaming item comprising an RFID-enabled trading card 325b. The particular trading card illustrated is provided in the theme of the Pikachu character from the popular Pokemon® card game, video game and TV series. FIGS. 14C-14D illustrate several other possible Pokemon® themed trading cards 325c, 325d comprising the characters Charizard (FIG. 14C) and Cubone (FIG. 14D). Cards 325b, 325c, 325d may be collected or traded and/or they may be used to play various games, such as a Pokemon® arena competition using an electronic interface capable of reading the card information.


Each trading card preferably comprises a paper, cardboard or plastic substrate having a front side 328 and a back side 330. The front side 328 may be imprinted with graphics, photos, or any other information as desired. For example, the front side 328 of card 325b includes an image of the Pikachu character along with printed information 349 describing, for example, the character's type, size and evolution in the game, and any special powers or traits the character may possess. The back side 330 contains an RFID tag 128 configured and arranged in the manner described above in connection with FIGS. 13A-13B.


RFID-enabled trading cards 325b, 325c, 325d and the virtual characters they represent, need not be static in the game, but may change over time according to a central story or tale that unfolds in real time (for example, through televised shows or movies released over the course of weeks, months or years). Thus, a trading card that may be desirable for game play this week (for example, for its special powers or abilities), may be less desirable next week if the underlying character is injured or captured in the most recent episode of the story. Another significant and surprising advantage of RFID-enabled trading cards is that multiple cards can be stacked and simultaneously read by a single RFID reader even where the cards are closely stacked on top of one another and even though the reader may be hidden from view. This feature and ability creates limitless additional opportunities for exciting game complexities, unique game designs and gaming strategies heretofore unknown.


Of course, those skilled in the art will readily appreciate from the disclosure herein that the underlying concept of an RFID-enabled character card or trading card is not limited to cards depicting fantasy characters or objects, but may be implemented in a wide variety of alternative embodiments, including conventional playing cards, poker cards, board game cards and tokens, sporting cards, educational cards and the like. If desired, any number of other suitable collectible/tradable tokens, coins, trinkets, simulated crystals or the like may also be provided and used with a similar RFID tag device for gaming or entertainment purposes in accordance with the teachings of the present invention.


For example, RFID tag devices may be included on “magic articles” that may be purchased or acquired in a gaming or interactive play system. For instance, a user may purchase an invisibility cloak, magic beads, belts, and the like during an interactive play experience. The RFID tags may be used to communicate to a central database that a certain player has purchased or is in possession of the tagged item. The central database may then track the tagged items and/or may cause those in possession of the tagged items to have increased “magical” skills or powers, such as additional protection from the spells “cast” by opposing players.


Toy/Game Interface


Those skilled in the art will appreciate that the various interactive gaming toys and gaming items described herein may be used with a specially configured computer, video game, home game console, hand-held gaming device, game controller or similar gaming device having a compatible wireless interface configured to communicate with each interactive gaming toy or gaming item in the manner disclosed herein. Alternatively, a conventional gaming device may be used in conjunction with a peripheral device that provides the compatible wireless interface. For example, this may comprise an RFID reader or an RFID reader/writer device such as described herein.


One embodiment of a peripheral gaming device in accordance with the present invention is illustrated in FIG. 15A. The peripheral gaming device 301a basically comprises a themed toy having an integrated RFID reader/writer 300 configured to communicate with one or more RFID-tagged toys or gaming items in a manner disclosed herein. If desired, the peripheral gaming device 301a may be configured in accordance with any desired theme, such as may be consistent with a game played using one or more associated gaming toys or gaming items, or may be configured in a generic style. In the particular example illustrated, the peripheral gaming device 301a takes on the form of a magical portal 303 guarded by a pair of fearsome dragons 307a, 307b. The dragons 307a, 307b and magical portal 303 are preferably integrally molded and configured such that the portal 303 is supported in a substantially vertical upright position when the peripheral gaming device 301a is placed on a flat support surface (for example, a table or floor surface). The portal 303 defines an opening 309 that is preferably sized and configured to allow one or more RFID-tagged interactive gaming toys or gaming items to enter and pass through. An RF antenna 306, which is electrically coupled to RFID reader/writer 300, is preferably hidden within the portal 303 and substantially surrounds the opening 309, as illustrated.


Those skilled in the art will appreciate that as an RFID-tagged gaming toy or gaming item enters and passes through the opening 309 it may be wirelessly powered by an electromagnetic field generated by the antenna 306, such as disclosed and described herein in connection with FIG. 8A. The antenna 306 and RFID reader/writer 300 may also provide a wireless communication interface for communicating with the RFID-tagged gaming toys and gaming items as they enter and pass through the opening 309. RFID reader/writer 300 may also be configured to communicate with a host computer 375 (for example, a home computer, home game console, hand-held game unit) using, for example, one or more industry standard communication interfaces such as RS232, Ethernet, or a wireless network.


If desired, the peripheral gaming device 301a may also include the ability to produce light, vibration or sound effects to complement the operation of an associated interactive gaming toy. For example, these effects may be triggered based on information wirelessly communicated by an RFID-tagged gaming toy to the RFID reader/writer 300. Optionally, the opening 309 may open into an enclosed space, such as a simulated vault, cave or secret chamber. For example, the enclosed space may be configured to accommodate one or more interactive gaming toys. In one embodiment, the portal opening 309 is configured such that gaming toys can only enter or exit an enclosed space by passing through the portal 303. In this manner, one or more associated interactive gaming toys may be wirelessly tracked as they enter or exit an enclosed space through opening 309.



FIG. 15B illustrates an alternative embodiment of a peripheral gaming device 301b having an integrated RFID reader/writer 300 configured to communicate with one or more RFID-tagged toys or gaming items in a manner disclosed herein. In the particular example illustrated, the peripheral gaming device 301b takes on the form of a magician's hat. The brim of the hat defines an opening 309 that is preferably sized and configured to allow one or more RFID-tagged interactive gaming toys or gaming items to enter and pass through. An RF antenna 306, which is electrically coupled to RFID reader/writer 300, is preferably hidden within the brim of the hat and substantially surrounds the opening 309, as illustrated. The opening 309 preferably lies in a horizontal plane, as illustrated, and opens into a substantially enclosed space below the brim comprising, for example, the crown of the hat. This space is preferably sized and configured to accommodate one or more RFID-tagged interactive gaming toys or gaming items such as disclosed and described herein. In one embodiment, the peripheral gaming device 301b is configured such that gaming toys can only enter or exit the enclosed space by passing through the opening 309. In this manner one or more associated interactive gaming toys may be wirelessly tracked as they enter or exit the enclosed space through opening 309. If desired, a false bottom and/or one or more hidden compartments (not shown) may be provided within the enclosed space and configured to selectively conceal one or more gaming items.


Those skilled in the art will appreciate that as an RFID-tagged gaming toy or gaming item approaches the opening 309 (either from above or below) it may be wirelessly powered by an electromagnetic field generated by the antenna 306, such as disclosed and described herein in connection with FIG. 8A. The antenna 306 and RFID reader/writer 300 also provides short-range two-way wireless communications with each RFID-tagged gaming toy over a limited wireless communication range preferably greater than about 1 cm and less than about 60 cm. This communication range preferably extends both above and below antenna 306 such that the peripheral gaming device 301b is able to wirelessly power and communicate with RFID-tagged items as they approach, enter and pass through the opening 309. If desired, this communication range may be the same as, greater than, or less than, the distance from antenna 306 to a lower support surface 311 upon which RFID-tagged items (for example, a toy rabbit or a gnome doll) may be placed. For example, the limited communication range may be sufficient or insufficient to wirelessly power and communicate with the RFID-tagged items placed on the lower support surface 311. If desired, one or more auxiliary antennae (not shown) may be provided and electrically coupled to RFID reader/writer 300 in order to extend the communication range of the RFID reader/writer 300 and/or to provide additional electromagnetic field energy for wirelessly powering RFID-tagged gaming items. For example, a second antenna (not shown) may be provided within the lower support surface 311.


RFID reader/writer 300 is also preferably configured to communicate with a host computer 375 (for example, a home computer, home game console, hand-held game unit) using, for example, one or more industry standard communication interfaces such as RS232, Ethernet, or a wireless network. If desired, the peripheral gaming device 301b may also include the ability to produce light, vibration or sound effects to complement the operation of an associated interactive gaming toy. For example, various effects may be triggered when an RFID-enabled toy wand is brought within wireless communication range of the peripheral gaming device 301b.



FIG. 15C illustrates a further alternative embodiment of a peripheral gaming device 301c having an integrated RFID reader/writer 300 configured to communicate with one or more RFID-tagged toys or gaming items in a manner disclosed herein. In the particular example illustrated, the peripheral gaming device 301c takes on the form of a witch's cauldron. The rim of the cauldron defines an opening 309 that is preferably sized and configured to allow one or more RFID-tagged gaming items (for example, a spider, a batwing, and a vial of potion) to enter and pass through. An RF antenna 306, which is electrically coupled to RFID reader/writer 300, is preferably hidden within the rim of the cauldron and substantially surrounds the opening 309, as illustrated.


The opening 309 preferably lies in a horizontal plane, as illustrated, and opens into a substantially enclosed space below the rim comprising the belly of the cauldron. This space is preferably sized and configured to accommodate one or more RFID-tagged interactive gaming toys or gaming items such as disclosed and described herein. Those skilled in the art will appreciate that as an RFID-tagged gaming toy or gaming item approaches the opening 309 (either from above or below) it may be wirelessly powered by an electromagnetic field generated by the antenna 306, such as disclosed and described herein in connection with FIG. 8A. The antenna 306 and RFID reader/writer 300 also provides short-range two-way wireless communications with each RFID-tagged gaming toy over a limited wireless communication range preferably greater than about 1 cm and less than about 60 cm. The communication range preferably extends both above and below antenna 306 such that the peripheral gaming device 301c is able to wirelessly power and communicate with RFID-tagged items as they approach, enter and pass through the opening 309. Optionally, the communication range is sufficient to wirelessly power and communicate with multiple gaming toys or gaming items that may be placed in the belly of the cauldron as part of an interactive game.


RFID reader/writer 300 is also preferably configured to communicate with a host computer 375 (for example, a home computer, home game console, hand-held game unit) using, for example, one or more industry standard communication interfaces such as RS232, Ethernet, or a wireless network. If desired, the peripheral gaming device 301c may also include the ability to produce light, vibration or sound effects to complement the operation of an associated interactive gaming toy or computer-animated game. For example, various special effects (for example, boiling, sparking, gurgling, shaking, or popping), may be triggered as each RFID-tagged gaming item is dropped into the cauldron. These effects may be different for each RFID-tagged item (or combination of items) based on information wirelessly communicated by each RFID-tagged item to the RFID reader/writer 300.


In addition to the embodiments described above and illustrated in FIGS. 15A, 15B, and 15C, in some embodiments an antenna 306 may be configured into a variety of shapes and sizes to fit any desired theme. For example, in some embodiments, the antenna 306 may substantially surround an opening shaped like a knot on a real or artificial tree or an opening on a house, such as a window or a door. In some embodiments an antenna 306 as described above may be configured to substantially surround an opening in a desk drawer, a shelf, a cup, a mug, a door to a room, or any other opening 309. In some embodiments, the antenna 306 may substantially surround a portion of a tunnel, such that RFID reader/writer 300 may provide a wireless communication interface for communicating with the RFID-tagged gaming toys and gaming items as they enter and pass through the tunnel. In some embodiments, a tunnel may have multiple antennae 306, which enable one or more RFID reader/writers 300 to track the progress of RFID-tagged gaming toys and gaming items as they enter and pass through the tunnel.


RFID Tags and Readers


Many of the preferred embodiments of the invention illustrated and described herein are RFID-enabled—that is, they utilize RFID technology to electrically store and communicate certain relevant information (for example, UPIN and UGIN, game levels, points, combinations of the same or the like) and/or to wirelessly actuate or control various play effects. RFID technology provides a universal and wireless medium for uniquely identifying objects and/or people and for wirelessly exchanging information over short and medium range distances (10 cm to 10 meters). Commercially available RFID technologies include electronic devices called transponders or tags, and reader/writer electronics that provide an interface for communicating with the tags. Most RFID systems communicate via radio signals that carry data either uni-directionally (read only) or, more preferably, bi-directionally (read/write).


Several examples of RFID tags or transponders particularly suitable for use with the present invention have been illustrated and described herein. For example, in some of the embodiments illustrated and described above, a 134.2 kHz/123.2 kHz, 23 mm glass transponder 118 is selected, such as available from Texas Instruments, Inc. (http://www.tiris.com, for example, Product No. RI-TRP-WRHP). As illustrated in more detail in FIG. 16A, this transponder basically comprises a passive (batteryless) RF transmitter/receiver chip 240 and an antenna 245 provided within an hermetically sealed vial 243. If desired, the RFID transponder 118 may include an optional external interrupt/disable line 260, such as illustrated in FIG. 16A.



FIG. 16B is a simplified schematic diagram of one embodiment of an RFID reader/writer 300 for use with the RFID transponder 118 of FIG. 16A. A preferred reader/writer device is the Series 2000 Micro Reader available from Texas Instruments, Inc. (http://www.tiris.com, for example, Product No. RI-STU-MRD1). As illustrated, the reader/writer 300 basically comprises an RF Module 302, a Control Unit 304 and an antenna 306. When the transponder 118 comes within a predetermined range of antenna 306 (about 20-200 cm) the transponder antenna 245 (FIG. 16A) is excited by the radiated RF fields 308 and momentarily creates a corresponding voltage signal which powers RF transmitter/receiver chip 240. In turn, the RF transmitter/receiver chip 240 outputs an electrical signal response which causes transponder antenna 245 to broadcast certain information stored within the transponder 118 comprising, for example, 80 to 1000 bits of information stored in its internal memory. This information preferably includes a unique identifier such as a user ID (for example, UPIN/UGIN) and/or certain other items of information pertinent to the user, the associated toy or gaming item, and/or the game or play experience.


A carrier signal embodying this information is received by antenna 306 of RFID reader/writer 300. RF Module 302 decodes the received signal and provides the decoded information to Control Unit 304. Control Unit 304 processes the information and provides it to an associated logic controller, PID controller, computer or the like using a variety of standard electrical interfaces (not shown). Thus, the information transmitted by transponder 118 and received by reader/writer 300 may be used to control one or more associated play effects through a programmable logic controller, for example. In one embodiment, for example, the information transmitted includes data relating to the activation of the sensors 122, 124 of the toy wand 100g (FIG. 8A). In other embodiments, the transmitted information may include timing information, such as the duration of time that a sensor is activated and/or the duration of time between successive activations of the sensors 122, 124. Play effects, may include, for example, lighting effects, sound effects, various mechanical or pneumatic actuators and the like.


Preferably, RFID reader/writer 300 is also configured to broadcast or “write” certain information back to the transponder 118 to change or update information stored in its internal memory, for example. The exchange of communications occurs very rapidly (about 70 ms) and so, from the user's perspective, it appears to be virtually instantaneous. Thus, the transponder 118 may be used to wirelessly actuate and/or communicate with various associated effects by simply touching or bringing the transponder 118 into relatively close proximity (for example, 2-3 cm) with the antenna 306 of a reader/writer unit 300.



FIG. 16C is a simplified circuit schematic of the reader/writer unit 300 of FIG. 16B. The read or write cycle begins with a charge (or powering phase) lasting typically 15-50 ms. During this phase, the RF Module 302 causes the antenna 306 to emit an electromagnetic field at a frequency of about 134.2 kHz. The antenna circuit is mainly formed by the resonance capacitor C1 and the antenna coil 306. A counterpart resonant circuit of the transponder 118 is thereby energized and the induced voltage is rectified by the integrated circuit 240 and stored temporarily using a small internal capacitor (not shown).


The charge phase is followed directly by the read phase (read mode). Thus, when the transponder 118 detects the end of the charge burst, it begins transmitting its data using Frequency Shift Keying (FSK) and utilizing the energy stored in the capacitor. The typical data low bit frequency is 134.2 kHz and the typical data high bit frequency is 123.2 kHz. The low and high bits have different duration, because each bit takes 16 RF cycles to transmit. The high bit has a typical duration of 130 μs, the low bit of 119 μs. Regardless of the number of low and high bits, the transponder response duration is generally less than about 20 ms.


The carrier signal embodying the transmitted information is received by antenna 306 and is decoded by RF module 302. RF Module 302 comprises integrated circuitry 312 that provides the interface between the transponder 118 and the Control Module 304 (data processing unit) of the Reader/Writer Unit 300. It has the primary function and capability to charge up the transponder 118, to receive the transponder response signal and to demodulate it for further digital data processing. A Control Unit 304, comprising microprocessor 314, power supply 316 and RS232 Driver 318, handles most data protocol items and the detailed fast timing functions of the Reader/Writer Module 300. It may also operate as an interface for a PC, logic controller or PLC controller for handling display and command input/output functions, for example, for operating/actuating various associated play effects. If desired, the Reader/Writer Module 300 may also be configured to communicate with an optional Host Computer 375 through one or more standard communication interfaces, such as RS232, RS422 or RS485.


In other embodiments illustrated and described above, an adhesive-backed RFID tag inlay is utilized, such as the 13.56 MHz tag sold under the brand name Tag-It™ available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A). These tags have a useful read/write range of about 25 cm and contain 256 bits of on-board memory arranged in 8×32-bit blocks which may be programmed (written) and read by a suitably configured read/write device. The Tag-It™ 13.56 MHz RFID tag has particular advantages in the context of the present invention. Paper thin and batteryless, this general purpose read/write transponder is placed on a polymer tape substrate and delivered in reels. It fits between layers of laminated paper or plastic to create inexpensive stickers, labels, tickets and badges that may be easily secured or applied to virtually any play object, toy wand, wristband, badge, card or the like, for electronically storing and retrieving desired user-specific or object-specific information. Such information may include, for example, UPIN, UGIN, object type/size/shape/color, first and/or last name, age, rank or level, total points accumulated, tasks completed, facilities visited, and combinations of the same or the like. These or similar RFID tags may be applied to any of the interactive gaming toys disclosed and described herein or to any other toys, play objects, jewelry, trinkets, action figures, collectibles, trading cards and generally any other items desired to be incorporated as part of an RFID-enabled gaming experience.


As illustrated in more detail in FIG. 17A, RFID tag 128 generally comprises a spiral wound antenna 338, a radio frequency transmitter chip 340 and various electrical leads and terminals 342 connecting the chip 340 to the antenna 338. The tag 128 is configured to be initially activated by a radio frequency signal broadcast by an antenna 306 of an adjacent reader or activation device 300 (See FIGS. 17B, 17C). The signal impresses a voltage upon the tag antenna 338 by inductive coupling which is then used to power the chip 340. When activated, the chip 340 transmits via radio frequency a unique identification number preferably corresponding to the UPIN and/or UGIN described above. The signal may be transmitted either by inductive coupling or, more preferably, by propagation coupling over a distance “d” determined by the range of the tag/reader combination (See FIG. 17C). This signal is then received and processed by the associated reader 300 as described above. If desired, the RFID tag 128 may also be configured for read/write communications with an associated reader/writer. Thus, the UPIN or UGIN can be changed or other information may be added.


As indicated above, communication of data between a tag and a reader is by wireless communication. As a result, transmitting such data is always subject to the vagaries and influences of the media or channels through which the data has to pass, including the air interface. Noise, interference and distortion are the primary sources of data corruption that may arise. Thus, those skilled in the art will recognize that a certain degree of care should be taken in the placement and orientation of readers 300 so as to minimize the probability of such data transmission errors. Preferably, the readers are placed at least 30-60 cm away from any metal objects, power lines or other potential interference sources. Those skilled in the art will also recognize that the write range of the tag/reader combination is typically somewhat less (˜10-15% less) than the read range “d” and, thus, this should also be taken into account in determining optimal placement and positioning of each reader device 300. Preferably a tag/reader combination is selected having a read/write range greater than about 1 cm. If a longer read/write range and/or more memory is desired, optional battery-powered tags may be used instead, such as available from Axcess, Inc. and/or various other vendors known to those skilled in the art.



FIG. 17D is a simplified block diagram illustrating the basic organization and function of the electronic circuitry comprising the radio frequency transmitter chip 340 of the RFID tag device 128 of FIG. 17A. The chip 340 basically comprises a central processor 530, Analogue Circuitry 535, Digital Circuitry 540 and on-board memory 545. On-board memory 545 is divided into read-only memory (ROM) 550, random access memory (RAM) 555 and non-volatile programmable memory 560, which is available for data storage. The ROM-based memory 550 is used to accommodate security data and the tag operating system instructions which, in conjunction with the processor 530 and processing logic deals with the internal “house-keeping” functions such as response delay timing, data flow control and power supply switching. The RAM-based memory 555 is used to facilitate temporary data storage during transponder interrogation and response. The non-volatile programmable memory 560 may take various forms, electrically erasable programmable read only memory (EEPROM) being typical. It is used to store the transponder data and is preferably non-volatile to ensure that the data is retained when the device is in its quiescent or power-saving “sleep” state.


Various data buffers or further memory components (not shown), may be provided to temporarily hold incoming data following demodulation and outgoing data for modulation and interface with the transponder antenna 338. Analog Circuitry 535 provides the facility to direct and accommodate the interrogation field energy for powering purposes in passive transponders and triggering of the transponder response. Analog Circuitry 535 also provides the facility to accept the programming or “write” data modulated signal and to perform the necessary demodulation and data transfer processes. Digital Circuitry 540 provides certain control logic, security logic and internal microprocessor logic required to operate central processor 530.


Of course, those skilled in the art will readily appreciate from the disclosure herein that the invention is not limited to the specific RFID transponder devices disclosed herein, but may be implemented using any one or more of a wide variety of commercially available wireless communication devices such as are known or will be obvious from the disclosure herein to those skilled in the art. These include, without limitation, RFID tags, EAS tags, electronic surveillance transmitters, electronic tracking beacons, Wi-Fi, GPS, bar coding, and the like.


Another RFID tagging technology of particular interest for purposes of practicing the present invention are the so-called “chipless” RFID tags. These are extremely low-cost RFID tags that are available in the form of a printed circuit on a thin, flat adhesive-backed substrate or foil. These tags are similar in size, shape and performance to the Tag-It™ RFID inlay tags described above, except that these tags require no on-board integrated circuit chip. Chipless RFID tags can be electronically interrogated to reveal a pre-encoded unique ID and/or other data stored on the tag. Because the tags do not contain a microchip, they cost much less than conventional RFID tags. An adhesive-backed chipless RFID tag with up to 10 meters range and 256 bits of data, can cost one tenth of their silicon chip equivalents and typically have a greater physical performance and durability. For example, a suitable chipless RFID tag is being made available from Checkpoint Systems under its ExpressTrak™ brand. Very inexpensive chipless RFID tags (and/or other types of RFID tags) may also be directly printed on paper or foil substrates using various conductive inks and the like, such as are available from Parelec Inc. under its Parmod VLT™ brand.


Wireless Receivers/Transmitters


In many of the preferred embodiments of the invention illustrated and described herein it is disclosed to use a radio frequency (RF) and/or infrared (IR) transmitter to send wireless signals over relatively long range distances (for example, 10-100 meters or more). For example, the toy wand 100g illustrated and described in connection with FIG. 8A includes an internal RF/IR Module 150 for communicating various command signals to one or more remote RF/IR receivers and associated effects. RF/IR Module 150 can comprise any number of small, inexpensive RF transmitters such as are commercially available from Axcess, Inc., of Dallas, Tex. If directionality is desired, any number of small, inexpensive infrared (IR) LED transmitters may be used, such as the type commonly employed in television remote controls, keyless entry systems and the like.



FIG. 18A is a schematic block diagram of one embodiment of a transmitter module 150 adapted for use in accordance with the present invention. The transmitter module 150 generally comprises an RF or IR transmitter 358 driven and controlled by a microprocessor or ASIC 350. ASIC 350 includes address storage module 352, data storage module 354 and shift register 356. Address storage module 352 includes a stored address or coded value, for example, in parallel bit format, that is a preselected coded value that may be uniquely associated with a particular transmitter module 150. Address storage module 352 applies the address coded value to an encoder, such as shift register 356 which, when enabled, encodes the coded value by converting it from parallel bit format to serial bit format which is applied to RF/IR transmitter 358. Similarly, data storage module 354 may include coded data or commands provided by a user (for example, via any of the various command input circuits and structures described above in connection with FIGS. 8A-8B). Data storage module 354 applies the coded data values to shift register 356 which, when enabled, encodes the coded data by converting it from parallel bit format to serial bit format which is also applied to RF/IR transmitter 358. Transmitter 358 modulates the coded address and data values and encodes it in serial bit format onto either a radio frequency or infrared carrier signal which is transmitted as an output signal (RF/IROut). The output signal may be transmitted, for example, via a simple loop antenna (for RF signals) or an infrared LED (for IR signals). If desired, application of electrical power from an internal battery source 152 (or other power sources described herein) may be controlled via activation circuitry 120 such as illustrated and described above in connection with FIGS. 5 and 8A-8B.


Those skilled in the art will recognize from the disclosure herein that transmitter module 150 may be implemented in a variety of known electrical technologies, such as discrete electronic circuits and/or integrated circuits Preferably, integrated circuitry technology and/or surface mount components are used to reduce the physical size of the circuit 150 such that it is able to fit within a relatively small space such as an internal cavity of an interactive gaming toy.



FIG. 18B is a schematic block diagram of one embodiment of a receiver module 362 which is configured to operate in conjunction with transmitter module 150 previously described. Radio frequency or infrared command signals transmitted by transmitter module 150 are provided as input signals (RF/IRIn) to RF/IR receiver 363. RF/IR receiver 363 may comprise, for example, a simple tuned circuit with loop antenna (for receiving RF signals) or one or more infrared sensors (for receiving IR signals). Command signals received by RF/IR receiver 363 are applied to a decoder, such as shift register 364 which converts the coded value therein from a serial bit format to a parallel bit format. Address comparator 366 receives at one input the transmitter module coded address value in parallel bit format from shift register 364 and at its other input a preselected fixed or dynamically stored coded value from address storage 368. The preselected coded value from address storage 368 corresponds to the preselected coded value of the transmitter module 150 with which receiver module 362 is associated or compatible. In other words, the preselected coded value stored in transmitter address storage 352 of transmitter module 150 is the same as or compatible with a preselected coded value as is stored in address storage 368 of receiver module 362 with which it is associated or compatible. If the coded address value in the received command signal matches all or a predetermined portion of the preselected fixed or dynamic coded value stored in address storage 368, this coincidence is detected by address comparator 366 and is applied to restart or reset receive timer 372. Receive timer 372 preferably has a time-out period of, for example, 0.5-3 seconds and, if it is not restarted or reset within this time period, it produces a command termination signal which tells an associated controller 374 to process the received command signals(s) and to actuate one or more corresponding play effects such as lighting effects 376, sound effects 377 and various actuator-driven effects, such as opening of a treasure chest 378. Each of the functional elements of receiver module 362 and controller 374 receive electrical power from a suitable power source 380, as illustrated.


