The present disclosure relates generally to plansifters and, more particularly, to sieves and cleaners used within plansifters.
Plansifters are used for the separation and grading of cereals and all products resulting from their breaking and milling. Plansifters generally are formed of channels joined to and driven by a central body containing a rotating counterweight. Plansifters are suspended by means of rods or other elastic devices so they can freely move within a circular or elliptical-like path. Separation within each plansifter is managed by designing a sieve stack, which is a stack composed of multiple sieves. Depending on, for example, the granularity of the grading or other factors, a stack can have various numbers of sieves. While there is no limit to the number of sieves in a stack, some models of sifters can have less than 10 sieves, and other models of sifters can have 30 or more sieves. However, commonly, sifters have less than 30 sieves, such as about 24 to 27 sieves.
Each sieve includes a sieve cloth attached (e.g., glued, stapled, etc.) onto a removable frame that sits within a sieve box. The sieve cloth receives the material to be sieved from the top and, aided by mechanical movement of the stack, allows particles smaller than the mesh opening of the sieve cloth (generally from 112 μm to 5000 μm) to fall into a sieve box below the sieve cloth. Particles larger than the mesh opening continue to move on the sieve cloth until reaching a dedicated falling zone in the sieve box. The removable frame includes dividers that separate the sieve cloth “cleaning zones.” Typically, there are about six to nine cleaning zones for each sieve. The sieve box serves as the outer boundary of the sieve and redirects the product falling from the cloth onto sieves below. Depending on the type of sieve, explained in greater detail below, each sieve also includes multiple cleaners/expellers (typically one per cleaning zone) that freely move based on the mechanical movement of the stack and aid the movement of the particles through the mesh openings within the sieve cloth or to the falling zone. There currently are two types of sieves: backwire sieves and combined sieves, which are described below in relation to
The backwire sieve 100 also includes the removable frame 104 that sits on the sieve box 102, a backwire grille 106 that sits within the sieve box 102 below the frame 104, and a bottom sheet 108 that sits within the sieve box 102 and below the backwire grille 106 when installed into a plansifter. The backwire grille 106 can be fastened to the frame 104 or lie loose between frame 104 and the sieve box 102. The sieve box 102 and the frame 104 can include dividers 110a and 110b that divide the sieve 100 into multiple, separate expulsion zones 112a (e.g., dividers 110a) and cleaning zones 112b (e.g., dividers 110b). Specifically, the dividers 110a on the sieve box 102 divide the sieving zone 102a into multiple different expulsion zones 112a. In some embodiments, there can be the same number of expulsion zones 112a as side openings 102c, such that each expulsion zone 112a corresponds to a separate side opening 102c. The dividers 110b on the frame 104 divide the sieving zone 102a into multiple different cleaning zones 112b, above the expulsion zones 112a. The combination of an expulsion zone 112a and a cleaning zone 112b spans from the bottom sheet 108 to the sieve cloth (not shown) attached to the top of the frame 104.
Within each cleaning zone 112b above the backwire grille 106 and below the sieve cloth is an untethered cleaner (not shown). During operation of the sieve 100, the cleaner has an erratic bouncing movement so that it continuously taps the sieve cloth above and avoids the product from choking the mesh openings in the sieve cloth. The distance between the sieve cloth and the backwire grille 106, therefore, should be a set distance so that that cleaner can contact the sieve cloth.
Within each expulsion zone 112a below the backwire grille 106 is an expeller (not shown). The expeller pushes the particles that fall through the sieve cloth to the side openings 102c of the sieve box 102. Because the expeller does not need to contact the backwire grille 106, there is no distance requirement between the bottom sheet 108 and the backwire grille 106.
The combined sieve 200 includes the sieve box 202 with the sieving zone 202a and the falling zone 202b. The sieve box 202 further includes side openings 202c that allow particles that fall by gravity through the sieve cloth (not shown) to escape the sides of the sieve box 202. The side openings 202c can be on one side of the sieve box 202 or can be on two or three sides of the sieve box 202, depending on the desired configuration. The falling zone 202b allows the particles too large to fall through the sieve cloth to instead move to the side of the sieve 200 and fall to a sieve below.
The combined sieve 200 also includes the removable frame 204 that sits on the sieve box 202 and a bottom sheet 208 that sits within the sieve box 202 and below the sieve cloth. The sieve box 202 and the frame 204 can include dividers 210a and 210b that divide the sieve box 202 and the frame 204 into separate expulsion zones 212a and cleaning zones 212b, respectively. Thus, like the expulsion zones 112a and cleaning zones 112b above, the combination of an expulsion zone 212a and a cleaning zone 212b spans from the bottom sheet 208 to the sieve cloth (not shown) attached to the top of the frame 204.
Because the combined sieve 200 lacks a backwire grille, within each cleaning zone 212b can be a combined cleaner 214 that performs both the cleaning and expelling described above. As the combined sieve 200 moves, the combined cleaner 214 moves around and bounces about the cleaning zone 212b erratically, tapping the sieve cloth above and pushing fine particles out of the sieve box 202 through the side openings 202c. The distance between the sieve cloth and the bottom sheet 208 should be a fixed distance so that that combined cleaner 214 can contact the sieve cloth with enough force to clean the sieve cloth.
