Many industries, such as electric utilities, mining, water, etc., employ a vast number of assets for operation. In an example, an asset, such as an industrial asset, comprises infrastructure, operating equipment, tangible equipment, physical equipment, processing equipment, etc. An industry may employ an aging workforce having substantial knowledge about assets of the industry (e.g., an electric utility company may employ technicians that have considerable knowledge and experience diagnosing, repairing, replacing, and/or making other decisions regarding electrical assets, such as transformers or circuit breakers). The industry may lose asset experts and their knowledge to retirement and/or attrition. Newer employees may lack such knowledge with respect to aging legacy equipment. Thus, the industry may spend substantial amounts of resources in hiring and training new employees that manage assets.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In an embodiment of providing an interactive game interface for asset health management, a knowledge module associated with asset health management may be identified. For example, an electrical utility knowledge module may comprise a variety of information and/or algorithms, such as health diagnosis information regarding assets (e.g., how to diagnose a transformer; how often to remotely test a circuit breaker; determining whether an asset is overloaded or is operating at a degraded state; etc.), maintenance recommendation information (e.g., repair intervals for a transmission line; replacement intervals for a circuit breaker; conditions under which a repair crew is to be sent out; conditions under which an asset is to continue operation; etc.), criticality information (e.g., economic impact of a decision to repair or continue operation of an asset; whether continued operation of an asset will damage the asset; environmental impact of a decision; whether a decision for an asset will impact other assets; costs of a decision; benefits of a decision; etc.), and/or a wide variety of other information related to assets and/or asset health management.
An asset health management scenario may be generated based upon the knowledge module. The asset health management scenario may detail information about a scenario for which a user is to provide an action plan (e.g., the user may “play” the asset health management scenario as an interactive game, such as for training purposes). For example, the asset health management scenario may display a visualization of one or more assets (e.g., a transformer with liquid leaking from the bottom), situational information about the one or more assets (e.g., a report that a burning smell was noticed near the transformer; a reported power outage; an alarm; etc.), and/or one or more action plans that may be selected by the user (e.g., send a repair crew; continue operation; schedule maintenance in a month; etc.). In this way, the asset health management scenario may be provided through an interactive game interface to users for interactive gameplay.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways in which one or more aspects may be employed. Other aspects, advantages, and novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are generally used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide an understanding of the claimed subject matter. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, structures and devices are illustrated in block diagram form in order to facilitate describing the claimed subject matter.
As provided herein, an interactive game interface for asset health management is provided. Asset health management scenarios, corresponding to diagnostics, maintenance recommendations, and/or optimizing decision making with regards to assets, may be provided through the interactive game interface in order to train users that participate in such asset health management scenarios. Knowledge related to asset health management may be captured from users that participate in asset health management scenarios. An asset health management scenario may provide an interactive training experience where a user may interactively learn how to understand asset conditions, diagnose causes of such conditions, predict outcomes related to such conditions, and/or implement action plans for assets. The asset health management scenario may leverage information within knowledge modules associated with asset health management so that such information may be passed along to users of the interactive game interface (e.g., an asset health management scenario may involve an asset with which an employee is to be trained). User interaction data with the interactive game interface, such as action plans, may be used as feedback in order to update asset management scenarios and/or knowledge modules (e.g., a user may create an action plan that may address a scenario in a unique and/or efficient manner not already provided by information within a knowledge module). In this way, training content may be continually refreshed (e.g., asset health management scenarios may be created and/or updated based upon updates to knowledge modules derived from real-life information), training sessions may be improved (e.g., a user may become more engaged when participating in a game rather than merely listening to instructions on best practices), training effectiveness may be increased (e.g., a user may be provided with dynamic and diverse scenarios that may otherwise require years of shadowing an expert), training content may be dynamically updated based upon how users solve asset health management scenarios, etc.