In operation, the RF/IR transmitter module 150 transmits a certain command signal (RF/IROut) including coded address and optional coded data information. This signal is received and decoded by receiver module 362 as input signal (RF/IRin). The decoded transmitter address information is compared to a fixed or dynamically stored coded value from address storage 368. Preferably, an immediate effect such as a pulsing light or sound is actuated by controller 374 in order to provide visual and/or aural cues that a command signal was received. Receive timer 372 is initiated and the RF receiver module 362 awaits the next command signal. If no further signal is received before the timer 372 times out, then the command signal is assumed to be complete and the controller 374 is instructed to process the received command signal(s) and actuate one or more relays, for example, thereby triggering whatever appropriate effect(s) correspond to the command signal received.


For applications supporting multiple wireless input devices (i.e., multiple RF/IR transmitter modules 150) within a single play space, the address comparator 366 of receiver module 362 is preferably configured to accept either: (1) a range of valid “compatible” addresses from the set of RF/IR transmitter modules 150; or (2) any valid address from a list of valid addresses stored in address storage module 368. In the first case, each transmitter module 150 within a defined group of transmitter modules (for example, all Level-1 toy wands) would preferably be configured to have a coded address value having a portion of address bits that are identical and a portion of address bits that may be unique. The receiver module 362, upon detecting a compatible address bit sequence, decodes the data bits thereof and sets a latch selected by those particular data bits. A number of such latches, may be provided, for example, for recognizing and distinguishing further such command signals originating from multiple users and/or wands. In the second case, the receiver module 362 stores a list of specific coded values, i.e. valid addresses, in a memory, such as memory 368, and as transmitted addresses are received, they are compared to the valid addresses in this list. Thus, only signals transmitted by RF/IR transmitter modules that are on the list of valid addresses are accepted by receiver module 362. In this manner, for example, command signals sent by Level-1 toy wands can be distinguished from command signals sent by Level-2 toy wands.



FIG. 18C is a schematic block diagram of a portion of a receiver module 362 including an embodiment of address comparator 366 and of address storage 368 particularly suited for operating with a plurality of simultaneously operating transmitter modules 150. For purposes of illustration, blocks in FIG. 18C that are the same as blocks in FIG. 18B described above are shown in phantom and are identified by the same numeric designation. Address storage 368 includes addressable registers or memory 386 in which are stored the preselected coded identification values corresponding to the preselected coded identification value of each of a plurality of compatible transmitter modules 150 desired to be operably associated with receiver 362. Address selector 388 repetitively generates a sequence of addresses including the addresses of all the registers of addressable register 386 within a relatively short time period less than about 50-100 milliseconds. Thus the complete set of preselected stored coded values are applied to one input of coded value comparator 390. The received coded identification value received and decoded at the output of shift register 364 is applied to the other input of coded value comparator 390, whereby the received coded identification value is compared to each one of the coded values stored in addressable register 386.


Address comparator 366 preferably includes a latch circuit 392 having an addressable latch corresponding to each register in addressable register 386 and that is addressed by the same address value generated by address selector 388 to address register 386. Coded value comparator 390 determines when there is a match between the received coded value and the stored coded value. The occurrence of a match causes comparator 390 to set the corresponding latch in latch circuit 392. If received coded identification values corresponding to all of the stored fixed coded values are received and properly decoded, then all of the latches in latch circuit 392 will be set, thereby making a “true” condition at the inputs of AND gate 394 and causing its output to become “true.” This “true” signal from AND gate 394 resets receive timer 372, as described above in connection with FIG. 18B, and also activates a reset circuit 396 to reset all the latches of latch circuit 392 so that the comparison sequence of received coded identification values to the set of stored fixed coded values begins again. If all of the preselected received coded values are not received, then all of the latches in latch circuit 392 are not set, the output of AND gate 394 does not become “true”, and receive timer 372 times out and issues the command termination signal discussed above. Although the receiver module 362 of FIG. 18C is disclosed with reference to particular embodiments, a skilled artisan will recognize from the disclosure herein that a wide variety of alternative structures may be used.



FIG. 19 is a detailed electrical schematic diagram of an exemplary embodiment of transmitter module 150 illustrated and discussed above. Electrical power is provided by one or more batteries 152 and/or other power sources as illustrated and described herein. This power is preferably switched by activation circuit 120 and/or optional timer module 402. Electrical power is provided via diode D2 to the transmit timer U1, such as an integrated circuit one-shot multivibrator type LM555 available from National Semiconductor Corporation. The time-out interval of multivibrator U1 is established by resistors R2, R3 and capacitor C1 which need not be high precision components. When activation circuit 120 is activated, a voltage is applied through resister R1 to the gate of a transistor Q1. This causes electrical power to be applied from battery 152 to a five-volt voltage regulator U4 such as a type LM78L05 also available from National Semiconductor Corporation. Alternatively, the periodic output from U1 may be applied to the gate of a transistor Q1 to the same effect (for example, for sending periodic “beacon” transmissions).


Regulated voltage from regulator U4 is applied to shift register 356 (pin 18) and RF transmitter 358. Shift register 356 is implemented by an encoder integrated circuit U2 such as a 212 series encoder type HT12E available from Holtek Microelectronics in Hsinchu, Taiwan, R.O.C. Non-volatile address storage 352 is implemented by twelve single pole switches in switch packages SW1 and SW2 which are set to produce a twelve-bit coded value which is applied in parallel bit format to encoder integrated circuit U2 of shift register 356. Once set by the manufacturer or the user, the preselected coded value stored in address storage 352 is fixed and will not change absent human intervention. However, in alternative embodiments SW2 may be replaced in whole or in part by command selection circuitry such as touch switches, tilt switches and the like illustrated and described above in connection with FIG. 8A. Such circuitry enables users to actively select and change the coded data impressed upon address lines 8-10 of encoder integrated circuit U2. Integrated circuit U2 reproduces the coded address and data values in pulse-width modulated serial-bit format and applies it through diode D1 to RF transmitter 358 (which, in alternative embodiments, may comprise an IR transmitter). RF transmitter 358 includes a class B biased transistor Q2 in an L-C tuned RF oscillator transmitter coupled to a loop antenna 406 for transmitting the command signal coded values (address bits coded by SW1 and data bits coded by SW2) produced by encoder U2.


Transmitter module 150 need only employ a small antenna such as a small loop antenna and is not required to have optimum antenna coupling. In a typical embodiment, with a transmitter frequency of about 915 MHz, a transmitter peak power output of less than or equal to one milliwatt produces a transmission range R of about 20-30 meters. Other frequencies and power levels may also be employed. The low transmitter power is particularly advantageous in that it allows the size of transmitter module 150 to be made very small.



FIG. 20 is an electrical schematic diagram of an exemplary embodiment of receiver module 362 illustrated and discussed above. Power is supplied by a voltage source 410 which can be either a battery or a DC power supply. Voltage from voltage source 410 is regulated by voltage regulator circuit U3 such as type LM78L05 to produce a regulated +5 volt power supply for the functional blocks of receiver module 362. In operation, command signals transmitted from transmitter modules are received at loop antenna 412 and applied to RF receiver 363 (which, in alternative embodiments, may comprise an IR receiver) including a receiver sub-circuit integrated circuit U8 such as type RX-2010 available from RF Monolithics in Dallas, Tex. The identification signal, including the twelve bit coded value in serial-bit format is coupled from the output of receiver sub-circuit U8 to shift register decoder and address comparator 364/366 which are implemented in an integrated circuit U5, such as a 212 series decoder type HT12D also available from Holtek Microelectronics. Decoder U5 converts the coded value in serial-bit format to parallel-bit format and compares that received coded value to the preselected stored coded fixed reference value in parallel bit format determined, for example, by the positions of the twelve single pole switches in switch packages SW3, SW4 of address storage module 368.


Receive timer 372 is implemented by one-shot timer integrated circuit U6a such as type 74123N and D-flip flop U7a such as type 74HC74D, both of which are available from National Semiconductor Corporation of Santa Clara, Calif. When comparator 366 detects a match between the received coded value from transmitter module 150 and the coded value stored in address storage 368 it resets one-shot timer U6a. If one-shot timer U6a is not again reset within the time determined by timing resistor R8 and timing capacitor C9, U6a then sets flip-flop U7a and its Q output becomes low thereby applying a voltage input to controller 374 signifying the end of a transmitted command signal. Controller 374 then processes the received command signal or signals (for example, stored in a stack register) and appropriately operates one or more associated play effects 376.


Those skilled in the art will appreciate that the switch positions of the twelve switches SW1, SW2 of transmitter module 150 correspond to the switch positions of the corresponding twelve switches SW3, SW4 of receiver module 362. These preset values may be fixed or dynamic, as discussed above. The twelve-bits available for storing coded values may be apportioned in a convenient way, for example, into an address portion and into a data portion. For example, the twelve-bit coded value can be apportioned into a ten-bit address portion (1024 possible combinations) and a two-bit data portion, which would accommodate up to four different transmitter command signals. If desired, the ten-bit address portion can be further divided into various logical portions representing, for example, designated wand levels (for example, 1, 2, 3 or 4), special acquired magic powers or skills, experience levels and the like. This coded data would preferably be shared and coordinated between all transmitter modules 150 and receiver modules 362 such that each associated gaming toy effectively would have its own unique powers and abilities as represented and identified by the coded address data. Thus, certain receivers and associated play effects would not respond to certain transmitter modules unless the address coding of the transmitter module is coded with the appropriate matching data. Persons skilled in the art will recognize also that recoding of transmitter modules is a convenient way to provide for advancement of game participants within an interactive gaming experience. For example, this can be accomplished manually (for example, by flipping dip switches SW1/SW2) or automatically/wirelessly (for example, via RF programmable code latching circuitry, not shown).


While the foregoing embodiments have been described in terms of a radio frequency (RF) or infrared (IR) transmission between a transmitter module 150 and receiver module 362, various alternative embodiments could also readily be implemented such as, for example, complimenting an RF transmitter and receiver set with an appropriately selected infrared (IR) transmitter and receiver set or a laser or light system. The IR or laser system would have particular advantage where, for example, it is desired to provide directional control of a transmitted command signal.


RF Transceivers (SRRF)


In certain embodiments, an interactive gaming toy may include an RF transceiver (a combination radio transmitter and receiver) configured to electronically send and receive information to and from various other compatible RF transceivers that may be provided within a play environment. The capability to provide two-way wireless communications (sometimes referred to herein as a send receive radio frequency communication protocol or “SRRF”) provide the basic foundation for a complex, interactive entertainment system. In its most refined embodiments, a user may electronically send and receive information to and from other SRRF-compatible interactive gaming toys and/or to and from a SRRF-compatible master control system (described in more detail later) located within and/or associated with any of a number of play environments


SRRF may generally be described as an RF-based communications technology and protocol that allows pertinent information and messages to be sent and received to and from two or more SRRF-compatible devices or systems. While the specific embodiments described herein are specific to RF-based communication systems, those skilled in the art will readily appreciate that the broader interactive play concepts taught herein may also be realized using any number of commercially available 2-way and/or 1-way medium range wireless communication devices and communication protocols such as, without limitation, infrared-, digital-, analog-, AM/FM-, laser-, visual-, audio-, and/or ultrasonic-based systems, as desired or expedient.


The SRRF system can preferably send and receive signals (up to 40 feet) between portable tokens (described in more detail below) and fixed transceivers. The SRRF system is also preferably able to associate a token with a particular zone as defined by a token activation area approximately 10-15 feet in diameter. Suitable embodiments of the SRRF technology described herein may be obtained from a number of suitable sources, such as AXCESS, Inc. and, in particular, the AXCESS active RFID network system for asset and people tacking applications.


In one embodiment, an entire entertainment facility may be configured with SRRF technology to provide a master control system for an interactive entertainment play environment using SRRF-compatible interactive gaming toys such as toy wands and/or other SRRF-compatible gaming devices. A typical entertainment facility provided with SRRF technology may allow 300-400 or more users to more-or-less simultaneously send and receive electronic transmissions to and from a master control system using a toy wand, for example, or other SRRF-compatible gaming device.


For example, a master control system may comprise a software program, a centralized computer network and an associated data-base that monitors the operation of each interactive gaming toy within a particular location. This information is then used to adjust the play experience for each user based on “knowing” where the user/player has been, what objectives that player has accomplished and how many points or levels have been reached. The system can then send messages to the user throughout the play experience. For example, the system can allow or deny access to a user into a new play area based on how many points or levels have been reached by that user and/or based on what objectives that user has accomplished or helped accomplish. It can also indicate, via sending a message to the user the amount of points or specific play objectives necessary to complete a “mission” or enter the next level of play. The master control system can also send messages to the user from other users. In yet other embodiments, an interactive gaming toy may be configured to automatically download information from the master control system


The system is preferably sophisticated enough that it can allow multiple users to interact with each other, adjusting the game instantly. The master control system can also preferably interface with digital imaging and/or video capture so that the users' activities can be visually tracked. Any user can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are informed of their activities and the system interfaces with printout capabilities.


In another embodiment a network of transceivers may be installed at specific points throughout a facility. Players are outfitted or provided with a SRRF-compatible player identification device, sometimes referred to herein as a “token”. For example, this may be a toy, card, key chain trinket, wristband, badge, or other SRRF-compatible device having a unique token identification number (TID). In one embodiment a suitable token may comprise a standard AXCESS personnel tag clipped to a player's clothing in the upper chest area. As each player enters a specific interactive play area or “game zone” within the facility, the player's token receives a low frequency activation signal containing a zone identification number (ZID). The token then responds to this signal by transmitting both its unique TID along with the ZID, thus identifying and associating the player with a particular zone.


The token's transmitted signal is received by a transceiver attached to a data network built into the facility. Using the data network, the transceiver forwards the TID/ZID data to a host computer system. The host system uses the SRRF information to log/track the guest's progress through the facility while interfacing with other interactive systems within the venue. For example, upon receipt of a TID/ZID message received from Zone 1, the host system may trigger a digital camera focused on that area, thus capturing a digital image of the player which can now be associated with both their TID and the ZID at a specific time. In this manner the SRRF technology allows the master control system to uniquely identify and track people as they interact with various games and activities in a semi-controlled play environment. Optionally, the system may be configured for two-way messaging to enable more complex interactive gaming concepts.


In another embodiment, the SRRF technology can be used in the home. For example, a small SRRF module may be incorporated into one or more portable toys or objects that may be as small as a beeper. The SRRF module supports two-way communications with a small home transceiver, as well as with other SRRF-compatible objects. For example, a SRRF-compatible gaming toy can communicate with another SRRF-compatible gaming toy.


The toy or object may also include the ability to produce light, vibration or other sound effects based on signals received through the SRRF module to complement the operation of the toy and/or the effects achieved. In a more advanced implementation, the toy or object may be configured such that it is able to display preprogrammed messages of up to 50 characters or more on a LCD screen when triggered by user action (for example a button) or via signals received through the SRRF module. The toy or object may also be configured such that it is capable of displaying short text messages transmitted from another SRRF-compatible device.


Preferably, the SRRF transceiver is capable of supporting medium-to-long range (10-40 feet) two-way communications between SRRF-compatible toys or objects and a host system, such as a PC running SRRF-compatible software. This transceiver preferably has an integral antenna and interfaces to the host computer (and/or other consumer electronic devices) through a dedicated communication port using industry standard RS232 serial communications. If desired, each SRRF module may also incorporate a global positioning system (“GPS”) device to track the exact location of each play participant within one or more play environments.


Most desirably, a SRRF module can be provided in “chip” form to be incorporated with other electronics, or designed as a packaged module suitable for the consumer market. If desired, the antenna can be embedded in the module, or integrated into the toy and attached to the module. Different modules and antennas may be required depending on the function, intelligence and interfaces required for different devices. A consumer grade rechargeable or user replaceable battery may also be used to power both the SRRF module and associated toy electronics.


Interactive Game Play


The present invention may be carried out using a wide variety of suitable game play environments, storylines and characters, as will be readily apparent to those skilled in the art. The following specific game play examples are provided for purposes of illustration and for better understanding of the invention and should not be taken as limiting the invention in any way:


Example 1

An overall interactive gaming experience and entertainment system is provided (called the “Magic” experience), which tells a fantastic story that engages children and families in a never-ending adventure based on a mysterious treasure box filled with magical objects. Through a number of entertainment venues such as entertainment facilities, computer games, television, publications, web sites, and the like, children learn about and/or are trained to use these magical objects to become powerful “wizards” within one or more defined “Magic” play environments. The play environments may be physically represented, such as via an actual existing play structure or family entertainment center, and/or it may be visually/aurally represented via computer animation, television radio and/or other entertainment venue or source. Entertainment venues or sources may include, for example, video games, computer games, television, internet, movies and radio. These and other entertainment venues or sources can be used to provide all or part of the overall game experience in accordance with the present invention.


The magical objects use the SRRF communications system allowing for messages and information to be received and sent to and from any other SRRF-compatible object or system. Optionally, these may be programmed and linked to a SRRF-compatible master control system. Most preferably, a SRRF-compatible toy wand is provided and is configured to enable a user to interact with a master control system located within a Magic entertainment facility and/or a home-based system using common consumer electronic devices such as a personal computer or a video game system.


Example 2

A computer adventure game is provided in which one or more play participants assume the role of an imaginary character “Pajama Sam” from the popular series of computer games published by Humongous Entertainment, Inc. of Woodinville, Wash. A Pajama Sam character trading card, such as illustrated in FIGS. 13A, 13B, is provided to each play participant. The card may be packaged and sold together with the game software, and/or it may be sold separately, as convenience and market demands dictate.


A specially configured computer, video game, home game console, hand-held gaming device, game controller, or similar gaming device is provided with a reader, and more preferably a reader/writer such as described above, that is able to communicate with the card. As each play participant plays his or her favorite Pajama Sam game the Pajama Sam character represented by the card gains (or loses) certain attributes, such as speed, dexterity, and/or the possession of certain tools or objects associated with the game play. All of this information is preferably stored on the card so that the character attributes may be easily and conveniently transported to other similarly-equipped computer games, video games, home game consoles, hand-held game units, play facilities, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.


Various other video games, home game consoles, and/or hand-held game units can also be configured to communicate with the Pajama Sam adventure card in a similar manner as described above. In this manner, a play participant can use the Pajama Sam trading card and the role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game, internet adventure game or the like.


Example 3

Game participants are immersed in a world-wide treasure hunt adventure to locate a large, unknown amount of money stashed away in one or more Swiss bank accounts (the money and the accounts can be real or imaginary).


According to the storyline Willy Wonkers, a reclusive/eccentric billionaire, was unsure which of his many would-be heirs was worthy to receive his vast fortunes. So he provided in his will that upon his demise his entire estate was to be liquidated and all of the proceeds placed in a number of anonymous Swiss bank accounts under secret passwords known only to Willy. According to Willy's will these proceeds were to be distributed “to only such heir(s) who prove themselves worthy of inheriting my vast fortunes by successfully completing the Wonkers Worldwide Worthiness Challenge”—a series of intellectual, physical and moral challenges devised by Willy.


Game participants are invited to a reading of the will where they are identified as potential heirs to the Wonkers family fortune. Each participant is challenged to complete the Wonkers Worldwide Worthiness test and to thereby obtain the secret Swiss account number(s)/passwords and the Wonkers fortunes. Each game participant receives an RFID-enabled token having a unique identification number. The token is used to uniquely identify each player throughout the game play. Preferably, each token represents a specific character in the treasure hunt game. Thus, play participants would preferably select which character he or she would like to play. Each character would come with a unique story about who they are, how they were related to Willy and, most importantly, a touching little vignette about Willy that no one else knows. Hidden within each story is one or more unique clues that are necessary to solve the various challenges the players will soon face.


The game is preferably arranged and set up so that clues can only be successfully used by the particular characters who legitimately possess them. If any other character illegitimately obtains these secret clues and tries to use them in the game, he or she will fail the challenge. Preferably all of the clues (and possibly other, extrinsic clues) are required to complete the quest. Thus, players will preferably need to cooperate with other players in order to receive and exchange the necessary clues and/or other specified assistance required to enable each player to advance in the game. This may encourage playful interaction among the players by requiring them to work with (and possibly negotiate against) other players to see who can get the information and points they need to advance in the game.


Preferably, any sharing of information must be conducted within the rules of the game to be “legitimate” and recognized by the game. Thus, preferably, players cannot advance in the game simply by getting the relevant clue information from the internet or by asking other players. To be legitimate and, therefore, recognized by the game, cooperating players must present their tokens together to a compatible token reader and request that the information be shared between the characters. Once the information is legitimately exchanged within the context of the game, it then can be used by each player/character to solve further challenges and thereby advance in the game. However, if a player guesses the answer (even correctly) or if the clue information is obtained illegitimately, then the player preferably loses the quest and must purchase a new token.


More complex sharing scenarios could also be developed. For example, certain unique clue information could be revealed only during the course of game play and only to certain characters. Other characters would need this clue information to advance in the game and would have to figure out which other character(s) have the information they need. They would then need to find and contact another player who has the appropriate character token and who has successfully found the clue information they need. Then they would need to meet in order to make the necessary exchange transaction. Other complex sharing scenarios may require players to negotiate multi-party exchanges of information between three or more players/characters.


Preferably, the game is self-policing. That is, it “knows” when an exchange of information and/or other required assistance is legitimately given (i.e. conducted within the rules of the game) and can react accordingly. For example, the game may require players to simultaneously present their tokens to a compatible reader device. The reader would then be able to verify the identities of each character/player, extract relevant information (for example, token ID, user password, etc.), and write the relevant new information to each player's token. Once the transaction is completed, each player would then legitimately possess and be able to use the information stored on his or her token to advance further in the game using any other gaming device that can read the token.


Alternatively, the same sequence can be followed as described above, except that the token is used only to verify character and player identities (for example where the token comprises an RFID read-only tag). All other relevant information is stored in a local and/or central database. The data-base keeps track of each individual player's progress, what information/clues they have learned, who they have interacted with, points accumulated, etc. Thus, game play can proceed on any device that can communicate via the internet, such as a home computer, game console, internet appliance, etc.


Alternatively, an authenticating password may be used in conjunction with each RFID-enabled token. When two or more players present their tokens to a compatible reader device as in the examples described above, each player is given an authenticating password, which the player(s) then can enter into any other gaming platform. The password may be an alpha-numeric code that is mathematically derived from the unique ID numbers of each participating player involved in the sharing transaction. Thus, it is unique to the specific players involved in the authorized exchange transaction and cannot be used by other players (even if they copy or steal the password). When the alphanumeric number is subsequently re-entered into another device (for example, a home game console or home computer) by the authorized player, the game software can reverse the mathematical algorithm using the player's unique ID (for example, previously entered at the beginning of the game) and thereby determine and/or validate the event(s) that generated the authenticating password. Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords. Optionally, each authenticating password could have a “shelf life” of any desired length of time such that it must be used within an hour, a day, a week, a month, etc. This might help move the game along by keeping players on their toes. Authenticating passwords could be easily printed and dispensed on special tickets or stickers, which can be collected. Alternatively, and/or in addition, authenticating passwords can be readily printed on any ordinary cash register receipt as part of any purchase transaction (for example at a fast food or other retail establishment).


The treasure hunt game may be continual in its progression or it may be orchestrated in real time via the internet or any other mass distribution or communication medium, such as TV commercials, mini-gameboy installments, computer-animated MPEG videos. For example, each game might last several days/weeks/months, and may be launched in conjunction with a promotional/advertising campaign for a complementing movie or the like. In that event, players would preferably sign up in advance to receive their tokens to play the game or they can purchase one or more tokens at any participating gaming outlet before or during the game.


Example 4

Game participants are immersed in a “whodunit” murder mystery. For example, this interactive adventure game could be based on the popular board game “Clue™.” Players learn that a murder has been committed and they must figure out who did it, in what room, with what weapon, etc. The game is preferably live-action interactive with simulated live-news casts, letters, telephone calls, etc.


According to the storyline Major Mayonnaise is found dead in his palatial mansion of an apparent massive coronary. However, clues at the crime scene indicate that this was in fact a carefully planned murder. Based on the indisputable physical evidence, the murder could only have been committed by one of eight possible suspects. It is common knowledge that each player hated Mayonnaise and, thus, each player has been identified as a suspect in the murder. Thus, the mission is to figure out WHO DUNIT! and how.


Game play is essentially as described above in connection with Example 3. Players receive RFID-enabled tokens uniquely identifying each player. Preferably, each token represents one of the eight suspect characters in the Whodunit game. As in Example 3, above, each character would preferably have a unique story about who they are, where they were on the night of the murder, and why they dislike Mayonnaise. Hidden within the collective stories are the unique clues necessary to solve the murder mystery challenge. Players cooperate by exchanging clues and other information needed to solve the mystery. As in Example 3, the game is preferably set up and organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.


Example 5

Game participants are immersed in a magic-themed computer adventure game. For example, this interactive adventure game could be based on the popular “Harry Potter™” series of children's books by J. K. Rowling and licensed computer games by Electronic Arts. Players learn basic magic skills as they progress through an adventure game and solve one or more challenges/puzzles.


According to the storyline players are students enrolled at the Hogwart school of witchery where they are learning witchcraft, spell casting, secret messaging and the like. But something terrible and evil has happened and it is up to each player and their fellow classmates to solve the mystery and ferret out the evil-doer and save the school.


Game play is essentially as described above in connection with Examples 3 and 4. Players preferably receive RFID-enabled tokens. Each token provides a unique identifier for the player and preferably can store his or her progress in the game. Each player begins the adventure with essentially the same magic powers, skills and abilities. Each player may also receive a toy magic wand or other similar interactive gaming device which the player must learn to use to accomplish certain goals set out in the game.


Players cooperate by exchanging clues and other information needed to solve the mystery. As in Examples 3 and 4, the game is preferably organized so that relevant clues can only be successfully used by the particular character(s) who legitimately possess them. Any player who tries to cheat will preferably be disqualified or otherwise prevented from advancing in the game.