With the above configurations of the backwire sieve 100 and combined sieve 200 in mind, one of the main constraints of plansifters is stack height. Stack height is important because, during the work phase, the stack is compressed between covers so that the product placed between a sieve and the underneath cannot escape from the stack. If the stack height is less than a certain value, compressive sealing is not guaranteed. If stack height is more than a certain value, there are problems inserting the complete stack into a channel. Further, there must be enough volume for the incoming product to avoid choking and clumping. This problem also becomes more of a concern as the fine percentage rises and increases the sieve cloth throughput occupying the finite underlying volume. The lesser sieve height, the lesser the volume underneath the sieve and/or available to throughput. For this reason, channels using combined sieves generally contain 1 or 2 sieves more than channels using backwire sieves, considering the same product flow rate.
There are situations where backwire sieves or combined sieves can be employed, and situations where one may be considered better than the other. However, because of the simplicity in managing sifting stack schemes, maintenance of sieves, spare parts, and the like, there are no stacks comprising both backwire sieves and combined sieves. Also, because of different distances from the bottom sheet to the sieve cloth between backwire and combined sieves, it is not possible to switch from one style to the other, such as by removing the backwire grille.
Further, drawbacks exist for the combined cleaner of combined sieves as compared to the separate cleaners and expellers in backwire sieves. For example, the uneven surface of the backwire grille provides for more erratic movement of the cleaners in backwire sieves as compared to the even bottom sheet with combined cleaners in combined sieves. Further, despite the erratic movement of combined cleaners caused by the mechanical movement of the sieve stack, the combined cleaners still move over preferential paths that results in better cleaning in certain areas versus others.
Accordingly, aspects of the present disclosure solve the above issues associated with the incompatibility between backwire and combined sieves by providing a single sieve that can be switched between backwire and combined configurations. Further, aspects of the present disclosure solve the above issues associated with combined cleaners by providing a dynamic center of gravity.
An aspect of the present disclosure includes a sieve for a plansifter that is interchangeable between a backwire configuration and a combined configuration. The height of the sieve does not change between being configured as a backwire sieve and a combined sieve. Further, the frame of the sieve maintains the same contact with the sieve box of the sieve with the sieve in the backwire or combined configuration.
Additional aspects of the present disclosure include a sieve for a plansifter configured to be interchangeable between a backwire configuration and a combined configuration. The sieve includes a sieve box having an open top. The sieve box is divided into a sieving zone and a falling zone. The sieve box also includes at least one aperture through at least one side wall within the sieving zone and at least one ledge along an interior of at least one wall within the sieving zone. The sieve further includes a removable frame configured to fit within the sieving zone of the sieve box. The frame has an overhang portion configured to sit on an edge of the sieve box around the sieving zone and an extended portion configured to sit on the at least one ledge. The extended portion defines a notch at a bottom of the frame that is configured to accept a backwire grille between the at least one ledge and the frame, with the sieve configured as the backwire sieve, without changing an overall height of the sieve or reducing the net sieving surface in a sieve box.
Further aspects of the present disclosure include a dynamic combined cleaner for a sieve within a sieve stack of a plansifter. The combined cleaner refers to a single apparatus that performs the combined functions of both cleaning and ejecting or expelling. The cleaner includes a body having a first side configured to face a sieve cloth of the sieve and a second side configured to face a bottom sheet of the sieve. The cleaner further includes a projection extending from the second side of the body and being configured to rest on the bottom sheet of the sieve. The cleaner further includes a plurality of cleaning heads extending from the first side of the body and being configured to contact the sieve cloth during use of the dynamic combined cleaner. The cleaner further includes one or more weight elements housed within the body and configured to dynamically change a center of gravity of the dynamic combined cleaner during use within the sieve. In these aspects, the combined cleaner can be said to possess both static (inertial) unbalancing and dynamic (kinetic) unbalancing features, which in concert provide a more efficacious cleaning and cleaning surface area coverage compared to conventional cleaners or expellers.
Further aspects of the present disclosure include a combined cleaner for a sieve within a sieve stack of a plansifter. The cleaner includes a body, a projection protruding from a side of the body, and multiple cleaning heads extending from the other side of the body. The cleaner further includes one or more discrete weight elements in or on the body. The one or more discrete weight elements and the projection provide an unbalancing to the cleaner such that under static conditions the cleaner is unbalanced while at rest on the projection
Additional aspects of the present disclosure will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the disclosure is not intended to be limited to the particular forms illustrated and described. Rather, the present application covers all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure, as further defined by the appended claims.
While the concepts disclosed herein are susceptible to embodiment in many different forms, there is shown in the drawings and will herein be described in detail example implementations of the concepts with the understanding that the present disclosure is to be considered as an exemplification of the principles of the concepts and is not intended to limit the broad aspects of the disclosed implementations to the examples illustrated. For purposes of the present detailed description, the singular includes the plural and vice versa (unless specifically disclaimed); the words “and” and “or” shall be both conjunctive and disjunctive; the word “all” means “any and all”; the word “any” means “any and all”; and the word “including” means “including without limitation.”