An embodiment of providing an interactive game interface for asset health management is illustrated by an exemplary method 100 of
At 104, an asset health management scenario may be generated based upon the knowledge module. The asset health management scenario may be generated as an interactive game where a user may be provided with various scenario information relating to an asset (e.g., a visualization of an industrial asset environment comprising the asset; a report detailing a bystander seeing smoke from the asset or other information that may provide contextual information for the scenario; various diagnosis plans that the user may implement (e.g., a diagnosis plan may correspond to at least one of a diagnosis step, a prognosis prediction, or an asset profile); action plans that the user may selective implement; consequences that may be provided for an action plan implemented by the user; and/or other interactive game information such as rewards, rankings, or other information). In an example, an asset type of the asset may be identified (e.g., a manufacturer and/or model information for an asset used by an industry company that employs the user or that uses the user as a contractor). The asset health management scenario may be generated based upon the asset type. In this way, the asset health management scenario may be tailored to assets employed by a particular industry company. In an example, an operating condition of the asset may be identified (e.g., a temperature associated with a location of the asset; a load supplied to a customer of the asset; available equipment owned by the industry company; an operating budget of the industry company; etc.). The asset health management scenario may be generated based upon the operating condition (e.g., configuration information, connectivity information, environmental information, health information, etc.). In another example, the asset health management scenario may be tailored based upon a particular industry, a particular region, a particular company, a particular time of year, etc. (e.g., the asset health management scenario may be tailored according to a first configuration for a power utility in California, may be tailored according to a second configuration for a power utility in Finland, even though both power utilities may utilize similar assets, such as transformers, circuit breakers, generators, etc.). In this way, the asset health management scenario may be tailored to the characteristics of the assets employed by a particular industry company. In an example, a role of a user may be identified (e.g., a short-term planner, a long-term planner, an employee, the general public, a control center user, a field crew user, management, an executive, a financial officer, a regulator, etc. The asset health management scenario may be generated based upon the role. In another example, the asset health management scenario may also be tailored according to the individual user (e.g. background, experience, game ranking, etc.). In this way, the asset health management scenario may be tailored to the user. In an example, a previous action plan selected by the user and/or a previous consequence provided to the user based upon a previous asset health management scenario performed by the user may be identified (e.g., the user may have selected to allow a transformer to continue operation in a degraded state). In another example, the asset health management scenario may be generated based upon the previous consequence (e.g., the asset health management scenario may provide a scenario where the transformer explodes or fails due to the prior action plan).
At 106, the asset health management scenario may be provided through the interactive game interface to the user for interactive gameplay. In an example, the interactive game interface may be provided through a website, a mobile app accessible to a mobile device (e.g., a tablet, a mobile phone), operating equipment, and/or a variety of other computing devices and/or interfaces (e.g., a virtual reality environment, a touchless 3D environment, etc.). In this way, the user may participate in (e.g., “play”) the asset health management scenario through the interactive game interface. In an example, the user may have the option of collaborating with one or more other users in order to collaboratively participate in the asset health management scenario. For example, a user may collaborate with other named players known to the user, the user may consult other available players registered within a game environment hosting interactive game interfaces, and/or the user may be assigned to a crew having a mixture of human and/or game-generated crewmates. In an example, a diagnosis interface may be presented through the interactive game interface. For example, instructions, a visualization of an industrial asset environment for inspection, and/or various contextual information about the scenario may be provided (e.g., an alarm raised for an asset; a bystander report about a lightning strike to the asset; an outage report; an inspection reminder; etc.) may be provided through the diagnosis interface. The diagnosis interface may be populated with one or more diagnosis plans for selection by the user (e.g., utilize budget money or request a budget increase in order to send out an inspection crew; initiate remote diagnosis functionality; view environment laws; send an email question to the bystander; inspect current budget; view condition history for asset; etc.). In an example, the user may specify a user specified diagnosis plan through the diagnosis interface, and in some embodiments the user may specify the order and/or timing of the steps in the plan(s). Responsive to receiving one or more selected diagnosis plans and/or a user specified diagnosis plan, the diagnosis plans may be implemented and/or information related to a result of implementing the diagnosis plan may be provided to the user. In this way, the user may be trained in how to diagnose and/or investigate health conditions of assets.