An authenticating password system is preferably used to verify or authenticate game events and to thereby discourage cheating. These secret codes or pass words may be obtained from any participating game venue (for example, fast food venues, toy store, theme parks, etc.) or other sources that will become obvious once the game is implemented. Once a secret password is obtained, players can enter it into a specially enabled home computer game, arcade game, portable gaming device, or other device, to get secret powers and/or to find secret parts of the game otherwise unobtainable without the secret code. For example, a player may buy a meal from a fast-food vendor and as part of the meal package would receive a token and/or a secret code. The secret code preferably may be used to access a secret portion or level of a popular computer adventure game.


Most preferably (although not required) authenticating passwords are unique or semi-unique to the player(s) who possess them. For example, each password may be an alpha-numeric code that is mathematically derived from a unique ID number stored on each participating player's token or from a password the player selects. Thus, the secret code is more-or-less unique to the specific player(s) involved in an authenticated game event and preferably cannot be used by other players (even if they copy or steal the secret code). When the alpha-numeric number is subsequently re-entered into another device (for example, a home game console or home computer) by the authorized player, the game software can reverse the mathematical algorithm using the player's unique ID or user-selected password (this may or may not be previously entered at the beginning of the game) and thereby determine and/or validate the game event(s) that generated the authenticating password. Existing public-key/private-key encryption algorithms and/or the like could be used for encoding and decoding the authenticating passwords.


To make the password system more convenient, the token device may optionally include one or more entry buttons and an LCD display. When players insert the token into an enabled reader, the secret code(s) are downloaded automatically to the token device and can be displayed on the LCD screen. The token thus becomes a secret encoder/decoder device that allows players to electronically transport and send/receive secret messages and codes to each other that can only be read by players/devices that possess the correct authenticating code. An optional communication port may allow secret codes to be downloaded directly to a computer game, portable game unit or other devices using, for example, a standard USB communication port.


Example 6

A computer-animated game is provided wherein game participants learn to create various spells and/or potions by combining and mixing various ingredients (RFID-tagged gaming items) in an RFID-enabled mixing cauldron (for example, a peripheral gaming device as illustrated and described above in connection with FIG. 15C).


For example, players may be provided with multiple gaming items each comprising an RFID-tagged toy representing various potion ingredients (for example, a spider, a batwing, a potion vial, and so forth). In one embodiment, an initial quantity of such gaming items (for example, 3-6 different gaming items) may be packaged and sold together with a cauldron-themed peripheral gaming device configured to operate with a desired gaming platform (for example, a home computer, home game console, hand-held game unit, or the like). Additional gaming items may be earned by game participants as they play and progress in the game. Alternatively, gaming items may be purchased from a retail vendor and/or otherwise provided as part of one or more retail transactions.


Gameplay preferably progresses in accordance with a desired theme and/or storyline. For example, game participants may direct a virtual character (for example, a witch or warlock) in a Halloween-themed computer-adventure game. If desired, game participants may control the movements and/or activities of the virtual character using one or more input devices, such as a conventional wired or wireless game controller. At certain points in the game, players are preferably challenged to combine and mix various ingredients (RFID-tagged gaming items) in the RFID-enabled mixing cauldron to create one or more desired potions and/or spells. For example, a particular potion or spell may be required to help the virtual character progress or advance in the game.


In one embodiment, the game software may cause a potion recipe to be displayed on an associated display device. Game participants are then challenged to follow the recipe and thereby create the desired potion by dropping various ingredients (RFID-tagged gaming items) into the RFID-enabled cauldron. As each item is dropped into the cauldron, preferably the game reacts accordingly by producing one or more computer-animated visual, audible and/or tactile effects on one or more associated display devices. If desired, the cauldron may also be configured to display various light, vibration or sound effects (for example, simulating boiling, sparking, gurgling, shaking, or popping) as directed by the game software. The effects may be the same or different for each gaming item (or combination of gaming items) added to the cauldron. For example, displayed effects may be determined based on information wirelessly communicated by each gaming item as it is added to the RFID-enabled cauldron.


Recipes may be as simple or complex as desired. For example, a simple recipe may require a certain combination of gaming items (for example, three gaming items) to be placed in the cauldron (for example, one spider and two batwings). A somewhat more complex recipe may require certain gaming items to be added to the cauldron in a particular order. Yet even more complex recipes may require game participants to carefully time the addition of certain gaming items to the cauldron based on particular observed game events and/or conditions (for example, wait for the mixture to hiss and turn green, then immediately add two spiders). If desired, all or part of the potion recipe may be contained within in a riddle or a puzzle.


Those skilled in the art will appreciate that multiple thousands of possible unique recipes and ingredient combinations may be achieved using a relatively small number of gaming items. For example, providing 12 different gaming items would allow game participants to create up to 1,728 unique 3-ingredient potions, 20,736 unique 4-ingredient potions, and 248,832 unique 5-ingredient potions. Using 24 different gaming items would allow game participants to create up to 13,824 unique 3-ingredient potions, 331,776 unique 4-ingredient potions, and 7,962,624 unique 5-ingredient potions. Adding a timing element would further increase the number of possibilities because the same combination and ordering of ingredients could produce two or more different potions depending upon the timing element.


In an alternative embodiment, players are not provided with a recipe at all, but must experiment on their own (or in cooperation with other players) to discover how to use the gaming items to create various desired potions or spells. For example, players may be challenged to discover potion recipes by experimenting with various combinations of gaming items and/or the ordering and timing of adding those gaming items to the cauldron to produce various desired potions or spells. This discovery process may or may not be assisted by the game. For example, during the course of the game players may be provided with certain hints or information concerning the ingredients of a particular desired potion. As another example, players may learn that certain ingredients should never be combined with certain other ingredients. As another example, the game may react by displaying either positive or negative effects as each gaming item is added to the cauldron.


Example 7

Two or more interlinked games are provided and configured such that as a participant earns points, levels, strengths, and the like by playing one game, those earnings affect how the participant advances or progresses in a second game. For example, a player may play a first car racing game and reach “expert level” with “turbo boost” and “ten extra spare tires.” Then when the player goes to play a second car racing game the second game recognizes the player's previously earned status and upgrades. Thus, the player is able to start the second car racing game at the equivalent of expert level with turbo boost and ten extra spare tires.


In other embodiments, players may earn upgrades by purchasing certain retail items from participating retail vendors. For example, a player may be able to earn an “extreme exhaust system” by purchasing five HAPPY MEALS® at MCDONALD'S® and correctly answer twenty questions in an online quiz. In one embodiment, the player receives one or more authenticating alphanumeric codes printed on an ordinary cash register receipt. Once the player enters these codes and successfully completes the quiz, the player's status is updated to include the “extreme exhaust system.” When the player goes back to play the first car racing game and/or the second car racing game, the games will recognize that the player has earned the extreme exhaust system.


In some embodiments a purchased retail item may tie into the storyline of the game and/or correspond to a virtual item in the game. For example, a player may wish to obtain a “fire retardant driving jacket” to make the virtual game character more likely to survive a crash. The player may go to the local GYMBOREE® and purchase a particular jacket. The particular jacket comes with a special code that the player enters online to obtain the “fire retardant driving jacket.” When the player returns to play the first car racing game and/or the second car racing game, the games will recognize that that the player has earned the fire retardant driving jacket.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments and examples described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. An interactive gaming toy for playing a game having both physical and virtual play elements, said interactive gaming toy comprising: a physical toy comprising a doll or action figure having an internal cavity configured to house one or more electrical components and associated circuitry;non-volatile memory disposed within said internal cavity, said non-volatile memory storing a first selection of information comprising an identifier configured to identify said interactive gaming toy in an associated computer-animated game, and a second selection of information describing powers or abilities possessed by a role-play character in said computer-animated game;a first radio frequency (RF) transceiver configured to provide short-range two-way wireless communications with a first wireless-compatible device over a first communication range less than 60 centimeters, and wherein said short-range two-way wireless communications include at least said first selection of information and said second selection of information;a second RF transceiver configured to provide medium- or long-range two-way wireless communications with a second wireless-compatible device over a second communication range greater than 10 feet and less than 100 meters, and wherein said medium- or long-range two-way wireless communications include at least said first selection of information; andan inductance coil disposed within said internal cavity and configured to generate electrical energy when exposed to an electromagnetic field, and wherein said first RF transceiver or said second RF transceiver is electrically coupled to said inductance coil and powered by said electrical energy.
  • 2. The interactive gaming toy of claim 1 wherein said first RF transceiver comprises a radio frequency identification (RFID) transponder.
  • 3. The interactive gaming toy of claim 1 wherein said second RF transceiver is configured to provide medium-range two-way wireless communications with said second wireless-compatible device over a wireless communication range of between 10 feet and 40 feet.
  • 4. The interactive gaming toy of claim 1 further comprising a magnetic attachment interface configured to removably secure an auxiliary component comprising a mating magnetic attachment interface.
  • 5. The interactive gaming toy of claim 4 wherein said auxiliary component comprises a second non-volatile memory storing a third selection of information comprising powers or abilities possessed by a role-play character in said computer-animated game.
  • 6. The interactive gaming toy of claim 1 further comprising a motion sensor selected from the group consisting of: a tilt sensor, a gyro-sensor, and an accelerometer, said motion sensor configured to generate sensor state information based at least in part on one or more sensed motions of said physical toy, and wherein said medium- or long-range two-way wireless communications include said sensor state information.
  • 7. The interactive gaming toy of claim 1 further comprising a touch sensor configured to generate sensor state information based on sensed touching of a user's finger thereon, and wherein said medium- or long-range two-way wireless communications include said sensor state information.
  • 8. An interactive gaming toy for playing a game having both physical and virtual play elements, said interactive gaming toy comprising: a base component comprising an internal cavity configured to house one or more electrical components and associated circuitry, said base component further comprising a first attachment interface for removably attaching at least one auxiliary component;a first non-volatile memory disposed within said internal cavity and storing a first selection of information comprising an identifier configured to identify said base component in an associated computer-animated game;a first radio frequency (RF) transceiver electrically coupled to said first non-volatile memory and configured to provide medium- or long-range two-way wireless communications with a first wireless-compatible device over a wireless communication range greater than 10 feet and less than 100 meters, and wherein said medium- or long-range two-way wireless communications include at least said first selection of information; anda plurality of auxiliary components each comprising: i) a second attachment interface configured to mate with said first attachment interface, ii) a second non-volatile memory storing a second selection of information describing selected characteristics of a virtual character or object in said computer-animated game, and iii) a second RF transceiver electrically coupled to said second non-volatile memory and configured to provide short-range two-way wireless communications with a second wireless-compatible device over a wireless communication range less than 60 centimeters, and wherein said short-range two-way wireless communications include at least said second selection of information.
  • 9. The interactive gaming toy of claim 8 wherein said base component comprises: a toy wand, a toy doll, or an action figure.
  • 10. The interactive gaming toy of claim 8 wherein said first attachment interface comprises a first magnet and wherein said second attachment interface comprises a second magnet configured to mate with said first magnet.
  • 11. The interactive gaming toy of claim 8 wherein said base component further comprises an inductance coil electrically coupled to said first RF transceiver, said inductance coil configured to generate electrical energy when exposed to an electromagnetic field to thereby power at least said first RF transceiver.
  • 12. The interactive gaming toy of claim 11 further comprising an effects generator configured to produce one or more light, vibration or sound effects based on game-relevant information received by said first RF transceiver and wherein said effects generator is configured to be powered by said inductance coil when said inductance coil is exposed to an electromagnetic field.
  • 13. The interactive gaming toy of claim 8 further comprising a light emitting module secured in fixed relation with said base component and configured to emit a visible or infrared light signal capable of being detected by a camera.
  • 14. The interactive gaming toy of claim 8 further comprising a motion sensor selected from the group consisting of: a tilt sensor, a gyro-sensor, and an accelerometer, said motion sensor disposed within said internal cavity and configured to generate sensor state information based at least in part on one or more sensed movements of said base component in free space.
  • 15. An interactive gaming toy for playing a game having both physical and virtual play elements, said interactive gaming toy comprising: a base component comprising an internal cavity configured to house one or more electrical components and associated circuitry, said base component further comprising a first attachment interface for removably attaching at least one modular component;a first non-volatile memory disposed within said internal cavity and storing a first selection of information describing selected characteristics of a virtual character or object in a computer-animated game;a first radio frequency (RF) transceiver electrically coupled to said first non-volatile memory and configured to provide first two-way wireless communications with a first wireless-compatible device over a limited wireless communication range less than 60 centimeters, and wherein said first two-way wireless communications include at least said first selection of information;an inductance coil disposed within said internal cavity and configured to generate electrical energy when exposed to an electromagnetic field, and wherein said first RF transceiver is powered by said electrical energy; anda plurality of selectively attachable modular components each comprising: i) a second attachment interface configured to detachably mate with said first attachment interface, ii) a second non-volatile memory storing a second selection of information describing selected characteristics of a virtual character or object in said computer-animated game, and iii) a second RF transceiver electrically coupled to said second non-volatile memory and configured to provide second two-way wireless communications with a second wireless-compatible device over a limited wireless communication range less than 60 centimeters, and wherein said second two-way wireless communications include at least said second selection of information.
  • 16. The interactive gaming toy of claim 15 wherein said first attachment interface comprises a first magnet and wherein said second attachment interface comprises a second magnet configured to mate with said first magnet.
  • 17. The interactive gaming toy of claim 15 wherein said base component further comprises an effects generator configured to produce one or more light, vibration or sound effects based on game-relevant information received by said first RF transceiver and wherein said effects generator is configured to be powered by said inductance coil when said inductance coil is exposed to an electromagnetic field.
  • 18. The interactive gaming toy of claim 15 further comprising a light emitting module secured in fixed relation with said base component and configured to emit a directional infrared light signal capable of being detected by a camera or an infrared sensor.
  • 19. The interactive gaming toy of claim 15 wherein said first wireless-compatible device comprises an RFID reader/writer configured to wirelessly power and communicate with said first RF transceiver.
  • 20. The interactive gaming toy of claim 15 wherein said base component and said plurality of selectively attachable modular components are configured to form an assembled gaming toy comprising a doll or action figure embodying a mythical creature selected from the group consisting of: a dragon, a gnome, a wizard, a pixie, and a unicorn.
RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 14/720,080 filed May 22, 2015, which is a continuation application of U.S. patent application Ser. No. 14/464,652 filed Aug. 20, 2014, now U.S. Pat. No. 9,039,533 issued May 26, 2015, which is a continuation application of U.S. patent application Ser. No. 13/801,955 filed Mar. 13, 2013, now U.S. Pat. No. 8,814,688 issued Aug. 26, 2014, which is a continuation application of U.S. patent application Ser. No. 13/469,443, filed May 11, 2012, now U.S. Pat. No. 8,475,275 issued Jul. 2, 2013, which is a continuation application of U.S. patent application Ser. No. 13/037,200, filed Feb. 28, 2011, now U.S. Pat. No. 8,491,389 issued Jul. 23, 2013, which is a continuation application of U.S. patent application Ser. No. 11/777,874, filed Jul. 13, 2007, now U.S. Pat. No. 7,896,742, issued Mar. 1, 2011, which is a continuation application of U.S. patent application Ser. No. 11/274,760, filed Nov. 15, 2005, now U.S. Pat. No. 7,878,905, issued Feb. 1, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 10/954,025, filed Sep. 29, 2004, now U.S. Pat. No. 7,445,550, issued Nov. 4, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 10/397,054, filed Mar. 25, 2003, now U.S. Pat. No. 7,500,917, issued Mar. 10, 2009, each of which is hereby incorporated herein by reference in its entirety. U.S. patent application Ser. No. 10/889,974, filed Jul. 13, 2004, now U.S. Pat. No. 7,850,527, issued Dec. 14, 2010; U.S. patent application Ser. No. 09/792,282, filed Feb. 22, 2001, now U.S. Pat. No. 6,761,637, issued Jul. 13, 2004; and U.S. Provisional Application No. 60/184,128, filed Feb. 22, 2000 are all also hereby incorporated herein by reference in their entireties. The present application also contains subject matter that is related to U.S. patent application Ser. No. 10/410,583, filed Apr. 7, 2003, now U.S. Pat. No. 6,967,566, issued Nov. 22, 2005, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (1332)
Number Name Date Kind
973105 Chamberlain, Jr. Oct 1910 A
1661058 Theremin Feb 1928 A
1789680 Gwinnett Jan 1931 A
2001366 Mittelman May 1935 A
2752725 Unsworth Jul 1956 A
2902023 Waller Sep 1959 A
3135512 Taylor Jun 1964 A
3336030 Martell et al. Aug 1967 A
3395920 Moe Aug 1968 A
3454920 Mehr Jul 1969 A
3456134 Ko Jul 1969 A
3468533 House, Jr. Sep 1969 A
3474241 Kuipers Oct 1969 A
D220268 Kliewer Mar 1971 S
3572712 Vick Mar 1971 A
3633904 Kojima Jan 1972 A
3660648 Kuipers May 1972 A
3707055 Pearce Dec 1972 A
3795805 Swanberg et al. Mar 1974 A
3843127 Lack Oct 1974 A
3949364 Clark et al. Apr 1976 A
3949679 Barber Apr 1976 A
3973257 Rowe Aug 1976 A
3978481 Angwin et al. Aug 1976 A
3997156 Barlow et al. Dec 1976 A
4009619 Snymann Mar 1977 A
4038876 Morris Aug 1977 A
4055341 Martinez Oct 1977 A
4063111 Dobler et al. Dec 1977 A
4153250 Anthony May 1979 A
4166406 Maughmer Sep 1979 A
4171737 McLaughlin Oct 1979 A
4175665 Dogliotti Nov 1979 A
4205785 Stanley Jun 1980 A
4231077 Joyce et al. Oct 1980 A
4240638 Morrison et al. Dec 1980 A
4282681 McCaslin Aug 1981 A
4287765 Kreft Sep 1981 A
4296929 Meyer et al. Oct 1981 A
4303978 Shaw Dec 1981 A
4318245 Stowell et al. Mar 1982 A
4321678 Krogmann Mar 1982 A
4325199 McEdwards Apr 1982 A
4337948 Breslow Jul 1982 A
4342985 Desjardins Aug 1982 A
4402250 Baasch Sep 1983 A
4412205 Von Kemenczky Oct 1983 A
4425488 Moskin Jan 1984 A
4443866 Burgiss Apr 1984 A
4450325 Luque May 1984 A
4503299 Henrard Mar 1985 A
4514600 Lentz Apr 1985 A
4514798 Lesche Apr 1985 A
4540176 Baer Sep 1985 A
4546551 Franks Oct 1985 A
4558604 Auer Dec 1985 A
4561299 Orlando Dec 1985 A
4575621 Dreifus Mar 1986 A
4578674 Baker et al. Mar 1986 A
4595369 Downs Jun 1986 A
4623887 Welles Nov 1986 A
4623930 Oshima Nov 1986 A
4627620 Yang Dec 1986 A
4645458 Williams Feb 1987 A
4672374 Desjardins Jun 1987 A
4678450 Scolari et al. Jul 1987 A
4695058 Carter, III et al. Sep 1987 A
4695953 Blair et al. Sep 1987 A
4699379 Chateau et al. Oct 1987 A
4739128 Grisham Apr 1988 A
4750733 Foth Jun 1988 A
4761540 McGeorge Aug 1988 A
4776253 Downes Oct 1988 A
4787051 Olson Nov 1988 A
4816810 Moore Mar 1989 A
4817950 Goo Apr 1989 A
4819182 King et al. Apr 1989 A
4837568 Snaper et al. Jun 1989 A
4839838 LaBiche et al. Jun 1989 A
4843568 Kreuger et al. Jun 1989 A
4846568 Krueger Jul 1989 A
4849655 Bennett Jul 1989 A
4851685 Dubgen Jul 1989 A
4858390 Kenig Aug 1989 A
4858930 Sato Aug 1989 A
4862165 Gart Aug 1989 A
4882717 Hayakawa et al. Nov 1989 A
4891032 Davis Jan 1990 A
4904222 Gastgeb et al. Feb 1990 A
4910677 Remedio et al. Mar 1990 A
4914598 Krogmann Apr 1990 A
4918293 McGeorge Apr 1990 A
4924358 VonHeck May 1990 A
4932917 Klitsner Jun 1990 A
4957291 Miffitt Sep 1990 A
4960275 Magon Oct 1990 A
4961369 McGill Oct 1990 A
4964837 Collier Oct 1990 A
4967321 Cimock Oct 1990 A
4969647 Mical et al. Nov 1990 A
4980519 Mathews Dec 1990 A
4988981 Zimmerman et al. Jan 1991 A
4994795 MacKenzie Feb 1991 A
5011161 Galphin Apr 1991 A
5036442 Brown Jul 1991 A
RE33662 Blair et al. Aug 1991 E
5045843 Hansen Sep 1991 A
5048831 Sides Sep 1991 A
D320624 Taylor Oct 1991 S
5058480 Suzuki et al. Oct 1991 A
5059958 Jacobs et al. Oct 1991 A
5062696 Oshima Nov 1991 A
5068645 Drumm Nov 1991 A
D322242 Cordell Dec 1991 S
5076584 Openiano Dec 1991 A
D325225 Adhida Apr 1992 S
5114155 Tillery et al. May 1992 A
5114344 Fumagalli et al. May 1992 A
5124938 Algrain Jun 1992 A
5127657 Ikezawa et al. Jul 1992 A
5128671 Thomas, Jr. Jul 1992 A
D328463 King et al. Aug 1992 S
5136222 Yamamoto Aug 1992 A
5138154 Hotelling Aug 1992 A
5145446 Kuo Sep 1992 A
D331058 Morales Nov 1992 S
5166502 Rendleman Nov 1992 A
5170002 Suzuki et al. Dec 1992 A
5175481 Kanno Dec 1992 A
5177311 Suzuki et al. Jan 1993 A
5178477 Gambaro Jan 1993 A
5181181 Glynn Jan 1993 A
5184830 Okada et al. Feb 1993 A
5188368 Ryan Feb 1993 A
5190285 Levy et al. Mar 1993 A
5192082 Inoue et al. Mar 1993 A
5192823 Suzuki et al. Mar 1993 A
5194006 Zaenglein, Jr. Mar 1993 A
5194048 Briggs Mar 1993 A
5202844 Kamio Apr 1993 A
5207426 Inoue et al. May 1993 A
5212368 Hara May 1993 A
5213327 Kitaue May 1993 A
5223698 Kapur Jun 1993 A
5231568 Cohen et al. Jul 1993 A
D338242 Cordell Aug 1993 S
5232223 Dornbusch Aug 1993 A
5236200 McGregor et al. Aug 1993 A
5247651 Clarisse Sep 1993 A
D340042 Copper et al. Oct 1993 S
5259626 Ho Nov 1993 A
5262777 Low et al. Nov 1993 A
D342256 Payne et al. Dec 1993 S
5277645 Kelley et al. Jan 1994 A
5279513 Connelly Jan 1994 A
5280744 DeCarlo Jan 1994 A
D345164 Grae Mar 1994 S
5290964 Hiyoshi et al. Mar 1994 A
5292124 Carpenter Mar 1994 A
5292254 Miller et al. Mar 1994 A
5296871 Paley Mar 1994 A
5299967 Gilbert Apr 1994 A
5307325 Scheiber Apr 1994 A
5310192 Miyake May 1994 A
5317394 Hale May 1994 A
5319548 Germain Jun 1994 A
5320358 Jones Jun 1994 A
5320362 Bear et al. Jun 1994 A
5329276 Hirabayashi Jul 1994 A
5332322 Gambaro Jul 1994 A
5339095 Redford Aug 1994 A
D350736 Takahashi et al. Sep 1994 S
D350782 Barr Sep 1994 S
D351430 Barr Oct 1994 S
5354057 Pruitt et al. Oct 1994 A
5356343 Lovetere Oct 1994 A
5357267 Inoue Oct 1994 A
5359321 Ribic Oct 1994 A
5359348 Pilcher et al. Oct 1994 A
5363120 Drumm Nov 1994 A
5365214 Angott et al. Nov 1994 A
5366229 Suzuki Nov 1994 A
5369580 Monji Nov 1994 A
5369889 Callaghan Dec 1994 A
5372365 McTeigue et al. Dec 1994 A
5373857 Travers et al. Dec 1994 A
5378197 Briggs Jan 1995 A
5382026 Harvard et al. Jan 1995 A
5392613 Goto Feb 1995 A
5393074 Bear et al. Feb 1995 A
5396227 Carroll et al. Mar 1995 A
5396265 Ulrich et al. Mar 1995 A
5403238 Baxter et al. Apr 1995 A
5405294 Briggs Apr 1995 A
5411269 Thomas May 1995 A
5416535 Sato et al. May 1995 A
5421575 Triner Jun 1995 A
5421590 Robbins Jun 1995 A
5422956 Wheaton Jun 1995 A
5429361 Raven et al. Jul 1995 A
5430435 Hoch Jul 1995 A
5432864 Lu et al. Jul 1995 A
5435561 Conley Jul 1995 A
5435569 Zilliox Jul 1995 A
D360903 Barr et al. Aug 1995 S
5439199 Briggs et al. Aug 1995 A
5440326 Quinn Aug 1995 A
5443261 Lee et al. Aug 1995 A
5452893 Faulk et al. Sep 1995 A
5453053 Danta et al. Sep 1995 A
5453758 Sato Sep 1995 A
D362870 Oikawa Oct 1995 S
5459489 Redford Oct 1995 A
5469194 Clark et al. Nov 1995 A
5481957 Paley Jan 1996 A
5482510 Ishii et al. Jan 1996 A
5484355 King Jan 1996 A
5485171 Copper et al. Jan 1996 A
5488362 Ullman et al. Jan 1996 A
5490058 Yamasaki Feb 1996 A
5498002 Gechter Mar 1996 A
5502486 Ueda Mar 1996 A
5506605 Paley Apr 1996 A
5509806 Ellsworth Apr 1996 A
5512892 Corballis et al. Apr 1996 A
5516105 Eisenbrey et al. May 1996 A
5517183 Bozeman May 1996 A
5523800 Dudek Jun 1996 A
5524637 Erickson Jun 1996 A
5526022 Donahue et al. Jun 1996 A
5528265 Harrison Jun 1996 A
5531443 Cruz Jul 1996 A
5533933 Garnjost et al. Jul 1996 A
5541860 Takei et al. Jul 1996 A
5550721 Rapisarda Aug 1996 A
5551701 Bouton et al. Sep 1996 A
5554033 Bizzi et al. Sep 1996 A
5554980 Hashimoto et al. Sep 1996 A
5561543 Ogawa Oct 1996 A
5563628 Stroop Oct 1996 A
5569085 Igarashi et al. Oct 1996 A
D375326 Yokoi et al. Nov 1996 S
5573011 Felsing Nov 1996 A
5574479 Odell Nov 1996 A
5579025 Itoh Nov 1996 A
D376826 Ashida Dec 1996 S
5580319 Hamilton Dec 1996 A
5581484 Prince Dec 1996 A
5585584 Usa Dec 1996 A
5586767 Bohland Dec 1996 A
5587558 Matsushima Dec 1996 A
5587740 Brennan Dec 1996 A
5594465 Poulachon Jan 1997 A
5598187 Ide et al. Jan 1997 A
5602569 Kato Feb 1997 A
5603658 Cohen Feb 1997 A
5605505 Han Feb 1997 A
5606343 Tsuboyama Feb 1997 A
5611731 Bouton et al. Mar 1997 A
5613913 Ikematsu et al. Mar 1997 A
5615132 Horton Mar 1997 A
5621459 Ueda Apr 1997 A
5623581 Attenberg Apr 1997 A
5624117 Ohkubo et al. Apr 1997 A
5627565 Morishita et al. May 1997 A
5629981 Nerlikar May 1997 A
5632878 Kitano May 1997 A
D379832 Ashida Jun 1997 S
5636994 Tong Jun 1997 A
5640152 Copper Jun 1997 A
5641288 Zzenglein, Jr. Jun 1997 A
5642931 Gappelberg Jul 1997 A
5643087 Marcus et al. Jul 1997 A
5645077 Foxlin Jul 1997 A
5645277 Cheng Jul 1997 A
5647796 Cohen Jul 1997 A
5649867 Briggs Jul 1997 A
5651049 Easterling et al. Jul 1997 A
5655053 Renie Aug 1997 A
5662332 Garfield Sep 1997 A
5662525 Briggs Sep 1997 A
5666138 Culver Sep 1997 A
5667217 Kelly et al. Sep 1997 A
5667220 Cheng Sep 1997 A
5670845 Grant Sep 1997 A
5670988 Tickle Sep 1997 A
5672090 Liu Sep 1997 A
5674128 Holch et al. Oct 1997 A
5676450 Sink et al. Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679004 McGowan et al. Oct 1997 A
5682181 Nguyen et al. Oct 1997 A
5685776 Stambolic et al. Nov 1997 A
5685778 Sheldon et al. Nov 1997 A
5694340 Kim Dec 1997 A
5698784 Hotelling et al. Dec 1997 A
5701131 Kuga Dec 1997 A
5702232 Moore Dec 1997 A
5702305 Norman et al. Dec 1997 A
5702323 Poulton Dec 1997 A
5703623 Hall et al. Dec 1997 A
5716216 O'Loughlin et al. Feb 1998 A
5716281 Dote Feb 1998 A
5724106 Autry et al. Mar 1998 A
5724497 San et al. Mar 1998 A
5726675 Inoue Mar 1998 A
5733131 Park Mar 1998 A
5734371 Kaplan Mar 1998 A
5734373 Rosenberg Mar 1998 A
5734807 Sumi Mar 1998 A
D393884 Hayami Apr 1998 S
5736970 Bozeman Apr 1998 A
5739811 Rosenberg et al. Apr 1998 A
5741182 Lipps et al. Apr 1998 A
5741189 Briggs Apr 1998 A
5742233 Hoffman et al. Apr 1998 A
5742331 Uomori Apr 1998 A
5745226 Gigioli Apr 1998 A
D394264 Sakamoto et al. May 1998 S
5746602 Kikinis May 1998 A
5751273 Cohen May 1998 A
5752880 Gabai et al. May 1998 A
5752882 Acres et al. May 1998 A
5757305 Xydis May 1998 A
5757354 Kawamura May 1998 A
5757360 Nitta et al. May 1998 A
D395464 Shiibashi et al. Jun 1998 S
5764224 Lilja et al. Jun 1998 A
5766077 Hongo Jun 1998 A
5769719 Hsu Jun 1998 A
5770533 Franchi Jun 1998 A
5771038 Wang Jun 1998 A
5772508 Sugita et al. Jun 1998 A
D396468 Schindler et al. Jul 1998 S
5775998 Ikematsu et al. Jul 1998 A
5779240 Santella Jul 1998 A
5785317 Sasaki Jul 1998 A
5785592 Jacobsen Jul 1998 A
5785952 Taylor et al. Jul 1998 A
5786626 Brady et al. Jul 1998 A
D397162 Yokoi et al. Aug 1998 S
5791648 Hohl Aug 1998 A
5794081 Itoh Aug 1998 A
5796354 Cartabiano et al. Aug 1998 A
5803740 Gesink et al. Sep 1998 A
5803840 Young Sep 1998 A
5806849 Rutkowski Sep 1998 A
5807284 Foxlin Sep 1998 A
5810666 Mero et al. Sep 1998 A
5811896 Grad Sep 1998 A
5819206 Horton et al. Oct 1998 A
5820462 Yokoi et al. Oct 1998 A
5820471 Briggs Oct 1998 A
5820472 Briggs Oct 1998 A
5822713 Profeta Oct 1998 A
5825298 Walter Oct 1998 A
5825350 Case, Jr. et al. Oct 1998 A
D400885 Goto Nov 1998 S
5830065 Sitrick Nov 1998 A
5831553 Lenssen et al. Nov 1998 A
5833549 Zur et al. Nov 1998 A
5835077 Dao et al. Nov 1998 A
5835156 Blonstein et al. Nov 1998 A
5835576 Katz Nov 1998 A
5836817 Acres et al. Nov 1998 A
5838138 Henty Nov 1998 A
5841409 Ishibashi et al. Nov 1998 A
D402328 Ashida Dec 1998 S
5847854 Benson, Jr. Dec 1998 A
5850624 Gard Dec 1998 A
5851149 Xidos et al. Dec 1998 A
5853327 Gilboa Dec 1998 A
5853332 Briggs Dec 1998 A
5854622 Brannon Dec 1998 A
5855483 Collins et al. Jan 1999 A
D405071 Gambaro Feb 1999 S
5865680 Briggs Feb 1999 A
5867146 Kim et al. Feb 1999 A
5874941 Yamada Feb 1999 A
5875257 Marrin et al. Feb 1999 A
D407071 Keating Mar 1999 S
D407761 Barr Apr 1999 S
5893562 Spector Apr 1999 A
5897437 Nishiumi Apr 1999 A
5898421 Quinn Apr 1999 A
5900867 Schindler et al. May 1999 A
5901246 Hoffberg et al. May 1999 A
5902968 Sato et al. May 1999 A
5906542 Neumann May 1999 A
D410909 Tickle Jun 1999 S
5908996 Litterst et al. Jun 1999 A
5911634 Nidata et al. Jun 1999 A
5912612 DeVolpi Jun 1999 A
5913019 Attenberg Jun 1999 A
5913727 Ahdoot Jun 1999 A
5919149 Allen Jul 1999 A
5923317 Sayler et al. Jul 1999 A
5924695 Heykoop Jul 1999 A
5926780 Fox et al. Jul 1999 A
5929782 Stark et al. Jul 1999 A
5929841 Fujii Jul 1999 A
5929848 Albukerk et al. Jul 1999 A
D412940 Kato et al. Aug 1999 S
5931739 Layer et al. Aug 1999 A
5942969 Wicks Aug 1999 A
5944533 Wood Aug 1999 A
5946444 Evans et al. Aug 1999 A
5947789 Chan Sep 1999 A
5947868 Dugan Sep 1999 A
5955713 Titus Sep 1999 A
5955988 Blonstein Sep 1999 A
5956035 Sciammarella Sep 1999 A
5957779 Larson Sep 1999 A
5961386 Sawaguchi Oct 1999 A
5963136 O'Brien Oct 1999 A
5964660 James et al. Oct 1999 A
5967898 Takasaka et al. Oct 1999 A
5967901 Briggs Oct 1999 A
5971270 Barna Oct 1999 A
5971271 Wynn et al. Oct 1999 A
5973757 Aubuchon et al. Oct 1999 A
5977951 Danieli et al. Nov 1999 A
5980254 Muehle et al. Nov 1999 A
5982352 Pryor Nov 1999 A
5982356 Akiyama Nov 1999 A