In an example, an action plan interface may be displayed through the interactive game interface. The action plan interface may be populated with one or more action plans for selection by the user (e.g., schedule maintenance for an asset; send out a repair crew; continuation operation of the asset; replace the asset; increase budget associated with the asset; request a budget increase; etc.). In an example, the user may specify a user specified action plan through the action plan interface. Responsive to receiving a selected action plan and/or a user specified action plan, the action plan may be implemented. In an example, the action plan may be evaluated using information from the knowledge module, such as the criticality module, the action plan module, and/or the decision evaluation module. For example, the action plan may be evaluated based upon criticality information to determine a consequence of the action plan (e.g., the consequence may detail an effect of the action plan upon a budget, an environment impact, a likelihood of damage, a likelihood of injury such as an explosion from continued operation, an effect to a second asset such as an asset used to compensate for an asset taken offline, a temporal aspect as to how the action plan affects a future state of assets or a budget, a cascade effect of an action plan on one or more assets, temporal information corresponding to one or more results of an action plan, etc.). The consequence may be provided through the interactive game interface. In an example, the diagnosis plan, the action plan, and/or the consequence may be evaluated using the decision evaluation module to generate a decision evaluation. The decision evaluation may specify a diagnosis cause confidence as to what caused the problem such as in relation to how the user diagnosed the cause; an action plan confidence such as a score for how the user responded to the asset health management scenario; a breakage rate for the asset based upon the action plan; a suggestion action plan derived from the knowledge module such as an action plan having a desired outcome (e.g., an action plan that mitigates injury, asset damage, budgetary impact, environmental fines, etc.). The decision evaluation may be provided through the interactive game interface. In this way, the user may be trained in how to take action with respect to asset health management based upon the knowledge module.
The user may be ranked based upon completion of the asset health management scenario and/or other asset health management scenarios (e.g., based upon scores provided through decision evaluations). The user may be provided with a reward (e.g., a reward specified by an industrial company that employs the user) based upon completion of the asset health management scenario. In an example, the knowledge module may be modified based upon the user having a game rank above a threshold, which may be indicative of the user being an “expert”. For example, responsive to the user selecting an action plan (e.g., an action plan contrary to an “optimal” action plan answer) and/or providing a user specified action plan (e.g., an action plan not yet addressed by the knowledge module, such as a unique solution to a problem), the knowledge module may be trained based upon such action plans (e.g., the user may possess knowledge and/or take into consideration information not yet comprised within the knowledge module). In this way, knowledge from users may be leveraged to improve the knowledge module for real-life asset health management (e.g., a parameter, an algorithm, and/or other information implemented by a health asset management system for real-time health asset management may be updated).
In another example, operating industry and/or environmental information may be taken into account, such as domain (e.g., industry), region (e.g., Europe, California, a small country in Africa, etc.), ambient temperature, etc. (e.g., which may be taken into account due to variation between a first electric utility and a second electric utility). Such information may be used to influence an assigned role for the user, how an asset degrades or performs, whether a failure of an asset or segment is likely to “cascade” (e.g., affect other assets), regulatory or other consequences of poor performance, parts availability, lead times, etc.
In another example, a potential for a non-routine scenario may be taken into account. For example, an electric utility that employs the user may be located within a hurricane region. The asset health management scenario 308 may comprise a non-routine scenario, such as aiding in storm relief in unfamiliar operating areas (e.g., the user may be dispatched to a storm damaged area within the user's employer's region, or may be dispatched to an area outside the employer's region to assist in restoration after a major event). In this way, the user may be trained for various scenarios beyond merely routine daily activities.
In another example, asset information 304 may be taken into account (e.g., an asset model, an asset manufacturer, an asset age, and/or other information associated with assets of an electrical utility company that employs the user). In another example, asset operation condition information 306 may be taken into account (e.g., a temperature of a location at which the electrical utility company has deployed the asset; type of industrial operation such as power transmission utility vs. data center vs. coal mining; resources available to an electrical utility company such as distance to a fire station; whether the asset is located near a potential natural disaster area such as a location susceptible to hurricanes; environmental laws; etc.). In this way, the scenario generation component 204 may generate the asset health management scenario 308. The scenario generation component 204 may provide the asset health management scenario 308 through the interactive game interface 310 to the user for interactive gameplay. For example, a visualization of an industrial asset environment for inspection by the user may be provided (e.g., the transformer asset may have smoke and/or liquid leaking from the transformer asset). The user may invoke collaboration functionality 312 in order to collaborate with one or more other users (e.g., a human user, a computer generated teammate, an assignment to a crew of users) to participate in the asset health management scenario 308. In an example, the user may participate in a crew that may interact with other crews during gameplay (e.g., a second crew may have equipment that the user may need, such that the user may ask the second crew for the equipment or may return to a base office to fetch the equipment). In this way, a collaborative interactive gameplay environment may be facilitated (e.g., similar to a massive multiplayer online (MMO) type environment).