5984785 Takeda et al. Nov 1999 A
5984788 Lebensfeld et al. Nov 1999 A
5986570 Black et al. Nov 1999 A
5986644 Herder Nov 1999 A
5987421 Chuang Nov 1999 A
5989120 Truchsess Nov 1999 A
5991085 Rallison et al. Nov 1999 A
5991693 Zalewski Nov 1999 A
5996033 Chiu-Hao Nov 1999 A
5999168 Rosenberg Dec 1999 A
6001014 Ogata Dec 1999 A
6001015 Nishiumi et al. Dec 1999 A
6002394 Schein Dec 1999 A
6009458 Hawkins et al. Dec 1999 A
D419199 Cordell et al. Jan 2000 S
D419200 Ashida Jan 2000 S
6010406 Kajikawa et al. Jan 2000 A
6011526 Toyoshima et al. Jan 2000 A
6012980 Yoshida et al. Jan 2000 A
6012984 Roseman Jan 2000 A
6013007 Root et al. Jan 2000 A
6016144 Blonstein Jan 2000 A
6019680 Cheng Feb 2000 A
6020876 Rosenberg Feb 2000 A
6024647 Bennett et al. Feb 2000 A
6024675 Kashiwaguchi Feb 2000 A
6025830 Cohen Feb 2000 A
6037882 Levy Mar 2000 A
6044297 Sheldon Mar 2000 A
6049823 Hwang Apr 2000 A
6052083 Wilson Apr 2000 A
6057788 Cummings May 2000 A
6058342 Orbach May 2000 A
6059576 Brann May 2000 A
6060847 Hettema et al. May 2000 A
6066075 Poulton May 2000 A
6069594 Barnes et al. May 2000 A
6072467 Walker Jun 2000 A
6072470 Ishigaki Jun 2000 A
6075443 Schepps et al. Jun 2000 A
6075575 Schein et al. Jun 2000 A
6076734 Dougherty et al. Jun 2000 A
6077106 Mish Jun 2000 A
6078789 Bodenmann Jun 2000 A
6079982 Meader Jun 2000 A
6080063 Khosla Jun 2000 A
6081819 Ogino Jun 2000 A
6084315 Schmitt Jul 2000 A
6084577 Sato et al. Jul 2000 A
6085805 Bates Jul 2000 A
6087950 Capan Jul 2000 A
6089987 Briggs Jul 2000 A
6091342 Janesch et al. Jul 2000 A
D429718 Rudolph Aug 2000 S
6095926 Hettema et al. Aug 2000 A
6102406 Miles et al. Aug 2000 A
6110000 Ting Aug 2000 A
6110039 Oh Aug 2000 A
6110041 Walker et al. Aug 2000 A
6115028 Balakrishnan Sep 2000 A
6127928 Issacman et al. Oct 2000 A
6127990 Zwern Oct 2000 A
6129549 Thompson Oct 2000 A
6132318 Briggs Oct 2000 A
6137457 Tokuhashi Oct 2000 A
D433381 Talesfore Nov 2000 S
6142870 Wada Nov 2000 A
6142876 Cumbers Nov 2000 A
6144367 Berstis Nov 2000 A
6146278 Kobayashi Nov 2000 A
6148100 Anderson et al. Nov 2000 A
6149490 Hampton Nov 2000 A
6150947 Shima Nov 2000 A
6154723 Cox et al. Nov 2000 A
6155926 Miyamoto et al. Dec 2000 A
6160405 Needle Dec 2000 A
6160540 Fishkin et al. Dec 2000 A
6160986 Gabai et al. Dec 2000 A
6162122 Acres et al. Dec 2000 A
6162123 Woolston Dec 2000 A
6162191 Foxin Dec 2000 A
6164808 Shibata Dec 2000 A
6171190 Thanasack et al. Jan 2001 B1
6174242 Briggs et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6181253 Eschenbach et al. Jan 2001 B1
6181329 Stork et al. Jan 2001 B1
6183364 Trovato Feb 2001 B1
6183365 Tonomura et al. Feb 2001 B1
6184847 Fateh et al. Feb 2001 B1
6184862 Leiper Feb 2001 B1
6184863 Sibert Feb 2001 B1
6186902 Briggs Feb 2001 B1
6190174 Lam Feb 2001 B1
6191774 Schena Feb 2001 B1
6196893 Casola et al. Mar 2001 B1
6198295 Hill Mar 2001 B1
6198470 Agam et al. Mar 2001 B1
6198471 Cook Mar 2001 B1
6200216 Peppel Mar 2001 B1
6200219 Rudell et al. Mar 2001 B1
6200253 Nishiumi Mar 2001 B1
6201554 Lands Mar 2001 B1
6206745 Gabai et al. Mar 2001 B1
6206782 Walker et al. Mar 2001 B1
6210287 Briggs Apr 2001 B1
6211861 Rosenberg et al. Apr 2001 B1
6214155 Leighton Apr 2001 B1
6217450 Meredith Apr 2001 B1
6217478 Vohmann Apr 2001 B1
6220171 Hettema et al. Apr 2001 B1
6220964 Miyamoto Apr 2001 B1
6220965 Hanna et al. Apr 2001 B1
6222522 Mathews Apr 2001 B1
D442998 Ashida May 2001 S
6224486 Walker et al. May 2001 B1
6224491 Hiromi et al. May 2001 B1
6225987 Matsuda May 2001 B1
6226534 Aizawa May 2001 B1
6227966 Yokoi May 2001 B1
6227974 Eilat et al. May 2001 B1
6231451 Briggs May 2001 B1
6234803 Watkins May 2001 B1
6238289 Sobota et al. May 2001 B1
6238291 Fujimoto et al. May 2001 B1
6239806 Nishiumi et al. May 2001 B1
RE37220 Rapisarda et al. Jun 2001 E
6241611 Takeda et al. Jun 2001 B1
6243491 Andersson Jun 2001 B1
6243658 Raby Jun 2001 B1
6244987 Ohsuga et al. Jun 2001 B1
6245014 Brainard et al. Jun 2001 B1
6248019 Mudie et al. Jun 2001 B1
6254101 Young Jul 2001 B1
6254394 Draper et al. Jul 2001 B1
6261180 Lebensfeld et al. Jul 2001 B1
6264202 Briggs Jul 2001 B1
6264558 Nishiumi et al. Jul 2001 B1
6265984 Molinaroli Jul 2001 B1
6267673 Miyamoto et al. Jul 2001 B1
6273425 Westfall et al. Aug 2001 B1
6273819 Strauss et al. Aug 2001 B1
6276353 Briggs et al. Aug 2001 B1
6280327 Leifer et al. Aug 2001 B1
6280328 Holch et al. Aug 2001 B1
6283862 Richter Sep 2001 B1
6283871 Briggs Sep 2001 B1
6287200 Sharma Sep 2001 B1
6290565 Galyean, III et al. Sep 2001 B1
6290566 Gabai et al. Sep 2001 B1
6293684 Riblett Sep 2001 B1
6297751 Fadavi-Ardekani Oct 2001 B1
6301534 McDermott Oct 2001 B1
6302793 Fertitta, III et al. Oct 2001 B1
6302796 Lebensfeld et al. Oct 2001 B1
6304250 Yang Oct 2001 B1
6311982 Lebensfeld et al. Nov 2001 B1
6312335 Tosaki et al. Nov 2001 B1
6315673 Kopera Nov 2001 B1
6320495 Sporgis Nov 2001 B1
6322365 Shechter et al. Nov 2001 B1
6323614 Palaxxolo Nov 2001 B1
6323654 Needle Nov 2001 B1
6325718 Nishiumi et al. Dec 2001 B1
6328648 Walker et al. Dec 2001 B1
6328650 Fukawa et al. Dec 2001 B1
6329648 Delatorre Dec 2001 B1
6330427 Tabachnik Dec 2001 B1
6331841 Tokuhashi Dec 2001 B1
6331856 VanHook Dec 2001 B1
6332840 Nishiumi et al. Dec 2001 B1
6337954 Soshi Jan 2002 B1
6342010 Slifer Jan 2002 B1
6346047 Sobota Feb 2002 B1
6347993 Kondo et al. Feb 2002 B1
6347998 Yoshitomi et al. Feb 2002 B1
6350199 Williams et al. Feb 2002 B1
6352478 Gabai et al. Mar 2002 B1
6356867 Gabai et al. Mar 2002 B1
6361396 Snyder Mar 2002 B1
6361507 Foxlin Mar 2002 B1
D456410 Ashida Apr 2002 S
6364735 Bristow et al. Apr 2002 B1
6368177 Gabai et al. Apr 2002 B1
6368217 Kanno Apr 2002 B2
6369794 Sakurai et al. Apr 2002 B1
6369908 Frey et al. Apr 2002 B1
6371375 Ackley et al. Apr 2002 B1
6371853 Borta Apr 2002 B1
6375566 Yamada Apr 2002 B1
6375569 Acres Apr 2002 B1
6375572 Masuyama et al. Apr 2002 B1
6375578 Briggs Apr 2002 B1
6377793 Jenkins Apr 2002 B1
6377906 Rowe Apr 2002 B1
D456854 Ashida May 2002 S
6383079 Takeda et al. May 2002 B1
6386538 Mejia May 2002 B1
6392613 Goto May 2002 B1
6394904 Stalker May 2002 B1
6400480 Thomas Jun 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6404409 Solomon Jun 2002 B1
6409379 Gabathuler et al. Jun 2002 B1
6409604 Matsuno Jun 2002 B1
6409687 Foxlin Jun 2002 B1
D459727 Ashida Jul 2002 S
D460787 Nishikawa Jul 2002 S
6414589 Angott et al. Jul 2002 B1
6415223 Lin Jul 2002 B1
6421056 Nishiumi Jul 2002 B1
6424264 Giraldin et al. Jul 2002 B1
6424333 Tremblay Jul 2002 B1
6426719 Nagareda Jul 2002 B1
6426741 Goldsmith et al. Jul 2002 B1
6438193 Ko et al. Aug 2002 B1
D462683 Ashida Sep 2002 S
6445960 Borta Sep 2002 B1
6452494 Harrison Sep 2002 B1
6456276 Park Sep 2002 B1
D464052 Fletcher Oct 2002 S
D464950 Fraquelli et al. Oct 2002 S
6462769 Trowbridge et al. Oct 2002 B1
6463257 Wood Oct 2002 B1
6463859 Ikezawa et al. Oct 2002 B1
6466198 Feinstein Oct 2002 B1
6466831 Shibata Oct 2002 B1
6473070 Mishra et al. Oct 2002 B2
6473713 McCall Oct 2002 B1
6474159 Foxlin et al. Nov 2002 B1
6482067 Pickens Nov 2002 B1
6484080 Breed Nov 2002 B2
6490409 Walker Dec 2002 B1
6491566 Peters et al. Dec 2002 B2
6492981 Stork et al. Dec 2002 B1
6494457 Conte et al. Dec 2002 B2
6496122 Sampsell Dec 2002 B2
6509217 Reddy Jan 2003 B1
6512511 Willner Jan 2003 B2
6517438 Tosaki Feb 2003 B2
6518952 Leiper Feb 2003 B1
6525660 Surintrspanont Feb 2003 B1
6526158 Goldberg Feb 2003 B1
6527638 Walker et al. Mar 2003 B1
6527646 Briggs Mar 2003 B1
6530838 Ha et al. Mar 2003 B2
6530841 Bull et al. Mar 2003 B2
6538675 Aratani Mar 2003 B2
D473942 Motoki et al. Apr 2003 S
6540607 Mokris et al. Apr 2003 B2
6540611 Nagata Apr 2003 B1
6544124 Ireland Apr 2003 B2
6544126 Sawano Apr 2003 B2
6545611 Hayashi et al. Apr 2003 B2
6545661 Goschy et al. Apr 2003 B1
6551165 Smirnov Apr 2003 B2
6551188 Toyama et al. Apr 2003 B2
6554707 Sinclair et al. Apr 2003 B1
6554781 Carter et al. Apr 2003 B1
D474763 Tozaki et al. May 2003 S
6558225 Rehkemper et al. May 2003 B1
6560511 Yokoo et al. May 2003 B1
6561049 Akiyama et al. May 2003 B2
6565438 Ogino May 2003 B2
6565444 Nagata et al. May 2003 B2
6567536 McNitt et al. May 2003 B2
6569023 Briggs May 2003 B1
6572108 Bristow Jun 2003 B1
6575753 Rosa et al. Jun 2003 B2
6577350 Proehl Jun 2003 B1
6579098 Shechter Jun 2003 B2
6582299 Matsuyama et al. Jun 2003 B1
6582380 Kazlausky et al. Jun 2003 B2
6583783 Dietrich Jun 2003 B1
6585596 Liefer et al. Jul 2003 B1
6589120 Takahashi Jul 2003 B1
6590536 Walton Jul 2003 B1
6591677 Rothoff Jul 2003 B2
6592461 Raviv et al. Jul 2003 B1
6595863 Chamberlain et al. Jul 2003 B2
6597342 Haruta Jul 2003 B1
6597443 Boman Jul 2003 B2
6598978 Hasegawa Jul 2003 B2
6599194 Smith Jul 2003 B1
6605038 Teller et al. Aug 2003 B1
6607123 Jollifee et al. Aug 2003 B1
6608563 Weston et al. Aug 2003 B2
6609969 Luciano et al. Aug 2003 B1
6609977 Shimizu Aug 2003 B1
6616452 Clark et al. Sep 2003 B2
6616535 Nishizak Sep 2003 B1
6616607 Hashimoto Sep 2003 B2
6626728 Holt Sep 2003 B2
6628257 Oka Sep 2003 B1
6629019 Legge et al. Sep 2003 B2
6632142 Keith Oct 2003 B2
6633155 Liang Oct 2003 B1
6634949 Briggs et al. Oct 2003 B1
6636826 Abe et al. Oct 2003 B1
6641482 Masuyama et al. Nov 2003 B2
6642837 Vigoda et al. Nov 2003 B1
6650029 Johnston Nov 2003 B1
6650313 Levine Nov 2003 B2
6650345 Saito Nov 2003 B1
6651268 Briggs Nov 2003 B1
6654001 Su Nov 2003 B1
6672962 Ozaki et al. Jan 2004 B1
6676520 Nishiumi et al. Jan 2004 B2
6676524 Botzas Jan 2004 B1
6677990 Kawahara Jan 2004 B1
6681629 Foxlin et al. Jan 2004 B2
6682074 Weston Jan 2004 B2
6682351 Abraham-Fuchs et al. Jan 2004 B1
6684062 Gosior et al. Jan 2004 B1
D486145 Kaminski et al. Feb 2004 S
6686954 Kitaguchi Feb 2004 B1
6692170 Abir Feb 2004 B2
6693622 Shahoian et al. Feb 2004 B1
6702672 Angell et al. Mar 2004 B1
6709336 Siegel et al. Mar 2004 B2
6712692 Basson Mar 2004 B2
6716102 Whitten et al. Apr 2004 B2
6717573 Shahoian et al. Apr 2004 B1
6717673 Janssen Apr 2004 B1
6718280 Hermann Apr 2004 B2
6725107 MacPherson Apr 2004 B2
6725173 An Apr 2004 B2
6726099 Becker et al. Apr 2004 B2
D489361 Mori et al. May 2004 S
6729934 Driscoll et al. May 2004 B1
6733390 Walker et al. May 2004 B2
6736009 Schwabe May 2004 B1
6739874 Marcus et al. May 2004 B2
6739979 Tracy May 2004 B2
D491924 Kaminski et al. Jun 2004 S
D492285 Ombao et al. Jun 2004 S
6743104 Ota et al. Jun 2004 B1
6746334 Barney Jun 2004 B1
6747562 Giraldin et al. Jun 2004 B2
6747632 Howard Jun 2004 B2
6747690 Molgaard Jun 2004 B2
6749432 French et al. Jun 2004 B2
6752719 Himoto et al. Jun 2004 B2
6753849 Curran et al. Jun 2004 B1
6753888 Kamiwada Jun 2004 B2
6757068 Foxlin Jun 2004 B2
6757446 Li Jun 2004 B1
6761637 Weston et al. Jul 2004 B2
6765553 Odamura Jul 2004 B1
D495336 Andre et al. Aug 2004 S
6770863 Walley Aug 2004 B2
6773325 Mawle et al. Aug 2004 B1
6773344 Gabai et al. Aug 2004 B1
6785539 Hale Aug 2004 B2
6786877 Foxlin Sep 2004 B2
6796177 Mori Sep 2004 B2
6796908 Weston Sep 2004 B2
6797895 Lapstun Sep 2004 B2
6811489 Shimizu Nov 2004 B1
6811491 Levenberg et al. Nov 2004 B1
6812583 Cheung et al. Nov 2004 B2
6812881 Mullaly et al. Nov 2004 B1
6813525 Reid Nov 2004 B2
6813574 Yedur Nov 2004 B1
6813584 Zhou et al. Nov 2004 B2
6816151 Dellinger Nov 2004 B2
6821204 Aonuma et al. Nov 2004 B2
6821206 Ishida et al. Nov 2004 B1
6835135 Silverbrook et al. Dec 2004 B1
6836705 Hellman Dec 2004 B2
6836751 Paxton Dec 2004 B2
6836971 Wang Jan 2005 B1
6842991 Levi Jan 2005 B2
6846238 Wells Jan 2005 B2
6850221 Tickle Feb 2005 B1
6850844 Walters Feb 2005 B1
6852032 Ishino Feb 2005 B2
6856327 Choi Feb 2005 B2
D502468 Knight et al. Mar 2005 S
6868738 Moscrip Mar 2005 B2
6872139 Sato et al. Mar 2005 B2
6873406 Hines Mar 2005 B1
D503750 Kit et al. Apr 2005 S
6878066 Leifer Apr 2005 B2
6882824 Wood Apr 2005 B2
D504677 Kaminski et al. May 2005 S
D505424 Ashida et al. May 2005 S
6890262 Oishi May 2005 B2
6891469 Engellenner et al. May 2005 B2
6891526 Gombert May 2005 B2
6894686 Stamper et al. May 2005 B2
6897845 Ozawa May 2005 B2
6897854 Cho May 2005 B2
6902483 Lin Jun 2005 B2
6903725 Nacson Jun 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6906700 Armstrong Jun 2005 B1
6908386 Suzuki et al. Jun 2005 B2
6908388 Shimizu Jun 2005 B2
6918833 Emmerson et al. Jul 2005 B2
6921332 Fukunaga Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6924787 Kramer et al. Aug 2005 B2
6925410 Narayanan Aug 2005 B2
6929543 Ueshima et al. Aug 2005 B1
6929548 Wang Aug 2005 B2
6932698 Sprogis Aug 2005 B2
6932706 Kaminkow Aug 2005 B1
6933861 Wang Aug 2005 B2
6933923 Feinstein Aug 2005 B2
6935864 Shechter et al. Aug 2005 B2
6935952 Walker et al. Aug 2005 B2
6939232 Tanaka et al. Sep 2005 B2
6948999 Chan Sep 2005 B2
6954980 Song Oct 2005 B2
6955606 Taho et al. Oct 2005 B2
6956564 Williams Oct 2005 B1
6965374 Villet et al. Nov 2005 B2
6966775 Kendir et al. Nov 2005 B1
6967563 Bormaster Nov 2005 B2
6967566 Weston et al. Nov 2005 B2
6982697 Wilson et al. Jan 2006 B2
6983219 Mantyjarvi Jan 2006 B2
6984208 Zheng Jan 2006 B2
6990639 Wilson Jan 2006 B2
6993451 Chang et al. Jan 2006 B2
6995748 Gordon et al. Feb 2006 B2
6998966 Pedersen Feb 2006 B2
7000469 Foxlin et al. Feb 2006 B2
7002591 Leather Feb 2006 B1
7004847 Henry Feb 2006 B2
7005985 Steeves Feb 2006 B1
7029400 Briggs Apr 2006 B2
7031875 Ellenby et al. Apr 2006 B2
7038661 Wilson et al. May 2006 B2
7040986 Koshima May 2006 B2
7040993 Lovitt May 2006 B1
7040998 Jolliffe et al. May 2006 B2
7052391 Luciano, Jr. May 2006 B1
7055101 Abbott et al. May 2006 B2
7056221 Thirkettle et al. Jun 2006 B2
7059974 Golliffe et al. Jun 2006 B1
7066781 Weston Jun 2006 B2
D524298 Hedderich et al. Jul 2006 S
7081033 Mawle Jul 2006 B1
7081051 Himoto et al. Jul 2006 B2
7086645 Hardie Aug 2006 B2
7090582 Danieli et al. Aug 2006 B2
7094147 Nakata Aug 2006 B2
7098891 Pryor Aug 2006 B1
7098894 Yang Aug 2006 B2
7102615 Marks Sep 2006 B2
7102616 Sleator Sep 2006 B1
7107168 Oystol Sep 2006 B2
D531228 Ashida et al. Oct 2006 S
7115032 Cantu et al. Oct 2006 B2
7117009 Wong et al. Oct 2006 B2
7118482 Ishihara et al. Oct 2006 B2
7126584 Nishiumi et al. Oct 2006 B1
7127370 Kelly Oct 2006 B2
D531585 Weitgasser et al. Nov 2006 S
7133026 Horie et al. Nov 2006 B2
7136674 Yoshie et al. Nov 2006 B2
7136826 Alsafadi Nov 2006 B2
7137899 Hiei Nov 2006 B2
7139983 Kelts Nov 2006 B2
7140962 Okuda et al. Nov 2006 B2
7142191 Idesawa et al. Nov 2006 B2
7145551 Bathiche Dec 2006 B1
7149627 Ockerse Dec 2006 B2
7154475 Crew Dec 2006 B2
7155604 Kawai Dec 2006 B2
7158116 Poltorak Jan 2007 B2
7158118 Liberty Jan 2007 B2
7160196 Thirkettle et al. Jan 2007 B2
7168089 Nguyen et al. Jan 2007 B2
7173604 Marvit Feb 2007 B2
7176919 Drebin Feb 2007 B2
7180414 Nyfelt Feb 2007 B2
7180503 Burr Feb 2007 B2
7182691 Schena Feb 2007 B1
7183480 Nishitani et al. Feb 2007 B2
7184059 Fouladi Feb 2007 B1
D543246 Ashida et al. May 2007 S
7220220 Stubbs et al. May 2007 B2
7223173 Masuyama et al. May 2007 B2
7225101 Usuda et al. May 2007 B2
7231063 Naimark Jun 2007 B2
7233316 Smith et al. Jun 2007 B2
7236156 Liberty et al. Jun 2007 B2
7239301 Liberty et al. Jul 2007 B2
7252572 Wright et al. Aug 2007 B2
7253800 Goldberg et al. Aug 2007 B2
7261690 Teller et al. Aug 2007 B2
7262760 Liberty Aug 2007 B2
RE39818 Slifer Sep 2007 E
7288028 Rodriguez et al. Oct 2007 B2
D556201 Ashida et al. Nov 2007 S
7291014 Chung et al. Nov 2007 B2
7292151 Ferguson et al. Nov 2007 B2
7297059 Vancura et al. Nov 2007 B2
7301527 Marvit Nov 2007 B2
7301648 Foxlin Nov 2007 B2
D556760 Ashida et al. Dec 2007 S
7307617 Wilson et al. Dec 2007 B2
D559847 Ashida et al. Jan 2008 S
D561178 Azuma Feb 2008 S
7331857 MacIver Feb 2008 B2
7335134 LaVelle Feb 2008 B1
D563948 d'Hoore Mar 2008 S
7337965 Thirkettle et al. Mar 2008 B2
7339105 Eitaki Mar 2008 B2
7345670 Armstrong Mar 2008 B2
D567243 Ashida et al. Apr 2008 S
7359121 French et al. Apr 2008 B2
7359451 McKnight Apr 2008 B2
7361073 Martin Apr 2008 B2
RE40324 Crawford May 2008 E
7371177 Ellis et al. May 2008 B2
7379566 Hildreth May 2008 B2
7387559 Sanchez-Castro et al. Jun 2008 B2
7394459 Bathiche et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7398151 Burrell et al. Jul 2008 B1
7408453 Breed Aug 2008 B2
7414611 Liberty Aug 2008 B2
7419428 Rowe Sep 2008 B2
7424388 Sato Sep 2008 B2
7428499 Philyaw Sep 2008 B1
7435179 Ford Oct 2008 B1
7441151 Whitten et al. Oct 2008 B2
7442108 Ganz Oct 2008 B2
7445550 Barney et al. Nov 2008 B2
7465212 Ganz Dec 2008 B2
7488231 Weston Feb 2009 B2
7488254 Himoto Feb 2009 B2
7489299 Liberty et al. Feb 2009 B2
7492268 Ferguson et al. Feb 2009 B2
7492367 Mahajan et al. Feb 2009 B2
7500917 Barney et al. Mar 2009 B2
7502759 Hannigan et al. Mar 2009 B2
7519537 Rosenberg Apr 2009 B2
7524246 Briggs et al. Apr 2009 B2
7535456 Liberty et al. May 2009 B2
7536156 Tischer May 2009 B2
7556563 Ellis et al. Jul 2009 B2
7564426 Poor Jul 2009 B2
7568289 Burlingham et al. Aug 2009 B2
7572191 Weston et al. Aug 2009 B2
7582016 Suzuki Sep 2009 B2
7596466 Ohta Sep 2009 B2
7614958 Weston et al. Nov 2009 B2
7623115 Marks Nov 2009 B2
7627139 Marks Dec 2009 B2
7627451 Vock et al. Dec 2009 B2
7645178 Trotto et al. Jan 2010 B1
7662015 Hui Feb 2010 B2
7663509 Shen Feb 2010 B2
7674184 Briggs et al. Mar 2010 B2
7704135 Harrison Apr 2010 B2
7704146 Ellis Apr 2010 B2
7727090 Gant Jun 2010 B2
7749089 Briggs et al. Jul 2010 B1
7774155 Sato et al. Aug 2010 B2
7775882 Kawamura et al. Aug 2010 B2
7775884 McCauley Aug 2010 B1
7789741 Fields Sep 2010 B1
7796116 Salsman et al. Sep 2010 B2
7828295 Matsumoto et al. Nov 2010 B2
7850527 Barney et al. Dec 2010 B2
7878905 Weston et al. Feb 2011 B2
7883420 Bradbury Feb 2011 B2
7896742 Weston et al. Mar 2011 B2
7927216 Ikeda Apr 2011 B2
7942745 Ikeda May 2011 B2
7989971 Lemieux Aug 2011 B2
8021239 Weston et al. Sep 2011 B2
8025573 Stenton et al. Sep 2011 B2
8033901 Wood Oct 2011 B2
8089458 Barney et al. Jan 2012 B2
8164567 Barney et al. Apr 2012 B1
8169406 Barney et al. May 2012 B2
8184097 Barney et al. May 2012 B1
8206223 Marans et al. Jun 2012 B2
8226493 Briggs et al. Jul 2012 B2
8248367 Barney et al. Aug 2012 B1
8287372 Hong et al. Oct 2012 B2
8287373 Marks et al. Oct 2012 B2
8330284 Weston et al. Dec 2012 B2
8342929 Briggs et al. Jan 2013 B2
8368648 Barney et al. Feb 2013 B2
8373659 Barney et al. Feb 2013 B2
8384668 Barney et al. Feb 2013 B2
8439757 Hornsby et al. May 2013 B2
8469766 Zheng Jun 2013 B2
8475275 Weston et al. Jul 2013 B2
8491389 Weston et al. Jul 2013 B2
8531050 Barney et al. Sep 2013 B2
8535153 Bradbury et al. Sep 2013 B2
8545335 Fiegener et al. Oct 2013 B2
8550916 Raynal Oct 2013 B2
8602857 Morichau-Beauchant et al. Dec 2013 B2
8608535 Weston et al. Dec 2013 B2
8686579 Barney et al. Apr 2014 B2
8702515 Weston et al. Apr 2014 B2
8708821 Barney et al. Apr 2014 B2
8711094 Barney et al. Apr 2014 B2
8753165 Weston Jun 2014 B2
8758136 Briggs et al. Jun 2014 B2
8790180 Barney et al. Jul 2014 B2
8795079 Penzias, III Aug 2014 B2
8814688 Barney et al. Aug 2014 B2
8827810 Weston et al. Sep 2014 B2
8834271 Ikeda Sep 2014 B2
8870655 Ikeda Oct 2014 B2
8888576 Briggs et al. Nov 2014 B2
8894462 Leyland et al. Nov 2014 B2
8913011 Barney et al. Dec 2014 B2
8915785 Barney et al. Dec 2014 B2
8961260 Weston Feb 2015 B2
8961312 Barney et al. Feb 2015 B2
9039533 Barney et al. May 2015 B2
9138650 Barney et al. Sep 2015 B2
9149717 Barney et al. Oct 2015 B2
9162148 Barney et al. Oct 2015 B2
9162149 Weston et al. Oct 2015 B2
9180378 Reiche Nov 2015 B2
9186585 Briggs et al. Nov 2015 B2
9272206 Weston et al. Mar 2016 B2
9320976 Weston Apr 2016 B2
20010010514 Ishino Aug 2001 A1
20010015123 Nishitani et al. Aug 2001 A1
20010018361 Acres Aug 2001 A1
20010021950 Hawley Sep 2001 A1
20010024973 Meredith Sep 2001 A1
20010031652 Gabai et al. Oct 2001 A1
20010031662 Larian Oct 2001 A1
20010034257 Weston et al. Oct 2001 A1
20010039206 Peppel Nov 2001 A1
20010040591 Abbott et al. Nov 2001 A1
20010049302 Hagiwara et al. Dec 2001 A1
20010054082 Rudolph et al. Dec 2001 A1
20020005787 Gabai et al. Jan 2002 A1
20020024500 Howard Feb 2002 A1
20020024675 Foxlin Feb 2002 A1
20020028071 Molgaard Mar 2002 A1
20020028710 Ishihara et al. Mar 2002 A1
20020032067 Barney Mar 2002 A1
20020036617 Pryor Mar 2002 A1
20020038267 Can et al. Mar 2002 A1
20020052238 Muroi May 2002 A1
20020058459 Holt May 2002 A1
20020068500 Gabai et al. Jun 2002 A1
20020072418 Masuyama Jun 2002 A1
20020075335 Relimoto Jun 2002 A1
20020077180 Swanberg et al. Jun 2002 A1
20020077182 Swanberg et al. Jun 2002 A1
20020090985 Tochner et al. Jul 2002 A1
20020090992 Legge et al. Jul 2002 A1
20020098887 Himoto et al. Jul 2002 A1
20020103026 Himoto et al. Aug 2002 A1
20020107069 Ishino Aug 2002 A1
20020107591 Gabai et al. Aug 2002 A1
20020116615 Nguyen et al. Aug 2002 A1
20020118147 Solomon Aug 2002 A1
20020123377 Shulman Sep 2002 A1
20020126026 Lee et al. Sep 2002 A1
20020128056 Kato Sep 2002 A1
20020137427 Peters Sep 2002 A1
20020137567 Cheng Sep 2002 A1
20020140745 Ellenby Oct 2002 A1
20020158751 Bormaster Oct 2002 A1
20020158843 Levine Oct 2002 A1
20020183961 French et al. Dec 2002 A1
20030001016 Fraier Jan 2003 A1
20030013513 Rowe Jan 2003 A1
20030022736 Cass Jan 2003 A1
20030027634 Matthews, III Feb 2003 A1
20030036425 Kaminkow et al. Feb 2003 A1
20030037075 Hannigan Feb 2003 A1
20030038778 Noguera Feb 2003 A1
20030040347 Roach et al. Feb 2003 A1
20030052860 Park et al. Mar 2003 A1
20030057808 Lee et al. Mar 2003 A1
20030060286 Walker et al. Mar 2003 A1
20030063068 Anton Apr 2003 A1
20030064812 Rappaport et al. Apr 2003 A1
20030069077 Korienek Apr 2003 A1
20030073505 Tracy Apr 2003 A1
20030095101 Jou May 2003 A1
20030096652 Siegel et al. May 2003 A1
20030107551 Dunker Jun 2003 A1
20030114233 Hiei Jun 2003 A1
20030134679 Siegel et al. Jul 2003 A1
20030144047 Sprogis Jul 2003 A1
20030144056 Leifer et al. Jul 2003 A1
20030149803 Wilson et al. Aug 2003 A1
20030166416 Ogata Sep 2003 A1
20030171145 Rowe Sep 2003 A1
20030171190 Rice Sep 2003 A1
20030190967 Henry Oct 2003 A1
20030193572 Wilson et al. Oct 2003 A1
20030195037 Vuong et al. Oct 2003 A1
20030195041 McCauley Oct 2003 A1
20030195046 Bartsch Oct 2003 A1
20030204361 Townsend Oct 2003 A1
20030214259 Dowling et al. Nov 2003 A9
20030216176 Shimizu Nov 2003 A1
20030222851 Lai Dec 2003 A1
20030234914 Solomon Dec 2003 A1
20040028258 Naimark Feb 2004 A1
20040033833 Briggs et al. Feb 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040043806 Kirby et al. Mar 2004 A1
20040048666 Bagley Mar 2004 A1
20040063480 Wang Apr 2004 A1
20040070564 Dawson Apr 2004 A1
20040075650 Paul Apr 2004 A1
20040081313 McKnight et al. Apr 2004 A1
20040095317 Zhang May 2004 A1
20040102247 Smoot et al. May 2004 A1
20040119693 Kaemmler Jun 2004 A1
20040121834 Libby et al. Jun 2004 A1
20040134341 Sandoz Jul 2004 A1
20040140954 Faeth Jul 2004 A1
20040143413 Oystol Jul 2004 A1
20040147317 Ito et al. Jul 2004 A1
20040152499 Lind et al. Aug 2004 A1
20040152515 Wegmuller et al. Aug 2004 A1
20040152520 Shinoda Aug 2004 A1
20040174287 Deak Sep 2004 A1
20040193413 Wilson Sep 2004 A1
20040198158 Driscoll et al. Oct 2004 A1
20040203638 Chan Oct 2004 A1
20040207597 Marks Oct 2004 A1
20040214642 Beck Oct 2004 A1
20040218104 Smith Nov 2004 A1
20040222969 Buchenrieder Nov 2004 A1
20040227725 Calarco Nov 2004 A1
20040229693 Lind Nov 2004 A1
20040229696 Beck Nov 2004 A1
20040236453 Szoboszlay Nov 2004 A1
20040239626 Noguera Dec 2004 A1
20040252109 Trent et al. Dec 2004 A1
20040254020 Dragusin Dec 2004 A1
20040259651 Storek Dec 2004 A1
20040268393 Hunleth Dec 2004 A1
20050017454 Endo et al. Jan 2005 A1
20050020369 Davis Jan 2005 A1
20050032582 Mahajan et al. Feb 2005 A1
20050047621 Cranfill Mar 2005 A1
20050054457 Eyestone Mar 2005 A1
20050059488 Larsen et al. Mar 2005 A1
20050059503 Briggs et al. Mar 2005 A1
20050060586 Burger et al. Mar 2005 A1
20050076161 Albanna Apr 2005 A1
20050085298 Woolston Apr 2005 A1
20050110751 Wilson et al. May 2005 A1
20050116020 Smolucha et al. Jun 2005 A1
20050125826 Hunleth Jun 2005 A1
20050127868 Calhoon et al. Jun 2005 A1
20050130739 Argentar Jun 2005 A1
20050134555 Liao Jun 2005 A1
20050138851 Ingraselino Jun 2005 A1
20050156883 Wilson et al. Jul 2005 A1
20050162389 Obermeyer Jul 2005 A1
20050164601 McEachen et al. Jul 2005 A1
20050170889 Lum et al. Aug 2005 A1
20050172734 Alsio Aug 2005 A1
20050174324 Liberty Aug 2005 A1
20050176485 Ueshima Aug 2005 A1
20050179644 Alsio Aug 2005 A1
20050202866 Luciano et al. Sep 2005 A1
20050210418 Marvit Sep 2005 A1
20050210419 Kela Sep 2005 A1
20050212749 Marvit et al. Sep 2005 A1
20050212750 Marvit et al. Sep 2005 A1
20050212751 Marvit et al. Sep 2005 A1
20050212752 Marvit et al. Sep 2005 A1
20050212753 Marvit et al. Sep 2005 A1
20050212754 Marvit et al. Sep 2005 A1
20050212755 Marvit Sep 2005 A1
20050212756 Marvit et al. Sep 2005 A1
20050212757 Marvit et al. Sep 2005 A1
20050212758 Marvit et al. Sep 2005 A1
20050212759 Marvit et al. Sep 2005 A1
20050212760 Marvit et al. Sep 2005 A1
20050212764 Toba Sep 2005 A1
20050212767 Marvit Sep 2005 A1
20050215295 Arneson Sep 2005 A1
20050215322 Himoto et al. Sep 2005 A1
20050217525 McClure Oct 2005 A1
20050227579 Yamaguchi et al. Oct 2005 A1
20050233808 Himoto et al. Oct 2005 A1
20050239548 Ueshima et al. Oct 2005 A1