In an example, the user may optionally invoke create user specified diagnosis plan functionality 408 through which the user may optionally specify a user specified diagnosis plan (e.g., a diagnosis creation interface 410 may be provided through which the user may specify the user created diagnosis plan, an ordering, timing, who is to perform the user created diagnosis plan, and/or the ability to create additional diagnosis plans). In an example, the user may specify an ordering (e.g., where multiple diagnosis steps are specified), timing for one or more diagnosis steps, work assignments (e.g., what organization, person, role, etc. are to perform one or more diagnosis steps), etc. For example, the user may create a user specified diagnosis plan to retrieve a voltmeter from a utility shed. The user may select a measure voltage diagnosis plan from the one or more diagnosis plans 406 to perform after retrieving the voltmeter. The user may select a obtain supervisor opinion from the one or more diagnosis plans 406 to perform after measuring the voltage. In this way, the user may select and/or specify various steps to take in a particular ordering (e.g., the order may be selected by a drag-and-drop command, by the user assigning a numerical order, by voice command, etc.) and/or timing (e.g., an absolute timing or a relative time interval with respect to “now” in the game or with respect to a time of a previous diagnosis step). For example, the user may select to first obtain a report of a burning smell (e.g., send out crew (a) at 3:00 on Dec. 5, 2013 to obtain the report), and then send out a crew to evaluate health of the asset, and finally the user may create a user specified diagnosis plan to view historical operating conditions of the asset. In an example, the user may skip diagnosis, and may select an action to perform (e.g., repair, reduce usage, run to failure, etc.).
In an example, multiple concurrent streams of dynamic changes in scenarios across an enterprise may be facilitated for gameplay. For example, during the 3 week period before the outage occurs, the user (e.g., a crew to which the user is assigned) may handle other incidents (e.g., scenarios). For example, the difficulty and/or number of other incidents (e.g., concurrent incidents) may be set based upon a game setting (e.g., a beginner mode where merely a single subsystem or stream is played out; a journeyman mode where two or three concurrent decision streams or subsystems are played out; an expert mode where a user is to handle concurrent decisions for a relatively large region; etc.). Various game parameters may be used to influence gameplay. In an example, time may be compressed or expanded time for decision making, such as a real-time mode, an untimed mode, or an intermediate mode where the user is credited or penalized for decision making timeliness. In another example, gameplay may show how consequences occur (e.g., a financial planner may jump ahead in time to see consequences such as a month in the future; a surprise may event occur, such as a rate increase request not being approved or a boss requesting an update by the end of the day to reflect an impact of decreased funding for the next 3 years; etc.).
The scenario generation component 204 may be configured to evaluate user interaction data 902 (e.g., a diagnosis plan selected or specified by the user; an action plan selected or specified by the user; and/or a variety of other interactions and/or information provided by the user) in order to generate the update 904. In some embodiments, the update process may involve human review and evaluation. In an example, the update 904 may correspond to an action plan specified by the user, which has a relatively more efficient outcome than a current suggested action plan (e.g., used as an answer by the interactive game interface data 216 and/or used to provide real-time asset health management functionality by the knowledge module 202). In another example, the update 904 may correspond to information and/or patterns not yet addressed by the knowledge module 202 and/or the interactive game interface data 216. In this way, knowledge from the user may be used to create the update 904. The update 904 may be used to modify the knowledge module 202 so that real-time asset health management functionality provided by the knowledge module 202 may be improved. The update 904 may be used to modify the interactive game interface data 216 so that improved answers may be used to train users.
Still another embodiment involves a computer-readable medium comprising processor-executable instructions configured to implement one or more of the techniques presented herein. An example embodiment of a computer-readable medium or a computer-readable device is illustrated in
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing at least some of the claims.
As used in this application, the terms “component,” “module,” “system”, “interface”, and/or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
Furthermore, the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. Of course, many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Although not required, embodiments are described in the general context of “computer readable instructions” being executed by one or more computing devices. Computer readable instructions may be distributed via computer readable media (discussed below). Computer readable instructions may be implemented as program modules, such as functions, objects, Application Programming Interfaces (APIs), data structures, and the like, that perform particular tasks or implement particular abstract data types. Typically, the functionality of the computer readable instructions may be combined or distributed as desired in various environments.
In other embodiments, device 1112 may include additional features and/or functionality. For example, device 1112 may also include additional storage (e.g., removable and/or non-removable) including, but not limited to, magnetic storage, optical storage, and the like. Such additional storage is illustrated in
The term “computer readable media” as used herein includes computer storage media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions or other data. Memory 1118 and storage 1120 are examples of computer storage media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVDs) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by device 1112. Any such computer storage media may be part of device 1112.
Device 1112 may also include communication connection(s) 1126 that allows device 1112 to communicate with other devices. Communication connection(s) 1126 may include, but is not limited to, a modem, a Network Interface Card (NIC), an integrated network interface, a radio frequency transmitter/receiver, an infrared port, a USB connection, or other interfaces for connecting computing device 1112 to other computing devices. Communication connection(s) 1126 may include a wired connection or a wireless connection. Communication connection(s) 1126 may transmit and/or receive communication media.
The term “computer readable media” may include communication media. Communication media typically embodies computer readable instructions or other data in a “modulated data signal” such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” may include a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
Device 1112 may include input device(s) 1124 such as keyboard, mouse, pen, voice input device, touch input device, infrared cameras, video input devices, and/or any other input device. Output device(s) 1122 such as one or more displays, speakers, printers, and/or any other output device may also be included in device 1112. Input device(s) 1124 and output device(s) 1122 may be connected to device 1112 via a wired connection, wireless connection, or any combination thereof. In one embodiment, an input device or an output device from another computing device may be used as input device(s) 1124 or output device(s) 1122 for computing device 1112.
Components of computing device 1112 may be connected by various interconnects, such as a bus. Such interconnects may include a Peripheral Component Interconnect (PCI), such as PCI Express, a Universal Serial Bus (USB), firewire (IEEE 1394), an optical bus structure, and the like. In another embodiment, components of computing device 1112 may be interconnected by a network. For example, memory 1118 may be comprised of multiple physical memory units located in different physical locations interconnected by a network.
Those skilled in the art will realize that storage devices utilized to store computer readable instructions may be distributed across a network. For example, a computing device 1130 accessible via a network 1128 may store computer readable instructions to implement one or more embodiments provided herein. Computing device 1112 may access computing device 1130 and download a part or all of the computer readable instructions for execution. Alternatively, computing device 1112 may download pieces of the computer readable instructions, as needed, or some instructions may be executed at computing device 1112 and some at computing device 1130.
Various operations of embodiments are provided herein. In one embodiment, one or more of the operations described may constitute computer readable instructions stored on one or more computer readable media, which if executed by a computing device, will cause the computing device to perform the operations described. The order in which some or all of the operations are described should not be construed as to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated by one skilled in the art having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment provided herein. Also, it will be understood that not all operations are necessary in some embodiments.
Further, unless specified otherwise, “first,” “second,” and/or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc. For example, a first object and a second object generally correspond to object A and object B or two different or two identical objects or the same object.
Moreover, “exemplary” is used herein to mean serving as an example, instance, illustration, etc., and not necessarily as advantageous. As used herein, “or” is intended to mean an inclusive “or” rather than an exclusive “or”. In addition, “a” and “an” as used in this application are generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Also, at least one of A and B and/or the like generally means A or B or both A and B. Furthermore, to the extent that “includes”, “having”, “has”, “with”, and/or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc.), the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure. In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
This application claims priority to U.S. Provisional Patent Application No. 61/919,906, filed on Dec. 23, 2013 and titled “INTERACTIVE GAME INTERFACE FOR ASSET HEALTH MANAGEMENT,” which is incorporated herein.
Number | Date | Country | |
---|---|---|---|
61919906 | Dec 2013 | US |