20050243061 Liberty et al. Nov 2005 A1
20050243062 Liberty Nov 2005 A1
20050253806 Liberty et al. Nov 2005 A1
20050256675 Kurata Nov 2005 A1
20050277465 Whitten et al. Dec 2005 A1
20050278741 Robarts Dec 2005 A1
20060003843 Kobayashi et al. Jan 2006 A1
20060007115 Furuhashi Jan 2006 A1
20060009270 Kobayashi et al. Jan 2006 A1
20060028446 Liberty Feb 2006 A1
20060040720 Harrison Feb 2006 A1
20060046849 Kovacs Mar 2006 A1
20060092133 Touma May 2006 A1
20060094502 Katayama et al. May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060123146 Wu et al. Jun 2006 A1
20060148563 Yang Jul 2006 A1
20060152487 Grunnet-Jepsen Jul 2006 A1
20060152488 Salsman Jul 2006 A1
20060152489 Sweetser Jul 2006 A1
20060178212 Penzias Aug 2006 A1
20060205507 Ho Sep 2006 A1
20060231794 Sakaguchi et al. Oct 2006 A1
20060246403 Monpouet et al. Nov 2006 A1
20060252475 Zalewski et al. Nov 2006 A1
20060252477 Zalewski et al. Nov 2006 A1
20060256081 Zalewski et al. Nov 2006 A1
20060258452 Hsu Nov 2006 A1
20060264258 Zalewski et al. Nov 2006 A1
20060264260 Zalewski et al. Nov 2006 A1
20060267935 Corson Nov 2006 A1
20060273907 Heiman Dec 2006 A1
20060282873 Zalewski et al. Dec 2006 A1
20060284842 Poltorak Dec 2006 A1
20060287030 Briggs et al. Dec 2006 A1
20060287085 Mao Dec 2006 A1
20060287086 Zalewski et al. Dec 2006 A1
20060287087 Zalewski et al. Dec 2006 A1
20070015588 Matsumoto et al. Jan 2007 A1
20070021208 Mao et al. Jan 2007 A1
20070049374 Ikeda et al. Mar 2007 A1
20070050597 Ikeda Mar 2007 A1
20070052177 Ikeda et al. Mar 2007 A1
20070060391 Ikeda et al. Mar 2007 A1
20070066394 Ikeda et al. Mar 2007 A1
20070066396 Weston et al. Mar 2007 A1
20070072680 Ikeda et al. Mar 2007 A1
20070082720 Bradbury et al. Apr 2007 A1
20070087837 Bradbury et al. Apr 2007 A1
20070087838 Bradbury et al. Apr 2007 A1
20070087839 Bradbury et al. Apr 2007 A1
20070091084 Ueshima et al. Apr 2007 A1
20070093170 Zheng Apr 2007 A1
20070093291 Hulvey Apr 2007 A1
20070093293 Osnato Apr 2007 A1
20070100696 Illingworth May 2007 A1
20070159362 Shen Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070252815 Kuo Nov 2007 A1
20070257884 Taira Nov 2007 A1
20070265075 Zalewski Nov 2007 A1
20070265076 Lin Nov 2007 A1
20070265088 Nakada et al. Nov 2007 A1
20080015017 Ashida et al. Jan 2008 A1
20080039202 Sawano et al. Feb 2008 A1
20080119270 Ohta May 2008 A1
20080121782 Hotelling et al. May 2008 A1
20080174550 Laurila Jul 2008 A1
20080183678 Weston et al. Jul 2008 A1
20080216765 Kates Sep 2008 A1
20080273011 Lin Nov 2008 A1
20080278445 Sweetser Nov 2008 A1
20090009294 Kupstas Jan 2009 A1
20090033621 Quinn Feb 2009 A1
20090137323 Fiegener et al. May 2009 A1
20090156309 Weston et al. Jun 2009 A1
20090203446 Bradbury et al. Aug 2009 A1
20090215534 Wilson et al. Aug 2009 A1
20090273560 Kalanithi et al. Nov 2009 A1
20090326851 Tanenhaus Dec 2009 A1
20100056285 Weston et al. Mar 2010 A1
20100105475 Mikhailov Apr 2010 A1
20100144436 Marks et al. Jun 2010 A1
20100289744 Cohen Nov 2010 A1
20110081969 Ikeda Apr 2011 A1
20110177853 Ueshima . Jul 2011 A1
20110190052 Takeda Aug 2011 A1
20120295699 Reiche Nov 2012 A1
20120295703 Reiche et al. Nov 2012 A1
20120295704 Reiche Nov 2012 A1
20130116020 Barney et al. May 2013 A1
20130116051 Barney et al. May 2013 A1
20130196727 Barney et al. Aug 2013 A1
20130196770 Barney et al. Aug 2013 A1
20130303276 Weston et al. Nov 2013 A1
20140100029 Reiche et al. Apr 2014 A1
20140194206 Barney et al. Jul 2014 A1
20140235341 Barney et al. Aug 2014 A1
20140256446 Barney et al. Sep 2014 A1
20140323221 Ikeda Oct 2014 A1
20140342831 Weston et al. Nov 2014 A1
20140378233 Weston et al. Dec 2014 A1
20150038229 Reiche et al. Feb 2015 A1
20150050971 Briggs et al. Feb 2015 A1
20150094140 Barney et al. Apr 2015 A1
20150165316 Barney et al. Jun 2015 A1
20150174479 Reiche et al. Jun 2015 A1
20150251100 Barney et al. Sep 2015 A1
20150328556 Weston Nov 2015 A1
20150360125 Barney et al. Dec 2015 A1
20160030836 Barney et al. Feb 2016 A1
20160067600 Barney et al. Mar 2016 A1
Foreign Referenced Citations (161)
Number Date Country
1032246 Apr 1989 CN
2113224 Feb 1992 CN
1338961 Mar 2002 CN
1559644 Jan 2005 CN
3930581 Mar 1991 DE
19701374 Jul 1997 DE
19632273 Feb 1998 DE
19648487 Jun 1998 DE
19814254 Oct 1998 DE
19937307 Feb 2000 DE
10029173 Jan 2002 DE
10219198 Nov 2003 DE
0 264 782 Apr 1988 EP
0 570 999 Dec 1988 EP
0 322 825 Jul 1989 EP
0 695 565 Feb 1996 EP
0 835 676 Apr 1998 EP
0 848 226 Jun 1998 EP
0 852 961 Jul 1998 EP
1 062 994 Dec 2000 EP
1 279 425 Jan 2003 EP
1 293 237 Mar 2003 EP
0 993 845 Dec 2005 EP
2547093 Dec 1984 FR
2244546 Dec 1991 GB
2284478 Jun 1995 GB
2307133 May 1997 GB
2310481 Aug 1997 GB
2316482 Feb 1998 GB
2319374 May 1998 GB
2325558 Nov 1998 GB
2388418 Nov 2003 GB
62-14527 Jan 1987 JP
63-186687 Aug 1988 JP
03-210622 Sep 1991 JP
06-050758 Feb 1994 JP
6154422 Jun 1994 JP
06-198075 Jul 1994 JP
6190144 Jul 1994 JP
H0677387 Oct 1994 JP
06-308879 Nov 1994 JP
07-028591 Jan 1995 JP
07-044315 Feb 1995 JP
07-107573 Apr 1995 JP
07-115690 May 1995 JP
07-146123 Jun 1995 JP
07-200142 Aug 1995 JP
07-262797 Oct 1995 JP
07-302148 Nov 1995 JP
07-318332 Dec 1995 JP
08-095704 Apr 1996 JP
08-106352 Apr 1996 JP
08-111144 Apr 1996 JP
08-114415 May 1996 JP
08-122070 May 1996 JP
08-152959 Jun 1996 JP
08-191953 Jul 1996 JP
08-211993 Aug 1996 JP
08-221187 Aug 1996 JP
08-305355 Nov 1996 JP
08-335136 Dec 1996 JP
09-034456 Feb 1997 JP
09-149915 Jun 1997 JP
09-164273 Jun 1997 JP
09-225137 Sep 1997 JP
09-230997 Sep 1997 JP
09-237087 Sep 1997 JP
09-274534 Oct 1997 JP
09-319510 Dec 1997 JP
10-021000 Jan 1998 JP
10-033831 Feb 1998 JP
10-043349 Feb 1998 JP
10-099542 Apr 1998 JP
10-154038 Jun 1998 JP
10-235019 Sep 1998 JP
10-254614 Sep 1998 JP
11-053994 Feb 1999 JP
11-099284 Apr 1999 JP
2000-176150 Jun 2000 JP
2000-208756 Jul 2000 JP
2000-270237 Sep 2000 JP
2000-300839 Oct 2000 JP
2000-308756 Nov 2000 JP
2000-325653 Nov 2000 JP
2001-038052 Feb 2001 JP
2001-058484 Mar 2001 JP
2001-104643 Apr 2001 JP
U20009165 Apr 2001 JP
2001-175412 Jun 2001 JP
2001-251324 Sep 2001 JP
2001-265521 Sep 2001 JP
2001-306245 Nov 2001 JP
2002-007057 Jan 2002 JP
2002-062981 Feb 2002 JP
2002-78969 Mar 2002 JP
2002-082751 Mar 2002 JP
2002-091692 Mar 2002 JP
2002-126375 May 2002 JP
2002-136694 May 2002 JP
2002-153673 May 2002 JP
2002-202843 Jul 2002 JP
2002-224444 Aug 2002 JP
2002-233665 Aug 2002 JP
2002-298145 Oct 2002 JP
2003-053038 Feb 2003 JP
2003-140823 May 2003 JP
2003-208263 Jul 2003 JP
2003 236246 Aug 2003 JP
2003-325974 Nov 2003 JP
2004-062774 Feb 2004 JP
2004-313429 Nov 2004 JP
2004-313492 Nov 2004 JP
2005-040493 Feb 2005 JP
2005-063230 Mar 2005 JP
2006-113019 Apr 2006 JP
2006-136694 Jun 2006 JP
2006-216569 Aug 2006 JP
2007-083024 Apr 2007 JP
4043702 Feb 2008 JP
9300171 Aug 1994 NL
2077358 Apr 1997 RU
2125853 Feb 1999 RU
2126161 Feb 1999 RU
WO 9007961 Jul 1990 WO
WO 9402931 Mar 1994 WO
WO 9511730 May 1995 WO
WO 9605766 Feb 1996 WO
WO 9614115 May 1996 WO
WO 9614121 May 1996 WO
WO 9709101 Mar 1997 WO
WO 9712337 Apr 1997 WO
WO 9717598 May 1997 WO
WO 9720305 Jun 1997 WO
WO 9728864 Aug 1997 WO
WO 9732641 Sep 1997 WO
WO 9811528 Mar 1998 WO
WO 9836400 Aug 1998 WO
WO 9958214 Nov 1999 WO
WO 0033168 Jun 2000 WO
WO 0035345 Jun 2000 WO
WO 0061251 Oct 2000 WO
WO 0063874 Oct 2000 WO
WO 0067863 Nov 2000 WO
WO 0146916 Jun 2001 WO
WO 0187426 Nov 2001 WO
WO 0191042 Nov 2001 WO
WO 0217054 Feb 2002 WO
WO 0234345 May 2002 WO
WO 0247013 Jun 2002 WO
WO 03015005 Feb 2003 WO
WO 03043709 May 2003 WO
WO 03044743 May 2003 WO
WO 03088147 Oct 2003 WO
WO 03107260 Dec 2003 WO
WO 2004039055 May 2004 WO
WO 2004051391 Jun 2004 WO
WO 2004087271 Oct 2004 WO
WO 2006039339 Apr 2006 WO
WO 2006101880 Sep 2006 WO
WO 2007058996 May 2007 WO
WO 2007120880 Oct 2007 WO
Non-Patent Literature Citations (414)
Entry
“HyperScan”, release date Oct. 2006. Source http://www.giantbomb.com/hyperscan/3045-1 041.
“Smart Card News Online”, published Oct. 25, 2006, source www.smartcard.co.ukINOLARCH/2006/0ctober/251006.html.
“Emerald Forest Toys” [online] [retrieved on Sep. 14, 2005], retrieved from Internet <URL:http://www.pathworks.net/print—eft.html>.
“Gatemaster Features”, “Gatemaster Main Screen”, “Gatemaster: So You're a Computer Geek eh?”, and “Gatemaster Pricing” by Gate Master Management System, internet article, Jul. 9, 1997; http://web.archive.org/web/19970709135000/www.gatemaster.com/gmfeat.htm (accessed on Dec. 11, 2008).
“Ollivanders: Makers of Fine Wands.” Dec. 2, 2002. [online] [retrieved on Mar. 30, 2005], Retrieved from Internet (URL:http//www.cim.mcgill.edu/!jer/courses/hci/assignments/2002/www.ece.mcgill.ca/%7Eeuryd).
International Preliminary Examination Report, International App. No. PCT/US00/09482; dated Apr. 24, 2001; 4 pages.
International Search Report and Written Opinion, International App. No. PCT/US04/08912; mailed Aug. 26, 2004; 10 pages.
International Search Report and Written Opinion, International App. No. PCT/US05/34831; mailed Jul. 2, 2008; 11 pages.
International Search Report and Written Opinion; International Appl. No. PCT/US2006/043915; mailed Mar. 9, 2007; 8 pages.
Laser Tag: General info: History of Laser Tag, http://lasertag.org/general/history.html (accessed on Mar. 13, 2008; historical dates start on Mar. 1984).
Laser Tag: Lazer Tag Branded Gear; last update Sep. 26, 2006, http://home.comcast.net/˜ferret1963/Lazer—Tag—Brand.HTML (accessed on Mar. 13, 2008; historical dates start in 1986).
Owl Magic Wand & Owl Magic Orb Raving Toy Maniac, Nov. 19, 2001. [online] [retrieved on Mar. 30, 2005], Retrieved from the Internet (URL:http://www.toymania.com/news/messages/1358.shtm1).
“At-home fishing”, http:www.virtualpet.com/vp/media/fishing/homef.jpg (accessed on Jan. 14, 2010).
“Coleco Vision: Super Action™ Controller Set,” www.vintagecomputing.com/wp-content/images/retroscan/coleco—sac—1—large.jpg. (downloaded from Internet on Sep. 2, 2011; available at http://www.vintagecomputing.com on Sep. 4, 2006).
“Controllers—Atari Space Age Joystic,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID-12., Sep. 1, 2006.
“Controllers—Booster Grip,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID=18., (accessed on Jul. 29, 2011; allegedly available as early as Sep. 1, 2006).
“Electronic Plastic: BANDAI—Power Fishing” “Power Fishing Company: BANDAI,” 1 page, http://www.handhelden.com/Bandai/ PowerFishing.html., 1984 (accessed on Jul. 29, 2011).
“Game Controller” Wikipedia, Jan. 5, 2005.
“Get Bass,” Videogame by Sega, The International Arcade Museum and the KLOV (accessed at http://www.arcade-museum.com/game—detail.php?game—id=7933 on Jul. 29, 2011).
“Glove-based input interfaces” Cyberglove/Cyberforce, http://www.angelfire.com/ca7/mellott124/glove1.htm (accessed on Jul. 29, 2011).
“Harry Potter Magic Spell Challenge,” Tiger Electronics, 2001.
“Imp Coexists With Your Mouse,” Byte, p. 255, Jan. 1994.
“MEMS enable smart golf clubs,” Small Times, Jan. 6, 2005, accessed at http://dpwsa.electroiq.com/index/display/semiconductors-article-display/269788/articles/small-times/consumer/2005/01/mems-enable-smart-golf-clubs.html on Jul. 29, 2011.
“Miacomet and Interact Announce Agreement to Launch Line of Reel Feel™ Sport Controllers”, PR Newswire (May 13, 1999), accessed at http://www.thefreelibrary.com/—print/PrintArticle.aspx?id=54621351 on Sep. 7, 2011.
“The N.I.C.E. Project,” YouTube video uploaded by evltube on Nov. 20, 2007 (accessed at http://www.youtube.com/watch?v=ihGXa21qLms on Sep. 8, 2011; digital copy of video available upon request).
“212 Series Encoders” HT12A/HT12E by HOLTEK—Product Specification, Apr. 2000.
“212 Series of Decoders” HT12D/HT12F by HOLTEK—Product Specification, Nov. 2002.
“ASCII Entertainment releases the Grip,” ASCII Entertainment Software—Press News—Coming Soon Magazine, May 1997 (electronic version accessed at http://www.csoon.com/issue25/p—ascii4.htm on Sep. 6, 2011).
“Enchanted Spell-Casting Sorcerers Wand” by Ken Holt as featured on www.inventionconnection.com online advertisement, Dec. 2002.
“Interview with Pat Goschy, the “Real” Nintendo Wii Inventor,” YouTube video uploaded by agbulls on Jan. 14, 2008 (accessed at http://www.youtube.com/watch?v=oKtZysYGDLE on Feb. 11, 2011; digital copy of video available upon request).
“Micro Tilt Switch” D6B by Omron® Product Specification, Jan. 2007.
“Nintendo Wii Controller Invented by Americans: Midway Velocity Controller Technology Brief,” You Tube Video presentation dated Jun. 28, 2000; uploaded by drjohniefever on Sep. 8, 2007 (accessed at http://www.youtube.com/watch?v=wjLhSrSxFNw on Jun. 30, 2010; digital copy of video available upon request).
“Raise High the 3D Roof Beam: Kids shape these PC games as they go along.” By Anne Field, article as featured in Business Week 2001. (Nov. 26, 2001).
“Serial-in Parallel-out Shift Register” SN54/74LS164 by Motorola-Product Specification, Fifth Edition, 1992.
“Sony PS2 Motion Controller 5 years ago (2004),” YouTube Video uploaded by r1oot on Jul. 8, 2009 (accessed at http://www.youtube.com/watch?v=JbSzmRt7HhQ&feature=related on Sep. 6, 2011; digital copy of video available upon request).
“The Big Ideas Behind Nintendo's Wii,” Business Week, Nov. 16, 2006 (accessed at http://www.businessweek.com/technology/content/nov2006/tc20061116—750580.htm on Aug. 31, 2011).
“The Magic Labs Conjure Wands” as featured on www.magic-lab.com Product Specification, Dec. 2002.
“Tilt Switch” by Fuji & Co. as featured on www.fuji-piezo.com online advertisement, May 2001.
“Toy Wand Manufacturer Selects MEMSIC Sensor: Magic Labs cuts costs with MEMSIC sensor” Press Release by MEMSIC, Inc. as featured on www.memsic.com, May 2002.
“Wii Mailbag,” IGN.com, Jan. 26, 2006 (accessed at http://uk.wii.ign.com/mail/2006-01-26.html on Aug. 31, 2011).
Acar, et al., “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” Journal of Micromechanics and Microengineering, vol. 13 (1), pp. 634-645, May 2003.
Achenbach, “Golf's New Measuring Stick,” Golfweek, 1 page, Jun. 11, 2005.
Act Labs, Miacomet Background, Jan. 27, 2001, http://web.archive.org/web/200101271753/http://www.act-labs.com/ realfeel—background.htm, (accessed on Sep. 7, 2011).
Agard, “Advances in Strapdown Inertial Systems,” Agard Lecture Series No. 133, Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France) May 1984.
AirPad Controller Manual, (AirPad Corp. 2000).
Airpad Motion Reflex Controller for Sony Playstation—Physical Product, (AirPad Corp. 2000).
Algrain, “Estimation of 3-D Angular Motion Using Gyroscopes and Linear Accelerometers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, No. 6, pp. 910-920, Nov. 1991.
Algrain, et al., “Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking System,” Second IEEE Conference on Control Applications, Sep. 13-16, 1993 Vancouver, B.C.., pp. 159-163 Sep. 13-16, 1993.
Algrain, et al., “Interlaced Kalman Filtering of 3-D Angular Motion Based on Euler's Nonlinear Equations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, No. 1, Jan. 1994.
Allen, et al., “A General Method for Comparing the Expected Performance of Tracing and Motion Capture Systems,” {VRST} '05: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Nov. 7-9, 2005 Monterey, California Nov. 7-9, 2005.
Allen, et al., “Tracking: Beyond 15 Minutes of Thought,” SIGGRAPH 2001 Course 11, Aug. 2001.
Analog Devices “ADXL202E Low-Cost .+−.2 g Dual-Axis Accelerometer with Duty Cycle Output” Data Sheet, Rev. A, Oct. 2000.
Analog Devices “ADXL330 Small, Low Power, 3-Axis ±2 g iMEMS Accelerometer” Data Sheet, Rev. PrA Oct. 2005.
Analog Devices “ADXL50 Monolithic Accelerometer with Signal Conditioning” Data Sheet Mar. 1996.
Analog Devices “ADXRS150±150°/s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. B, Mar. 2004.
Analog Devices “ADXRS401 ±75°/s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. O, Jul. 2004.
Analog Devices “MicroConverter®, Multichannel 12-Bit ADC with Embedded Flash MCU, ADuC812” Data Sheet (Feb. 2003), available at http://www.analog.com/static/imported-files/data—sheets/ADUC812.pdf.
Analog Devices, “ADXL150/ADXL250, ±5g to ±50g, Low Noise, Low Power, Single/Dual Axis iMEMS® Accelerometers,” Data Sheet, Rev. 0 (Apr. 1998).
Ang, et al., “Design and Implementation of Active Error Canceling in Hand-held Microsurgical Instrument,” Paper presented at 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct./Nov. 2001).
Ang, et al., “Design of All-Accelerometer Inertial Measurement Unit for Tremor Sensing in Hand-held Microsurgical Instrument,” Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Sep. 14-19, 2003, Taipei, Taiwan, pp. 1781-1786, Sep. 14-19, 2003.
Apostolyuk, Vladislav, “Theory and Design of Micromechanical Vibratory Gyroscopes,” MEMS/NEMS Handbook, Springer, vol. 1, pp. 173-195 (May 2006).
Ascension Technology, 6D Bird Class B Installation and Operation Guide, Apr. 30, 2003.
ASCII, picture of one-handed controller, 2 pages, Feb. 6, 2006.
Ator, “Image-Velocity Sensing with Parallel-Slit Reticles,” Journal of the Optical Society of America, vol. 53, No. 12, pp. 1416-1422, Dec. 1963.
Azarbayejani, et al, “Real-Time 3-D Tracking of the Human Body,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in Proceedings of Image'Com 96, Bordeaux, France, May 1996.
Azarbayejani, et al., “Visually Controlled Graphics,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, pp. 602-605, Jun. 1993.
Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMD,” Paper Presented at SIGGRAPH '94 Annual Conference in Orlando, FL, Mar. 1994.
Azuma, “Predictive Tracking for Augmented Reality,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Department of Computer Science, Feb. 1995.
Azuma, et al., “A Frequency-Domain Analysis of Head-Motion Prediction,” Paper Presented at SIGGRAPH '95 Annual Conference in Los Angeles, CA, Feb. 1995.
Azuma, et al., “A motion-stabilized outdoor augmented reality system,” Proceedings of IEEE Virtual Reality '99, Houston, TX, Mar. 13-17, 1999, pp. 252-259.
Azuma, et al., “Making Augmented Reality Work Outdoors Requires Hybrid Tracking,” Proceedings of the International Workshop on Augmented Reality, San Francisco, CA, Nov. 1, 1998.
Bachmann et al., “Inertial and Magnetic Posture Tracking for Inserting Humans into Networked Virtual Environments,” Virtual Reality Software and Technology archive, Paper Presented at ACM Symposium on Virtual Reality Software and Technology in Banff, Alberta, Canada, Dec. 2000.
Bachmann et al., “Orientation Tracking for Humans and Robots Using Inertial Sensors” Paper Presented at 199 International Symposium on Computational Intelligence in Robotics & Automation (CIRA '99), Mar. 1999.
Bachmann, “Inertial and Magnetic Angle Tracking of Limb Segments for Inserting Humans into Synthetic Environments,” Dissertation, Naval Postgraduate School, Monterey, CA (Dec. 2000).
Badler, et al., “Multi-Dimensional Input Techniques and Articulated Figure Positioning by Multiple Constraints,” Interactive 3D Graphics, Oct. 1986; pp. 151-169.
Baker et al., “Active Multimodal Control of a ‘Floppy’ Telescope Structure,” Proc. SPIE, vol. 4825, pp. 74-81 (2002).
Balakrishnan, “The Rockin' Mouse: Integral 3D Manipulation on a Plane,” Published in Proceedings of 1997 ACM Conference on Human Factors in Computing Systems (CHI'97), pp. 311-318, Jun. 1997.
Ballagas, et al., “iStuff: A Physical User Interface Toolkit for Ubiquitous Computer Environments,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems, Apr. 2003.
Baraff, “An Introduction to Physically Based Modeling: Rigid Body Simulation I—Unconstrained Rigid Body Dynamics,” SIGGRAPH 97 Course Notes, Robotics Institute, Carnegie Mellon University (Aug. 1997).
Baudisch, et al., “Soap: a Pointing Device that Works in Mid-air,” Proc. UIST'06, Oct. 15-18, 2006, Montreux, Switzerland (Oct. 2006).
BBN Report No. 7661, “Virtual Environment Technology for Training (VETT),” The Virtual Environment and Teleoperator Research Consortium (VETREC), pp. III-A-27 to III-A-40 (Mar. 1992).
Behringer, “Improving the Registration Precision by Visual Horizon Silhouette Matching,” Paper presented at First IEEE Workshop on Augmented Reality (Feb. 1998).
Behringer, “Registration for Outdoor Augmented Reality Applications Using Computer Vision Techniques and Hybrid Sensors,” Paper presented at IEEE Virtual Reality (VR '99) Conference in Houston, TX (Mar. 1999).
BEI GyrochipTM Model QRS11 Data Sheet, BEI Systron Donner Inertial Division, BEI Technologies, Inc., (Sep. 1998).
Benbasat, “An Inertial Measurement Unit for User Interfaces,” Massachusetts Institute of Technology Masters Thesis, (Sep. 2000).
Benbasat, et al., “An Inertial Measurement Framework for Gesture Recognition and Applications,” Paper Presented at International Gesture Workshop on Gesture and Sign Languages in Human-Computer Interaction (GW'01), London, UK (Sep. 2001).
Bhatnagar, “Position trackers for Head Mounted Display systems: A survey” (Technical Report), University of North Carolina at Chapel Hill (Mar. 1993).
Bianchi, “A Tailless Mouse, New cordless Computer Mouse Invented by ArcanaTech,” Inc.com, Jun. 1, 1992 (accessed at http://www.inc.com/magazine/19920601/4115.html on Jun. 17, 2010).
Bishop, “The Self-Tracker: A Smart Optical Sensor on Silicon,” Ph.D. Dissertation, Univ. of North Carolina at Chapel Hill (1984), 65 pages.
Bjork, Staffan et al., “Pirates! Using the Physical World as a Game Board,” Reportedly presented as part of INTERACT 2001: 8th TC.13 IFIP International Conference on Human-Computer Interaction, Tokyo Japan (Jul. 9-13, 2001).
Bluffing Your Way in Pokemon, Oct. 14, 2002, 7 pages.
Bona, et al., “Optimum Reset of Ship's Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, Abstract only (1965) (accessed at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0908193 on Jun. 17, 2010).
Borenstein, et al., “Where am I? Sensors and Methods for Mobile Robot Positioning” (Apr. 1996).
Borovoy, R. , et al., “Things that Blink: Computationally Augmented Name Tags,” IBM Systems Journal, vol. 35, Nos. 3 & 4, 1996; pp. 488-495 (May 1996).
Borovoy, Richard et al., “Groupwear: Nametags That Tell About Relationships,” Chi 98, Apr. 1998, pp. 329-330.
Boser, “3-Axis Accelerometer with Differential Sense Electronics,” Berkeley Sensor & Actuator Center, available at http://www.eecs.berkeley.edu/.about.boser/pdf/3axis.pdf (Feb. 1997).
Boser, “Accelerometer Design Example: Analog Devices XL-05/5,” Berkeley Sensor & Actuator Center, available at http://wvvw.eecs.berkeley.edu/.about.boser/pdf/xI05.pdf (1996).
Bowman, et al., “An Introduction to 3-D User Interface Design,” MIT Presence, vol. 10, No. 1, pp. 96-108 (Feb. 2001).
Briefs, (New & Improved), (Brief Article), PC Magazine, Oct. 26, 1993.
Britton et al., “Making Nested Rotations Convenient for the User,” SIGGRAPH '78 Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, vol. 12, Issue 3, pp. 222-227 (Aug. 1978).
Britton, “A Methodology for the Ergonomic Design of Interactive Computer Graphic Systems, and its Application to Crystallography” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1977).
Brownell, Richard, Review: Peripheral-GameCube-G3 Wireless Controller, gamesarefun.com, Jul. 13, 2003 (accessed at http://www.gamesarefun.com/gamesdb/perireview.php?perireviewid=1 on Jul. 29, 2011).
Buchanan, Levi: “Happy Birthday, Rumble Pak,” IGN.com, Apr. 3, 2008 (accessed at http://retro.ign.com/articles/864/864231p1.html on Jul. 29, 2011).
Business Wire, “Feature/Virtual reality glasses that interface to Sega channel,Time Warner, TCI; project announced concurrent with COMDEX,” Nov. 14, 1994 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1994—Nov—14/ai—15923497/?tag=content;col1 on Jul. 7, 2010).
Business Wire, “Free-space ‘Tilt’ Game Controller for Sony Playstation Uses Scenix Chip; SX Series IC Processes Spatial Data in Real Time for On-Screen,” Dec. 6, 1999 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1999—Dec—6/ai—58042965/?tag=content;col1 on Jul. 7, 2010)).
Business Wire, “Logitech MAGELLAN 3D Controller,” Apr. 14, 1997 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=19306114 on Feb. 10, 2011).
Business Wire, “Mind Path Introduces GYROPOINT RF Wireless Remote,” Jan. 27, 2000 (accessed at http://www.allbusiness.com/company-activities-management/operations-office/6381880-1.html on Jun. 17, 2010).
Business Wire, “Pegasus' Wireless PenCell Writes on Thin Air with ART's Handwriting Recognition Solutions,” Business Editors/High Tech Writers Telecom Israel 2000 Hall 29, Booth 19-20, Nov. 7, 2000 (accessed at http://www.highbeam.com/doc/1G1-66658008.html on Jun. 17, 2010).
Business Wire, “RPI ships low-cost pro HMD Plus 3D Mouse and VR PC graphics card system for CES,” Jan. 9, 1995 (accessed at http://www.highbeam.com/doc/1G1-16009561.html on Jun. 17, 2010).
Business Wire, “InterSense Inc. Launches InertiaCube2—The World's Smallest Precision Orientation Sensor with Serial Interface,” Aug. 14, 2001 (accessed at http://www.highbeam.com/doc/1G1-77183067.html/print on Sep. 7, 2011.).
Buxton et al., “A Study in Two-Handed Input,” Proceedings of CHI '86, pp. 321-326 (1986) (accessed at http://www.billbuxton.com/2hands.html on Jul. 29, 2011).
Buxton, Bill, “A Directory of Sources for Input Technologies” (last updated Apr. 19, 2001), http://web.archive.org/web/20010604004849/http://www.billbuxton.com/InputSources.html (accessed on Sep. 8, 2011).
Buxton, Bill, “Human input/output devices,” In M. Katz (ed.), Technology Forecast: 1995, Menlo Park, CA: Price Waterhouse World Firm Technology Center, pp. 49-65 (Sep. 1994).
Canaday, “R67-26 The Lincoln Wand,” IEEE Transactions on Electronic Computers, vol. EC-16, No. 2, p. 240 (Apr. 1967) (downloaded from IEEE Xplore on Jul. 7, 2010).
Caruso, “Application of Magnetoresistive Sensors in Navigation Systems,” Sensors and Actuators, SAE SP-1220, pp. 15-21 (Feb. 1997); text of article accessed at http://www.ssec.honeywell.com/position-sensors/datasheets/sae.pdf.
Caruso, “Applications of Magnetic Sensors for Low Cost Compass Systems,” Honeywell, SSEC, Paper presented at IEEE 2000 Position Location and Navigation Symposium (Mar. 2000), accessed at http://www.ssec.honeywell.com/magnetic/datasheets/lowcost.pdf.
Caruso, et al., “A New Perspective on Magnetic Field Sensing,” Sensors Magazine, Dec. 1, 1998 (accessed at http://www.sensorsmag.com/sensors/electric-magnetic/a-new-perspective-magnetic-field-sensing-855 on Jun. 17, 2010).
Caruso, et al., “Vehicle Detection and Compass Applications using AMR Magnetic Sensors”, Paper presented at 1999 Sensors Expo in Baltimore, Maryland (May 1999), available at http://masters.donntu.edu.ua/2007/kita/gerus/library/amr.pdf.
Chatfield, “Fundamentals of High Accuracy Inertial Navigation,” vol. 174 Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc. (1997).
Cheng, “Direct interaction with Large-Scale Display Systems using Infrared Laser Tracking Devices,” Paper presented at Australasian Symposium on Information Visualisation, Adelaide, Australia (Jan. 2003).
Cheok, et al., “Micro-Accelerometer Based Hardware Interfaces for Wearable Computer Mixed Reality Applications,” 6th International Symposium on Wearable Computers (ISWC'02), 8 pages.
Cho, et al., “Magic Wand: A Hand-Drawn Gesture Input Device in 3-D Space with Inertial Sensors,” Proceedings of the 9th Intl Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), IEEE (Aug. 2004).
Clark, James H., “Designing Surfaces in 3-D,” Graphics and Image Processing-Communications of the ACM, Aug. 1976; vol. 19; No. 8; pp. 454-460.
Clark, James H., “Three Dimensional Man Machine Interaction,” Siggraph '76, Jul. 14-16 Philadelphia, Pennsylvania, 1 page.
CNET News.com, “Nintendo Wii Swings Into Action,” May 25, 2006 (accessed at http://news.cnet.com/2300-1043—3-6070295-4.html on Aug. 5, 2011).
Cooke, et al., “NPSNET: Flight simulation dynamic modeling using quaternions,” Presence, vol. 1, No. 4, pp. 404-420, (Jan. 25, 1994).
Crecente, Brian, “Motion Gaming Gains Momentum,” kotaku.com, Sep. 17, 2010 (accessed at http://kotaku.com/5640867/motion-gaming-gains-momentum on Aug. 31, 2011).
CSIDC Winners—“Tablet-PC Classroom System Wins Design Competition,” IEEE Computer Society Press, vol. 36, Issue 8, pp. 15-18, IEEE Computer Society, Aug. 2003.
Cutrone, “Hot products: Gyration GyroPoint Desk, GyroPoint Pro gyroscope-controlled wired and wireless mice,” Results from the Comdex Show Floor, Computer Reseller News, Dec. 4, 1995 (accessed from LexisNexis research database on Feb. 17, 2011; see pp. 8 and 9 of reference submitted herewith).
Deering, Michael F. , “HoloSketch a Virtual Reality Sketching Animation Tool,” ACM Transactions on Computer-Human Interaction, Sep. 1995; vol. 2, No. 3; pp. 220-238.
Deruyck, et al., “An Electromagnetic Position Sensor,” Polhemus Navigation Sciences, Inc., Burlington, VT (Nov. 1973) (Abstract from DTIC Online).
Dichtburn, “Camera in Direct3D” Toymaker (Feb. 6, 2005), http://web.archive.org/web/20050206032104/http:/toymaker.info/games/html/camera.html (accessed on Jul. 29, 2011).
Digital ID Cards the next generation of ‘smart’ cards will have more than a one-track mind. Wall Street Journal, Jun. 25, 2001.
Donelson, et al., “Spatial Management of Information”, Proceedings of 1978 ACM SIGGRAPH Conference in Atlanta, Georgia, pp. 203-209 (Aug. 1977).
Druin et al., Robots: Exploring New Technologies for Learning for Kids; 2000; Chapter One: To Mindstorms and Beyond; 27 pages (Jun. 2000).
Drzymala, Robert E., et al., “A Feasibility Study Using a Stereo-Optical Camera System to Verify Gamma Knife Treatment Specification,” Proceedings of 22nd Annual EMBS International Conference, Jul. 2000; pp. 1486-1489.
Durlach, et al., “Virtual Reality: Scientific and Technological Challenges,” National Academy Press (1995).
Emura, et al., “Sensor Fusion based Measurement of Human Head Motion,” 3rd IEEE International Workshop on Robot and Human Communication (Jul. 1994).
Ewalt, David M., “Nintendo's Wii is a Revolution,” Review, Forbes.com, Nov. 13, 2006 (accessed at http://www.forbes.com/2006/11/13/wii-review-ps3-tech-media-cx—de—1113wii.html on Jul. 29, 2011).
Ferrin, “Survey of Helmet Tracking Technologies,” Proc. SPIE vol. 1456, p. 86-94 (Apr. 1991).
Fielder, Lauren “E3 2001: Nintendo unleashes GameCube software, a new Miyamoto game, and more,” GameSpot, May 16, 2001 (accessed at http://www.gamespot.com/news/2761390/e3-2001-nintendo-unleashes-gamecube-software-a-new-miyamoto-game-and-more?tag=gallery—summary%3Bstory on Jul. 29, 2011).
U.S. Appl. No. 09/520,148, filed Mar. 7, 2000 by Miriam Mawle.
Foremski, T., “Remote Control Mouse Aims at Interactive TV” Electronics Weekly, Mar. 9, 1994.
Foxlin, “Head-tracking Relative to a Moving Vehicle or Simulator Platform Using Differential Inertial Sensors,” Proceedings of Helmet and Head-Mounted Displays V, SPIE vol. 4021, AeroSense Symposium, Orlando, FL, Apr. 24-25, 2000.
Foxlin, “Inertial Head Tracker Sensor Fusion by a Complementary Separate-bias Kalman Filter,” Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, pp. 185-194, 267 (Mar./Apr. 3, 1996).
Foxlin, “Generalized architecture for simultaneous localization, auto-calibration, and map-building,” IEEE/RSJ Conf. on Intelligent Robots and Systems (IROS 2002), Oct. 2-4, 2002, Lausanne, Switzerland (Oct. 2002).
Foxlin, “Motion Tracking Requirements and Technologies,” Chapter 8, from Handbook of Virtual Environment Technology, Kay Stanney, Ed., Lawrence Erlbaum Associates (Jan. 2002) (extended draft version available for download at http://www.intersense.com/pages/44/119/).
Foxlin, “Pedestrian Tracking with Shoe-Mounted Inertial Sensors,” IEEE Computer Graphics and Applications, vol. 25, No. 6, pp. 38-46, (Nov./Dec. 2005).
Foxlin, et al., “An Inertial Head-Orientation Tracker with Automatic Drift Compensation for Use with HMD's,” Proceedings of the 1994 Virtual Reality Software and Technology Conference, Aug. 23-26, 1994, Singapore, pp. 159-173 (1994).
Foxlin, et al., “Constellation™: A Wide-Range Wireless Motion-Tracking System for Augmented Reality and Virtual Set Applications,” ACM SIGGRAPH 98, Orlando, Florida, Jul. 19-24, 1998.
Foxlin, et al., “Miniature 6-DOF Inertial System for Tracking HMDs,” SPIE vol. 3362, Helmet and Head-Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 13-14, 1998.
Foxlin, et al., “WearTrack: A Self-Referenced Head and Hand Tracker for Wearable Computers and Portable VR,” Proceedings of International Symposium on Wearable Computers (ISWC 2000), Oct. 16-18, 2000, Atlanta, GA (2000).
Foxlin, et al., “FlightTracker: A Novel Optical/Inertial Tracker for Cockpit Enhanced Vision, Symposium on Mixed and Augmented Reality,” Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Nov. 2-5, 2004, Washington, D.C. (2004).
Foxlin, et al., “Miniaturization, Calibration & Accuracy Evaluation of a Hybrid Self-Tracker,” IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2003), Oct. 7-10, 2003, Tokyo, Japan (2003).
Foxlin, et al., “VIS-Tracker: A Wearable Vision-Inertial Self-Tracker,” IEEE VR2003, Mar. 22-26, 2003, Los Angeles, CA (2003).
Frankle, “E3 2002: Roll O Rama,” Roll-o-Rama GameCube Preview at IGN, May 23, 2002 (accessed at http://cube.ign.com/articles/360/360662p1.html on Sep. 7, 2011).
Friedmann, et al., “Device Synchronization Using an Optimal Linear Filter,” SI3D '92: Proceedings of the 1992 symposium on Interactive 3D graphics, pp. 57-62 (Mar./Apr. 1992).
Friedmann, et al., “Synchronization in virtual realities,” M.I.T. Media Lab Vision and Modeling Group Technical Report No. 157, Jan. 1991 to appear in Presence, vol. 1, No. 1, MIT Press, Cambridge, MA (1991).
FrontSide Field Test, “Get This!” Golf Magazine, Jun. 2005, p. 36.
Fuchs, Eric, “Inertial Head-Tracking,” MS Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science (Sep. 1993).
Furniss, Maureen, “Motion Capture,” posted at http://web.mit.edu/m-i-t/articles/index—furniss.html on Dec. 19, 1999; paper presented at the Media in Transition Conference at MIT on Oct. 8, 1999 (accessed on Sep. 8, 2011).
gamecubicle.com News Article, Nintendo WaveBird Controller, http://www.gamecubicle.com/news-Nintendo—gamecube—wavebird—controller.htm, May 14, 2002 (accessed on Aug. 5, 2011).
Geen, et al., “New iMEMS® Angular-Rate-Sensing Gyroscope,” Analog Dialogue 37-03, pp. 12-14 (2003).
Gelmis, J., “Ready to Play, The Future Way,” Buffalo News, Jul. 23, 1996 (accessed from LexisNexis research database on Sep. 6, 2011).
Grimm, et al., “Real-Time Hybrid Pose Estimation from Vision and Inertial Data,” Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV'04), IEEE Computer Society (Apr. 2004).
Gyration Ultra Cordless Optical Mouse, Setting Up Ultra Mouse, Gyration Quick Start Card part No. DL-00071-0001 Rev. A. Gyration, Inc., Jun. 2003.
Gyration Ultra Cordless Optical Mouse, User Manual, Gyration, Inc., Saratoga, CA (2003).
Gyration, “Gyration MicroGyro 100 Developer Kit Data Sheet,” http://web.archive.org/web/19980708122611/www.gyration.com/html/devkit.ht- ml (Jul. 1998).
Gyration, Inc., GyroRemote GP240-01 Professional Series (Sep. 2003).
Harada, et al., “Portable Absolute Orientation Estimation Device with Wireless Network Under Accelerated Situation” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, Apr. 2004, pp. 1412-1417(Apr. 2004).
Harada, et al., “Portable orientation estimation device based on accelerometers, magnetometers and gyroscope sensors for sensor network,” Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2003), pp. 191-196, (Aug. 2003).
Haykin, et al., “Adaptive Tracking of Linear Time-Variant Systems by Extended RLS Algorithms, IEEE Transactions on Signal Processing,” vol. 45, No. 5, pp. 1118-1128 (May 1997).
Heath, “Virtual Reality Resource Guide AI Expert,” v9 n5 p32(14) (May 1994) (accessed at http://ftp.hitl.washington.edu/scivw-ftp/commercial/VR-Resource-Guide.txt on Jun. 17, 2010).
HiBall-3100—“Wide-Area, High-Precision Tracker and 3D Digitizer,” www.3rdtech.com/HiBall.htm (accessed on Jul. 29, 2011).
Hinckley, “Synchronous Gestures for Multiple Persons and Computers,” Paper presented at ACM UIST 2003 Symposium on User Interface Software & Technology in Vancouver, BC, Canada (Nov. 2003).
Hinckley, et al., “A Survey of Design Issues in Spatial Input,” Paper presented at 7th Annual ACM Symposium on User Interface Software and Technology (Nov. 1994).
Hinckley, et al., “Sensing Techniques for Mobile Interaction,” Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (ACM UIST), San Diego, CA, (Nov. 2000).
Hinckley, et al., “The VideoMouse: A Camera-Based Multi-Degree-of-Freedom Input Device” ACM UIST'99 Symposium on User Interface Software & Technology, CHI Letters vol. 1 No. 1, pp. 103-112 (Sep. 1999).
Hinckley, Ken, “Haptic Issues for Virtual Manipulation,” Ph.D. Dissertation University of Virginia, Dept. of Computer Science (Jan. 1997).
Hind, Nicholas, “Cosmos: A composition for Live Electronic Instruments Controlled by the Radio Baton and Computer Keyboard (Radio Baton and Magic Glove),” A Final Project Submitted to the Department of Music of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor Musical Arts/UMI Microform 9837187, Jan. 1998.
Hoffman, Hunter G., “Physically Touching Virtual Objects Using Tactile Augmentation Enhances the Realism of Virtual Environments,” IEEE Virtual Reality Annual International Symposium '98, Atlanta, Georgia, Mar. 14-18, 1998, 5 pages (Mar. 1998).
Hogue, Andrew, “MARVIN: A Mobile Automatic Realtime visual and Inertial tracking system,” Master's Thesis, York University (May 2003), available at http://www.cse.yorku.ca/˜hogue/marvin.pdf.
Holden, Maureen K. et al., “Use of Virtual Environments in Motor Learning and Rehabilitation,” Department of Brain and Cognitive Sciences, Handbook of Virtual Environments: Design, Implementation, and Applications, Chap. 49, pp. 999-1026, Stanney (ed), Lawrence Erlbaum Associates (Jan. 2002).
Holloway, Richard Lee, “Registration Errors in Augmented Reality Systems,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1995).
Immersion CyberGlove product, Immersion Corporation, http://www.cyberglovesystem.com (Jul. 2001).
Immersion, “Immersion Ships New Wireless CyberGlove(R) II Hand Motion-Capture Glove; Animators, Designers, and Researchers Gain Enhanced Efficiency and Realism for Animation, Digital Prototyping and Virtual Reality Projects,” Business Wire, Dec. 7, 2005 (available at http://ir.immersion.com/releasedetail.cfm?releaseid=181278).
Interfax Press Release, “Tsinghua Tongfang Releases Unique Peripheral Hardware for 3D Gaming,” Apr. 2002, 1 page. (Apr. 2002).
Intersense, “InterSense InertiaCube2 Devices,” (Specification) (image) (2001).
Intersense, “InterSense InertiaCube2 Manual for Serial Port Model” (2001).
Intersense, “IS-900 Product Technology Brief,” http://www.intersense.com/uploadedFiles/Products/White.sub.--Papers/IS900- .sub.--Tech.sub.--Overview.sub.--Enhanced.pdf (1999).
Intersense, “InterSense Inc., The New Standard in Motion Tracking,” Mar. 27, 2004, http://web.archive,org!web12004040500550Z/http://intersense.com (accessed on May 19, 2009).
Intersense, “InterSense Mobile Mixed Reality Demonstration,” YouTube Video dated Oct. 2006 on opening screen; uploaded by InterSenseInc. on Mar. 14, 2008 (accessed at http://www.youtube.com/watch?v=daVdzGKOnUE&feature=channel—page on Sep. 8, 2011; digital copy of video available upon request).
Intersense, “IS-900 Precision Motion Trackers,” Jun. 14, 2002, http://web.archive.org/web/20020614110352/http://www.isense.com/products/prec/is900/ (accessed on Sep. 8, 2011).
Intersense, Inc., “Comparison of Intersense IS-900 System and Optical Systems,” Whitepaper, Jul. 12, 2004., available at http://www.jazdtech.com/techdirect/research/InterSense-Inc.htm?contentSetId=60032939&supplierId=60018705.
Jacob, “Human-Computer Interaction—Input Devices,” ACM Computing Surveys, vol. 28, No. 1, pp. 177-179 (Mar. 1996); link to text of article provided at http://www.cs.tufts.edu/˜jacob/papers/.
Jakubowski, et al., “Increasing Effectiveness of Human Hand Tremor Separation Process by Using Higher-Order Statistics,” Measurement Science Review, vol. 1, No. 1 (2001).
Ji, H. “Study on the Infrared Remote-Control Lamp-Gesture Device,” Yingyong Jiguang/Applied Laser Technology, v. 17, n. 5, p. 225-227, Language: Chinese-Abstract only, Oct. 1997.
Jiang, “Capacitive position-sensing interface for micromachined inertial sensors,” Dissertation at Univ. of Cal. Berkeley, 2003.
Ju, et al., “The Challenges of Designing a User Interface for Consumer Interactive Television Consumer Electronics Digest of Technical Papers.,” IEEE 1994 International Conference on Volume, Issue, Jun. 21-23, 1994 pp. 114-115 (Jun. 1994) (downloaded from IEEE Xplore on Jul. 13, 2010).
Keir, et al., “Gesture-recognition with Nonreferenced Tracking,” IEEE Symposium on 3D User Interfaces, pp. 151-158, Mar. 25-26, 2006.
Kennedy, P.J. “Hand-held Data Input Device,” IBM Technical Disclosure Bulletin, vol. 26, No. 11, pp. 5826-5827, Apr. 1984.
Kessler, et al., “The Simple Virtual Environment Library: an Extensible Framework for Building VE Applications,” Presence, MIT Press vol. 9, No. 2. pp. 187-208 (Apr. 2000).
Kindratenko, “A Comparison of the Accuracy of an Electromagnetic and a Hybrid Ultrasound-Inertia Position Tracking System,” MIT Presence, vol. 10, No. 6, pp. 657-663, Dec. 2001.
Klein et al., “Tightly Integrated Sensor Fusion for Robust Visual Tracking,” British Machine Vision Computing, vol. 22, No. 10, pp. 769-776, Feb. 2004.
Kohlhase, “NASA Report, The Voyager Neptune travel guide,” Jet Propulsion Laboratory Publication 89-24, (Jun. 1989).
Kormos, D.W., et al., “Intraoperative, Real-Time 3-D Digitizer for Neurosurgical Treatment and Planning,” IEEE (Feb. 1993) (Abstract only).
Kosak, Dave, “Mind-Numbing New Interface Technologies,” Gamespy.com, Feb. 1, 2005 (accessed at http://www.gamespy.com/articles/584/584744p1.html on Aug. 31, 2011).
Krumm et al., “How a Smart Environment can Use Perception,” Paper presented at UBICOMP 2001 Workshop on Perception for Ubiquitous Computing (2001).
Kuipers, Jack B., “SPASYN—An Electromagnetic Relative Position and Orientation Tracking System,” IEEE Transactions on Instrumentation and Measurement, vol. 29, No. 4, pp. 462-466 (Dec. 1980).
Kunz, Andreas M. et al., “Design and Construction of a New Haptic Interface,” Proceedings of DETC '00, ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore, Maryland, Sep. 10-13, 2000.
La Scala, et al., “Design of an Extended Kalman Filter Frequency Tracker,” IEEE Transactions on Signal Processing, vol. 44, No. 3 (Mar. 1996).
Laughlin, et al., “Inertial Angular Rate Sensors: Theory and Applications,” SENSORS Magazine Oct. 1992.
Lee, et al., “Innovative Estimation Method with Measurement Likelihood for all-Accelerometer Type Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, No. 1, Jan. 2002.
Lee, et al., “Tilta-Pointer: the Free-Space Pointing Device,” Princeton COS 436 Project (Fall 2004); retrieved from Google's cache of http://www.milyehuang.com/cos436/project/specs.html on May 27, 2011.
Lee, et al., “Two-Dimensional Position Detection System with MEMS Accelerometer for Mouse Applications,” Design Automation Conference, 2001, Proceedings, 2001 pp. 852-857, Jun. 2001.
Leganchuk, et al., “Manual and Cognitive Benefits of Two-Handed Input: An Experimental Study,” ACM Transactions on Computer-Human Interaction, vol. 5, No. 4, pp. 326-259, Dec. 1998.
Liang, et al., “On Temporal-Spatial Realism in the Virtual Reality Environment,” ACM 1991 Symposium on User Interface Software and Technology (Nov. 1991).
Link, “Field-Qualified Silicon Accelerometers from 1 Milli g to 200,000 g,” Sensors, Mar. 1993.
Liu, et al., “Enhanced Fisher Linear Discriminant Models for Face Recognition,” Paper presented at 14th International Conference on Pattern Recognition (ICPR'98), Queensland, Australia (Aug. 1998).
Lobo, et al., “Vision and Inertial Sensor Cooperation Using Gravity as a Vertical Reference,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, No. 12, pp. 1597-1608, Dec. 2003.
Logitech, “Logitech Tracker—Virtual Reality Motion Tracker,” downloaded from http://www.vrealities.com/logitech.html on Jun. 18, 2010.
Logitech, Inc. “3D Mouse & Head Tracker Technical Reference Manual,” Nov. 1992.
Logitech's WingMan Cordless RumblePad Sets PC Gamers Free, Press Release, Sep. 2, 2001 (accessed at http://www.logitech.com/en-us/172/1373 on Aug. 5, 2011).
Louderback, J. “Nintendo Wii”, Reviews by PC Magazine, Nov. 13, 2006 (accessed at http://www.pcmag.com/article/print/193909 on Sep. 8, 2011).
Luethi, P. et al., “Low Cost Inertial Navigation System” (2000); downloaded from http://www.electronic -engineering.ch/study/ins/ins.html on Jun. 18, 2010.
Luinge, “Inertial sensing of human movement,” Thesis, University of Twente, Twente University Press, (Oct. 2002).
Luinge, et al., “Estimation of orientation with gyroscopes and accelerometers,” Proceedings of the First Joint BMES/EMBS Conference, 1999, vol. 2, p. 844 (Oct. 1999).
MacKenzie, et al., “A two-ball mouse affords three degrees of freedom,” Extended Abstracts of the CHI '97 Conference on Human Factors in Computing Systems, pp. 303-304. New York: ACM (Oct. 1997).
MacKinlay, “Rapid Controlled Movement Through a Virtual 3D Workspace,” ACM SIGGRAPH Computer Graphics archive, vol. 24, No. 4, pp. 171-176 (Aug. 1990).
MacLean, “Designing with Haptic Feedback”, Paper presented at IEEE Robotics and Automation (ICRA '2000) Conference in San Francisco, CA, Apr. 22-28, 2000.
Maggioni, C., “A novel gestural input device for virtual reality,” IEEE Virtual Reality Annual International Symposium (Cat. No. 93CH3336-5), 118-24, Jan. 1993.
Marks, Richard (Jan. 21, 2004) (Windows Media v7). EyeToy: A New Interface for Interactive Entertainment, Stanford University (accessed at http://lang.stanford.edu/courses/ee380/2003-2004/040121-ee380-100.wmv on Sep. 7, 2011; digital copy of video available upon request).
Marrin, “Possibilities for the Digital Baton as a General Purpose Gestural Interface,” Late-Breaking/Short Talks, Paper presented at CHI 97 Conference in Atlanta Georgia, Mar. 22-27, 1997 (accessed at http://www.sigchi.org/chi97/proceedings/short-talk/tm.htm on Aug. 5, 2011).
Marrin, Teresa et al., “The Digital Baton: A Versatile Performance Instrument,” Paper presented at International Computer Music Conference, Thessaloniki, Greece (Sep. 1997) (text of paper available at http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.1997.083).
Marti, et al., “Biopsy navigator: a smart haptic interface for interventional radiological gestures” Proceedings of the Computer Assisted Radiology and Surgery (CARS 2003) Conference, International Congress Series, vol. 1256, pp. 788-793 (Jun. 2003) (text of paper available at http://infoscience.epfl.ch/record/29966/files/CARS03-GM.pdf).
Masliah, “Measuring the Allocation of Control in 6 Degree of Freedom Docking Experiment,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems, The Hague, Netherlands (Apr. 2000).
Maybeck, “Stochastic Models, Estimation and Control,” vol. 1, Chapter 1, Introduction (1979).
Merians, et al., “Virtual Reality-Augmented Rehabilitation for Patients Following Stroke,” Physical Therapy, vol. 82, No. 9, Sep. 2002.
Merrill, “FlexiGesture: A sensor-rich real-time adaptive gesture and affordance learning platform for electronic music control,” Thesis, Massachusetts Institute of Technology, Jun. 2004.
Meyer, et al., “A Survey of Position Tracker,” MIT Presence, vol. 1, No. 2, pp. 173-200, (Nov. 1992).
Miller, Paul, “Exclusive shots of Goschy's prototype ‘Wiimote’ controllers,” Engadget, Jan. 15, 2008 (accessed at http://www.engadget.com/2008/01/15/exclusive-shots-of-goschys-prototype-wiimote-controllers/ on Aug. 31, 2011).
Miller, Ross, “Joystiq interview: Patrick Goschy talks about Midway, tells us he ‘made the Wii’,” Joystiq.com, Jan. 16, 2008 (accessed at http://www.joystiq.com/2008/01/16/joystiq-interview-patrick-goschy-talks-about-midway-tells-us-h/ on Aug. 31, 2011).
Mizell, “Using Gravity to Estimate Accelerometer Orientation,” Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC '03), IEEE Computer Society (Oct. 2003).
Morgan, C., “Still chained to the overhead projector instead of the podium,” (TV Interactive Corp's LaserMouse Remote Pro infrared mouse) (clipboard) (brief article) (product announcement) Government Computer News, Jun. 13, 1994.
Morris, “Accelerometry—a technique for the measurement of human body movements,” J Biomechanics vol. 6, pp. 729-736 (Nov. 1973).
Moser, “Low Budget Inertial Navigation Platform (2000),” www.tmoser.ch/typo3/11.0.html (accessed on Jul. 29, 2011).
Mulder, “Human movement tracking technology,” Technical Report, NSERC Hand Centered Studies of Human Movement project, available through anonymous ftp in fas.sfu.ca:/pub/cs/graphics/vmi/HMTT.pub.ps.Z., Burnab, B.C, Canada: Simon Fraser University (Jul. 1994).
Myers, et al., “Interacting at a Distance: Measuring the Performance of Laser Pointers and Other Devices,” CHI 2002, Apr. 2002.
Naimark, et al., “Encoded LED System for Optical Trackers,” Paper presented at Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2005), Oct. 5-8, 2005, Vienna Austria (2005) (electronic version of text of paper available for download at http://www.intersense.com/pages/44/129/).
Naimark, et al., “Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial Self-Tracker,” IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2002), Darmstadt, Germany (Sep./Oct. 2002).
Navarrette, et al., “Eigenspace-based Recognition of Faces: Comparisons and a new Approach,” Paper Presented at 11th International Conference on Image Analysis and Processing (Sep. 2001).
New Strait Times Press Release, “Microsoft's New Titles,” Mar. 1998, 1 page.
News Article, “New Game Controllers Using Analog Devices' G-Force Tilt to be Featured at E3”, Norwood, MA (May 10, 1999) (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 17, 2010).
Nintendo Tilt Controller Ad, Electronic Gaming Monthly, 1994, 1 page.
Nintendo, Game Boy Advance SP System Instruction Booklet (2003).
Nintendo, Nintendo Game Boy Advance System Instruction Booklet (2001-2003).
Nintendo, Nintendo Game Boy Advance Wireless Adapter, Sep. 26, 2003.
Nishiyama, “A Nonlinear Filter for Estimating a Sinusoidal Signal and its Parameters in White Noise: On the Case of a Single Sinusoid,” IEEE Transactions on Signal Processing, vol. 45, No. 4, pp. 970-981 (Apr. 1997).
Nishiyama, “Robust Estimation of a Single Complex Sinusoid in White Noise-H∞ Filtering Approach,” IEEE Transactions on Signal Processing, vol. 47, No. 10, pp. 2853-2856 (Oct. 1999).
Odell, “An Optical Pointer for Infrared Remote Controllers,” (1995) (downloaded from IEEE Xplore on Jul. 7, 2010).
Ojeda, et al., “No GPS? No Problem!” University of Michigan Develops Award-Winning Personal Dead-Reckoning (PDR) System for Walking Users, available at http://www.engin.umich.edu/research/mrl/urpr/In—Press/P135.pdf, (2004 or later).
Omelyan, “On the numerical integration of motion for rigid polyatomics: The modified quaternion approach” Computers in Physics, vol. 12 No. 1, pp. 97-103 (Jan./Feb. 1998).
Ovaska, “Angular Acceleration Measurement: A Review,” Paper presented at IEEE Instrumentation and Measurement Technology Conference, St. Paul, MN, May 18-21, 1998.
Pai, et al., “The Tango: A Tangible Tangoreceptive Whole-Hand Interface,” Paper presented at Joint Eurohaptics and IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Pisa, Italy, Mar. 18-20, 2005.
Pajama Sam: No Need to Hide When It's Dark Outside Infogames, Sep. 6, 2002.
Paley, W. Bradford, “Interaction in 3D Graphics,” SIGGRAPH Computer Graphics Newsletter, col. 32, No. 4 (Nov. 1998) (accessed at http://www.siggraph.org/publications/newsletter/v32n4/contributions/paley.html on Aug. 2, 2011).
Paradiso, et al., “Interactive Therapy with Instrumented Footwear,” CHI 2004, Apr. 24-29, 2004, Vienna, Austria.
Park, Adaptive control strategies for MEMS gyroscopes (Dissertation), Univ. Cal. Berkley (Dec. 2000).
PC World, “The 20 Most Innovative Products of the Year,” Dec. 27, 2006 (accessed at http://www.pcworld.com/printable/article/id,128176/printable.html on Aug. 2, 2011).
PCTracker, Technical Overview, available at http://www.est-kl.com/fileadmin/media/pdf/InterSense/PCTracker—Tech—Overview.pdf (date unknown).
Perry, Simon, “Nintendo to Launch Wireless Game Boy Adaptor,” Digital Lifestyles, http://digital-lifestyles.info/2003/09/26/Nintendo-to-launch-wireless-game-boy-adaptor/, Sep. 26, 2003 (accessed on Jul. 29, 2011).
Phillips, “Forward/Up Directional Incompatibilities During Cursor Placement Within Graphical User Interfaces,” Ergonomics, vol. 48, No. 6, May 15, 2005.
Phillips, “LPC2104/2105/2106, Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM,” 32 pages, Dec. 22, 2004.
Phillips, “TECHWATCH: On the Right Track: A unique optical tracking system gives users greater freedom to explore virtual worlds,” Computer Graphics World, vol. 23, Issue 4 (Apr. 2000).
Pierce, et al., “Image Plane Interaction Techniques in 3D Immersive Environments,” Paper presented at 1997 symposium on Interactive 3D graphics, Providence, RI (Apr. 1997).
Pilcher, “AirMouse Remote Controls,” IEEE Conference on Consumer Electronics (Jun. 1992).
Pique, “Semantics of Interactive Rotations,” Interactive 3D Graphics, Proceedings of the 1986 workshop on Interactive 3D graphics, pp. 259-269 (Oct. 1986).
Piyabongkarn, “The Development of a MEMS Gyroscope for Absolute Angle Measurement,” Dissertation, Univ. Minnesota, Nov. 2004 (Abstract only).
Polhemus, “Polhemus 3Space Fastrak devices” (image) (2001).
PowerGlove product Program Guide, Mattel, 1989 (Text of Program Guide provided from http://hiwaay.net/˜lkseitz/cvtg/power—glove.shtml; the text was typed in by Lee K. Sietz; document created Aug. 25, 1988; accessed on Aug. 2, 2011).
PR Newswire, “Five New Retailers to Carry Gyration's Gyropoint Point and Gyropoint Pro,” Jul. 8, 1996 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 18, 2010).
PR Newswire, “Three-Axis MEMS-based Accelerometer From STMicroelectronics Targets Handheld Terminals,” Feb. 18, 2003 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Aug. 3, 2011).
Pryor, et al., “A Reusable Software Architecture for Manual Controller Integration,” IEEE Conf. on Robotics and Automation, Univ of Texas, pp. 3583-3588 (Apr. 1997).
Raab, et al., “Magnetic Position and Orientation Tracking System,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 5, pp. 709-718 (Sep. 1979).
Radica Legends of the Lake™ Instruction Manual (2003).
Regan, “Smart Golf Clubs,” baltimoresun.com, Jun. 17, 2005.
Rekimoto, “Tilting Operations for Small Screen Interfaces,” Tech Note presented at 9th Annual ACM Symposium on User Interface Software and Technology (UIST'96) (Nov. 1996) (available for download at http://www.sonycsl.co.jp/person/rekimoto/papers/uist96.pdf.
Response filed May 3, 2010 to Office Action dated Feb. 5, 2010 for U.S. Appl. No. 12/222,787, filed Aug. 15, 2008, now U.S. Pat. No. 7,774,155 (including Rule 1.132 Declaration by Steve Mayer).
Reunert, “Fiber-Optic Gyroscopes: Principles and Applications,” SENSORS, Aug. 1993, pp. 37-38.
Ribo, et al., “Hybrid Tracking for Outdoor Augmented Reality Applications,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 54-63, Nov./Dec. 2002.
Riviere, et al., “Adaptive Canceling of Physiological Tremor for Improved Precision in Microsurgery,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 7, pp. 839-846 (Jul. 1998).
Roberts, “The Lincoln Wand,” 1966 Proceedings of the Fall Joint Computer Conference (1966), available for electronic download at http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS, Apr. 1966, 105.
Robinette, et al., “Implementation of Flying, Scaling, and Grabbing in Virtual Worlds,” ACM Symposium (Jun. 1992).
Robinette et al., “The Visual Display Transformation for Virtual Reality,” University of North Carolina at Chapel Hill (Sep. 1994).
Roetenberg, “Inertial and magnetic sensing of human motion,” Thesis, University of Twente (May 2006).
Roetenberg, et al., “Inertial and Magnetic Sensing of Human Movement Near Ferromagnetic Materials,” Paper presented at Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Mar. 2003 (available at http://www.xsens.com/images/stories/PDF/Inertial%20and%20and%20magnetic%20sensing%20of%20human%20movement%20near%20ferromagnetic%20materials.pdf.
Rolland, et al., “A Survey of Tracking Technology for Virtual Environments,” University of Central Florida, Center for Research and Education in Optics Lasers (CREOL) (Jan. 2001).
Romer, Kay et al., Smart Playing Cards: A Ubiquitous Computing Game, Personal and Ubiquitous Computing, Dec. 2002, vol. 6, Issue 5-6, pp. 371-377, London, England.
Rothman, Wilson, “Unearthed: Nintendo's Pre-Wiimote Prototype,” gizmodo.com, Aug. 29, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/unearthed-nintendo-2001-prototype-motion+sensing-one+handed-controller-by-gyration-294642.php on Aug. 31, 2011).
Rothman, Wilson, “Wii-mote Prototype Designer Speaks Out, Shares Sketchbook,” Gizmodo.com, Aug. 30, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/wii+mote-prototype-designer-speaks-out-shares-sketchbook-295276.php on Aug. 31, 2011).
Sakai, et al., “Optical Spatial Filter Sensor for Ground Speed,” Optical Review, vol. 2, No. 1, pp. 65-67 (Jan. 1995).
Santiago, Alves, “Extended Kalman filtering applied to a full accelerometer strapdown inertial measurement unit,” M.S. Thesis, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, Santiago (Sep. 1992).
Satterfield, Shane, “E3 2002: Nintendo announces new GameCube games,” GameSpot, http://www.gamespot.com/gamecube/action/rollorama/news/2866974/e3-2002-nintendo-announces-new-gamecube-games, May 21, 2002 (accessed on Aug. 11, 2011).
Sawada, et al., “A Wearable Attitude-Measurement System Using a Fiberoptic Gyroscope,” MIT Presence, vol. 11, No. 2, pp. 109-118, Apr. 2002.
Saxena, et al., “In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-Static States,” Berlin: Springer-Verlag, pp. 595-601 (2005).
Sayed, “A Framework for State-Space Estimation with Uncertain Models,” IEEE Transactions on Automatic Control, vol. 46, No. 7, Jul. 2001.
Schofield, Jack, et al., Games reviews, “Coming up for airpad,” The Guardian (Feb. 3, 2000) (accessed at http://www.guardian.co.uk/technology/2000/feb/03/online supplement5/print on Jun. 18, 2010).
Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Instruction Manual, Optional Equipment Manual (1994).
Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Photos of baseball bat (1994).
Selectech Airmouse, “Mighty Mouse”, Electronics Today International, p. 11 (Sep. 1990).
Shoemake, Ken, “Quaternions,” available online at http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf (date unknown).
Skiens, Mike, “Nintendo Announces Wireless GBA Link”, Bloomberg, Sep. 25, 2003 (accessed at http://www.nintendoworldreport.com/news/9011).
Smartswing, “SmartSwing: Intelligent Golf Clubs that Build a Better Swing,” http://web.archive.org/web/20040728221951/http://www.smartswinggolf.com/ (accessed on Sep. 8, 2011).
Smartswing, “The SmartSwing Learning System Overview,” Apr. 26, 2004, http://web.archive.org/web/2004426215355/http://www.smartswinggolf.com/tls/index.html (accessed on Jul. 29, 2011).
Smartswing, “The SmartSwing Learning System: How it Works,” 3 pages, Apr. 26, 2004, http://web.archive.org/web/20040426213631/http://www.smartswinggolf.com/tls/how—it—works.html (accessed on Jul. 29, 2011).
Smartswing, “The SmartSwing Product Technical Product: Technical Information,” Apr. 26, 2004, http://web.archive.org/web/20040426174854/http://www.smartswinggolf.com/products/technical—info.html (accessed on Jul. 29, 2011).
Smartswing, Training Aid, Austin, Texas, Apr. 2005.
Sorenson, et al., “The Minnesota Scanner: A Prototype Sensor for Three-Dimensional Tracking of Moving Body Segments,” IEEE Transactions on Robotics and Animation, vol. 5, No. 4 (Aug. 1989).
Star Wars Action Figure with CommTech Chip by Hasbro (1999).
Stars Wars Episode 1 CommTech Reader Instruction Manual (1998).
Stovall, “Basic Inertial Navigation,” NAWCWPNS TM 8128, Navigation and Data Link Section, Systems Integration Branch (Sep. 1997).
Sulic, “Logitech Wingman Cordless Rumblepad Review,” Gear Review at IGN, Jan. 14, 2002 (accessed at http://gear.ign.com/articles/317/317472p1.html on Aug. 1, 2011).
Sutherland, “A Head-Mounted Three Dimensional Display,” Paper presented at AFIPS '68 Fall Joint Computer Conference, Dec. 9-11, 1968; available at www.cise.ufl.edu/˜lok/teaching/dcvef05/papers/sutherland-headmount.pdf.
Sutherland, Ivan E., “Sketchpad: A Man-Machine Graphical Communication System,” Proceedings of the AFIPS Spring Joint Computer Conference, Detroit, Michigan, May 21-23, 1963, pp. 329-346 (source provided is reprinting of text accessed at http://www.guidebookgallery.org/articles/sketchpadamanmachinegraphicalcommunicationsystem on Sep. 8, 2011).
Tech Designers Rethink Toys: Make Them Fun Wall Street Journal, Dec. 17, 2001.
Templeman, James N., “Virtual Locomotion: Walking in Place through Virtual Environments,” Presence, vol. 8, No. 6, pp. 598-617, Dec. 1999.
Timmer, “Modeling Noisy Time Series: Physiological Tremor,” International Journal of Bifurcation and Chaos, vol. 8, No. 7 (1998).
Timmer, et al., “Characteristics of Hand Tremor Time Series,” Biological Cybernetics, vol. 70, No. 1, pp. 75-80 (May 1993).
Timmer, et al., “Cross-Spectral Analysis of Tremor Time Series,” International Journal of Bifurcation and Chaos, vol. 10, No. 11 pp. 2595-2610 (Nov. 2000); text available at http://www.fdmold.uni-freiburg.de/groups/timeseries/tremor/pubs/cs—review.pdf.
Timmer, et al., “Pathological Tremors: Deterministic Chaos or Nonlinear Stochastic Oscillators?” Chaos, vol. 10, No. 1 pp. 278-288 (Mar. 2000).
Timmer, et al., Cross-Spectral Analysis of Physiological Tremor and Muscle Activity: II Application to Synchronized Electromyogram, Biological Cybernetics, vol. 78 (Jun. 1998) (obtained from http://arxiv.org/abs/chao-dyn/9805012).
Titterton, et al., “Strapdown Inertial Navigation Technology,” Peter Peregrinus Ltd., pp. 1-56 and pp. 292-321 (May 1997).
Toy Designers Use Technology in New Ways as Sector Matures, WSJ.com, Dec. 17, 2001.
Traq 3D, “Healthcare,” http: //www.traq3d.com/Healthcare/Healthcare.aspx (accessed on Jan. 21, 2010).
Ulanoff, Lance, “Nintendo's Wii is the Best Product Ever,” PC Magazine, Jun. 21, 2007 (accessed at http://www.pcmag.com/print—article2/0,1217,a=210070,00.asp?hidPrint=true on Aug. 1, 2011).
UNC Computer Science Department, “News & Notes from Sitterson Hall,” UNC Computer Science, Department Newsletter, Issue 24, Spring 1999 (Apr. 1999) (accessed at http://www.cs.unc.edu/NewsAndNotes/Issue24/ on Jun. 18, 2010).
Urban, “BAA 96-37 Proposer Information,” DARPA/ETO (1996) (accessed at http://www.fbodaily.com/cbd/archive/1996/08(August)/19-Aug-1996/Aso1001.htm on Jul. 27, 2010).
US Dynamics Corp, “Spinning Mass Mechanical Gyroscopes,” Aug. 2006.
US Dynamics Corp, “The Concept of ‘Rate’, (more particularly, angular rate pertaining to rate gyroscopes) (rate gyro explanation),” Aug. 2006.
US Dynamics Corp, “US Dynamics Model 475 Series Rate Gyroscope Technical Brief,” Dec. 2005.
US Dynamics Corp, “US Dynamics Rate Gyroscope Interface Brief (rate gyro IO)” Aug. 2006.
Van Den Bogaard, Thesis, “Using linear filters for real-time smoothing of rotational data in virtual reality application,” dated Aug. 2, 2004, available at http://www.science.uva.nl/research/ias/alumni/m.sc.theses/theses/RobvandenBogaarad.pdf.
Van Laerhoven et al., “Using an Autonomous Cube for Basic Navigation and Input,” Proceedings of the 5th International Conference on Multimodal interfaces, Vancouver, British Columbia, Canada, pp. 203-210, Nov. 5-7, 2003.
Van Rheeden, et al., “Noise Effects on Centroid Tracker Aim Point Estimation,” IEEE Trans. on Aerospace and Electronic Systems, vol. 24, No. 2, pp. 177-185 (Mar. 1988).
Vaz, et al., “An Adaptive Estimation of Periodic Signals Using a Fourier Linear Combiner,” IEEE Transactions on Signal Processing, vol. 42, No. 1, pp. 1-10 (Jan. 1994).
Verplaetse, “Inertial-Optical Motion-Estimating Camera for Electronic Cinematography,” Masters Thesis, MIT, Media Arts and Sciences (Jun. 1997).
Villoria, Gerald, “Hands on Roll-O-Rama Game Cube,” Game Spot, http://www.gamespot.com/gamecube/action/rollorama/news.html?sid=2868421&com—act=convert&om—clk=newsfeatures&tag=newsfeatures;title;1&m, May 29, 2002 (accessed on Jul. 29, 2011).
Virtual Fishing, Operational Manual, 2 pages, Tiger Electronics, Inc. (1998).
Vorozcovs, et al., “The Hedgehog: A Novel Optical Tracking Method for Spatially Immersive Displays,” MIT Presence, vol. 15, No. 1, pp. 108-121, Feb. 2006.
VTI, Mindflux-Vti CyberTouch, http://www.mindflux.com/au/products/vti/cybertouch.html (1996).
Wang, et al., “Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras,” Paper presented at SPIE 1990 Technical Symposium on Optical Engineering and Photonics in Aerospace Sensing (Apr. 1990).
Ward, et al., “A Demonstrated Optical Tracker With Scalable Work Area for Head-Mounted Display Systems,” Paper presented at 1992 Symposium on Interactive 3D Graphics (Mar. 1992).
Watt, Alan, 3D Computer Graphics, Chapter 1: “Mathematical fundamentals of computer graphics,” 3rd ed. Addison-Wesley, pp. 1-26 (Dec. 2000).
Welch, “Hawkeye Zooms in on Mac Screens with Wireless Infrared Penlight Pointer,” MacWeek, May 3, 1993 (excerpt of article accessed at http://www.accessmylibrary.com/article/print/1G1-13785387 on Jun. 18, 2010).
Welch, et al., “High-Performance Wide-Area Optical Tracking: The HiBall Tracking System,” MIT Presence: Teleoperators & Virtual Environments (Feb. 2001).
Welch, et al., “SCAAT: Incremental Tracking with Incomplete Information,” Paper presented at SIGGRAPH 97 Conference on Computer Graphics and Interactive Techniques (Aug. 1997), available at http://www.cs.unc.edu/˜welch/media/pdf/scaat.pdf.
Welch, et al., “The HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented Environments,” Paper presented at 1999 Symposium on Virtual Reality Software and Technology in London, Dec. 20-22, 1999, available at http://www.cs.unc.edu/˜welch/media/pdf/VRST99—HiBall.pdf.
Welch, et al., “Complementary Tracking and Two-Handed Interaction for Remote 3D Medical Consultation with a PDA,” Paper presented at Trends and Issues in Tracking for Virtual Environments Workshop at IEEE Virtual Reality 2007 Conference (Mar. 2007), available at http://www.cs.unc.edu/˜welch/media/pdf/Welch2007—TwoHanded.pdf.
Welch, et al., “Motion Tracking: No Silver Bullet, but a Respectable Arsenal,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 24-38 (Nov./Dec. 2002), available at http://www.cs.unc.edu/˜tracker/media/pdf/cga02—welch—tracking.pdf.
Welch, Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking System, University of North Carolina Chapel Hill Department of Computer Science, TR 95-048 (1995).
Widrow, et al., “Fundamental Relations Between the LMS Algorithm and the DFT,” IEEE Transactions on Circuits and Systems, vol. CAS-34, No. 7 (Jul. 1987).
Wiley, M., “Nintendo Wavebird Review,” Jun. 11, 2002, http://gear.ign.com/articles/361/361933p1.html (accessed on Aug. 1, 2011).
Williams, et al., “Physical Presence: Palettes in Virtual Spaces,” Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3639, No. 374-384 (May 1999), available at http://www.fakespacelabs.com/papers/3639—46—LOCAL.pdf.
Williams, et al., “Implementation and Evaluation of a Haptic Playback System,” vol. 3, No. 3, Haptics-e, May 2004.
Williams, et al., “The Virtual Haptic Back Project,” presented at the IMAGE 2003 Conference, Scottsdale, Arizona, Jul. 14-18, 2003.
Wilson, “Wireless User Interface Devices for Connected Intelligent Environments,” http://research.microsoft.com/en-us/um/people/awilson/publications/old/ubicomp%202003.pdf (Oct. 2003).
Wilson, “WorldCursor: Pointing in Intelligent Environments with the World Cursor,” http://www.acm.org/uist/archive/adjunct/2003/pdf/demos/d4-wilson.pdf (2003).
Wilson, “XWand: UI for Intelligent Environments,” http://research.microsoft.com/en-us/um/people/awilson/wand/default.htm, Apr. 2004.
Wilson, et al., “Demonstration of the Xwand Interface for Intelligent Spaces,” UIST '02 Companion, pp. 37-38 (Oct. 2002).
Wilson, et al., “Gesture Recognition Using the Xwand,” http://www.ri.cmu.edu/pub—files/pub4/wilson—daniel—h—2004—1/wilson—daniel—h—2004—1.pdf (Apr. 2004).
Wilson, et al., “Xwand: UI for Intelligent Spaces,” Paper presented at CHI 2003 Conference, Ft. Lauderdale, FL, Apr. 5-10, 2003, available at http://research.microsoft.com/en-us/um/people/awilson/publications/WilsonCHI2003/CHI%202003%20XWand.pdf (2003).
Wired Glove, Wikipedia article, 4 pages, http://en.wikipedia.org/wiki/Wired—glove, Nov. 18, 2010.
Wormell, “Unified Camera, Content and Talent Tracking in Digital Television and Movie Production,” Presented at NAB 2000, Las Vegas, NV, Apr. 8-13, 2000 (available for download at http://www.intersense.com/pages/44/116/) (2003).
Wormell, et al., “Advancements in 3D Interactive Devices for Virtual Environments,” Presented at the Joint International Immersive Projection Technologies (IPT)/Eurographics Workshop on Virtual Environments (EGVE) 2003 Workshop, Zurich, Switzerland, May 22-23, 2003 (available for download at http://www.intersense.com/pages/44/123/) (2003).
Worringham, et al., “Directional Stimulus-Response Compatibility: A Test of Three Alternative Principles,” Ergonomics, vol. 41, Issue 6, pp. 864-880 (Jun. 1998).
Yang, et al., “Implementation and Evaluation of ‘Just Follow Me’: An Immersive, VR-Based, Motion-Training System, MIT Presence: Teleoperators and Virtual Environments,” vol. 11, No. 3, at 304-23 (MIT Press), Jun. 2002.
You, et al., “Hybrid Inertial and Vision Tracking for Augmented Reality Registration,” http://graphics.usc.edu/cgit/pdf/papers/Vr1999.PDF (Mar. 1999).
You, et al., “Orientation Tracking for Outdoor Augmented Reality Registration,” IEEE Computer Graphics and Applications, IEEE, vol. 19, No. 6, pp. 36-42 (Nov. 1999).
Youngblut, et al., “Review of Virtual Environment Interface Technology,” Institute for Defense Analyses (Mar. 1996).
Yun, et al., “Recent Developments in Silicon Microaccelerometers,” SENSORS, 9(10) University of California at Berkeley, Oct. 1992.
Zhai, “Human Performance in Six Degree of Freedom Input Control,” Ph.D. Thesis, University of Toronto (1995).
Zhai, “User Performance in Relation to 3D Input Device Design,” Computer Graphics 32(4), pp. 50-54, Nov. 1998; text downloaded from http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html on Aug. 1, 2011.
Zhou, et al., “A survey—Human Movement Tracking and Stroke Rehabilitation,” Technical Report: CSM-420, ISSN 1744-8050, Dept. of Computer Sciences, University of Essex, UK, Dec. 8, 2004.
Zhu et al., “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 2, Jun. 2004.
Zowie Playsets, http://www.piernot.com/proj/zowie/ (accessed on Jul. 29, 2011).
“Kirby Tilt ‘n’ Tumble 2” http://www.unseen64.net/2008/04/08/koro-koro-kirby-2-kirby-tilt-n-tumble-2-gc-unreleased/, Apr. 8, 2008 (accessed on Jul. 29, 2011).
“Emerald Forest Toys” [online] [retrieved on Sep. 24, 2005], retrieved from Internet <URL:http://www.pathworks.net/print—eft.html>.
Boulanger et al., “The 1997 Mathews Radio Baton and Improvisation Modes,” Music Synthesis Department, Berklee College of Music (1997).
Complainants' Petition for Review, dated Sep. 17, 2012.
Complainants' Response to Commission's Request for Statements on the Public Interest, dated Oct. 10, 2012.
Complainants' Response to Respondents' Review, dated Sep. 25, 2012.
Creative Kingdoms LLC v. ITC, The United States Court of Appeals for the Federal Circuit, No. 2014-1072, dated Dec. 19, 2014.
Exintaris, et al., “Ollivander's Magic Wands : HCI Development,” available at http://www.cim.mcgill.ca/˜jer/courses/hci/project/2002/www.ece.mcgill.ca/%257Eeurydice/hci/notebook/final/MagicWand.pdf (2002).
Expert Report of Branimir R. Vojcic, Ph.D. on Behalf of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Nov. 17, 2011.
Expert Report of Kenneth Holt on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011.
Expert Report of Nathaniel Polish, Ph.D. on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011.
IGN Article—Mad Catz Rumble Rod Controller, Aug. 20, 1999.
Initial Determination on Violation of Section 337 and Recommended Determination on Rememdy and Bond, dated Aug. 31, 2012.
Marrin, Teresa, “Toward an Understanding of Musical Gesture: Mapping Expressive Intention with the Digital Baton,” Masters Thesis, Massachusetts Institute of Technology, Program in Media Arts and Sciences (1996).
Nintendo N64 Controller Pak Instruction Booklet, 1997.
Paradiso, et al., “Musical Applications of Electric Field Sensing”, available at http://pubs.media.mit.edu/pubs/papers/96—04—cmj.pdf (1996).
Paradiso, Joseph A., “The Brain Opera Technology: New Instruments and Gestural Sensors for Musical Interaction and Performance” (Nov. 1998) available at http://pubs.media.mit.edu/pubs/papers/98—3—JNMR—Brain—Opera.pdf).
Petition of the Office of Unfair Import Investigations for Revew-in-Part of the Final Initial Determination, dated Sep. 17, 2012.
Pre-Hearing Statement of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Jan. 13, 2012.
Public Version of Commission Opinion from United States International Trade Commission, dated Oct. 28, 2013.
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Contingent Petition for Review of Initial Determination, dated Sep. 17, 2012.
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Objections and Supplemental Responses to Complainants Creative Kingdoms, LLC and New Kingdoms, LLC's Interrogatory Nos. 35, 44, 47, 53, and 78, dated Oct. 13, 2011.
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Response to Complainants' and Staff's Petitions for Review, dated Sep. 25, 2012.
Response of the Office of Unfair Import Investigations to the Petitions for Review, dated Sep. 25, 2012.
Response to Office Action dated Sep. 18, 2009 for U.S. Appl. No. 11/404,844.
Specification of the Bluetooth System—Core v1.0b, Dec. 1, 1999.
Verplaetse,“Inertial Proprioceptive Devices: Self-Motion Sensing Toys and Tools,” IBM Systems Journal, vol. 35, Nos. 3&4 (Sep. 1996).
Kirby Tilt ‘n’ Tumble (GCN-GBA Spaceworld 2001, You Tube Video, uploaded by adonfjv on Sep. 5, 2006 (accessed at http://www.youtube.com/watch?v=5rLhlwp2iGk on Sep. 7, 2011).
Resnick, et al., “Digital Manipulatives: New Toys to Think With,” Chi 98; Apr. 1998; pp. 281-287.
Related Publications (1)
Number Date Country
20150290545 A1 Oct 2015 US
Continuations (6)
Number Date Country
Parent 14464652 Aug 2014 US
Child 14720080 US
Parent 13801955 Mar 2013 US
Child 14464652 US
Parent 13469443 May 2012 US
Child 13801955 US
Parent 13037200 Feb 2011 US
Child 13469443 US
Parent 11777874 Jul 2007 US
Child 13037200 US
Parent 11274760 Nov 2005 US
Child 11777874 US
Continuation in Parts (3)
Number Date Country
Parent 14720080 May 2015 US
Child 14751026 US
Parent 10954025 Sep 2004 US
Child 11274760 US
Parent 10397054 Mar 2003 US
Child 10954025 US