The present disclosure provides a sieve having a sieve box and a sieve frame that can be selectively configured for use in a backwire-sieve or a combined-sieve configuration, depending on which sieve type is appropriate. Further, the height of the sieve does not change between the sieve being configured as a backwire wire and as a combined sieve. Also, the contact of the frame with the sieve box remains the same for the backwire and combined configurations.
Referring to
The sieve box 302 includes two ledges 302f (
Referring to
As also shown in
Referring to
Referring to
According to the configuration described above for the sieve 300, the ratio L3/L6 of the height of the frame to the height of the side opening can be greater than the corresponding ratio of the sieves 200 and 100. Further, the ratio L1/L6 of the height of the sieve to the height of the side opening can be greater than the corresponding ratio of the sieves 200 and 100.
As discussed above, aspects of the present disclosure also include a dynamic combined cleaner that has a dynamic center of gravity. This allows the dynamic combined cleaner to provide better contact against a sieve cloth and also not follow preferential paths within a sieve during use. Better overall cleaning coverage of the cloth is provided using the dynamic combined cleaner according to the present disclosure, and the dynamic combined cleaner according to the present disclosure also doubles as an expeller, hence the term “combined” cleaner.
Although the dynamic combined cleaner is disclosed below in the context of the sieve 300, the dynamic combined cleaner can be used in any type of combined sieve, including the combine sieve of the related art, such as shown in
As shown in
As illustrated, the body 552 generally has the shape of a reuleaux triangle. However, the shape of the body 552 can vary without departing from the scope of the present disclosure. For example, the general shape of the body 552 can be circular, triangular, square, rectangular, pentagonal, hexagonal, etc., and various non-uniform shapes.
The projection 556 is configured to rest on the bottom sheet 308 of the sieve 300 and be the furthest distal portion of the cleaner 550 from the side 552b of the body 552. The projection 556 also in part determines the height of the dynamic combined cleaner 550. Because the height (e.g., L2 in
The distal end 556a of the projection 556 can be various shapes, such as flat, hemispherical, elliptical, etc. When the distal end 556a of the projection 556 is other than flat, the shape can aid the cleaner 550 in being able to tilt so that the cleaning heads 554 can contact the sieve cloth.
The projection 556 can be positioned generally at the center of the body 552. In one embodiment, the projection 556 can define the illustrated axis Ai, and the axis Ai can be along the center of gravity of the static portion of the cleaner 550. Alternatively, the center of gravity of the cleaner 550 can be off axis from the axis Ai, such as if the arm 558 adds additional weight to the cleaner 550 on one side.
The cleaning heads 554 extend along a perimeter of the body 552. Each cleaning head 554 is configured to contact the sieve cloth above the dynamic combined cleaner 550 during use in the sieve 300 to clean clogs in the sieve cloth. In some embodiments, the cleaning heads 554 can be solid projections, as shown. Alternatively, the cleaning heads can vary, such as having one or more bristles, spikes, etc. that aid in cleaning clogs in the sieve cloth.
The arm 558 projects horizontally from the body 552 of the cleaner 550 to aid in expelling particles that have fallen through the sieve cloth. Although only one arm 558 is shown, in some embodiments, the cleaner 550 can have more than one arm 558, such as one arm 558 on each vertex of the edges of the body 552.
Referring to
Within the recess 560 are one or more weight elements 562. The weight elements 562 are enclosed within the recess 560 by a cover 568 (
Based on the weight elements 562 being able freely move within the recess 560, the weight elements 562 dynamically change the center of gravity of the cleaner 550. The presence of the weight elements 562 causes the center of gravity to never be along the axis Ai, which promotes tilting of the cleaner 550 during use and cleaning of the sieve cloth. The weight elements 562 also change the center of gravity to be more sideward, which gives more instability to the cleaner 550.
Although the weight elements 562 are described as being able to freely move within the recess 560, in some embodiments the weight elements 562 can be discrete elements from the body 552 that are statically and fixedly attached to the body 552 and unable to freely move. In such embodiments, the weight elements 562 provide a static unbalancing to the cleaner 550. The weight elements 562 can be attached to the body 552 by being screwed into, adhered to, soldered onto, or otherwise mechanically fastened to the body 552. The weight elements 562 can be attached to the body 552 at locations where the additional weight of the weight elements 562 further adds to the unbalancing of the cleaner 550, which in turn can further aid the cleaner 550 in cleaning and expelling.
The possibility to switch the sieve type between backwire and combined allows for the use of both solutions, or hybrid solutions, for the optimization of a sifting channel. Further, the optional backwire/combined sieve with the dynamic combined cleaner provides reliable and durable cleaning of the sieve cloth, reliable throughput expulsion, and a low probability of choke. Additionally, dynamically changing the center of gravity out of the protrusion or foot axis provides for a more random movement, avoids preferential paths, and leads to an effective tapping against the cloth.
While this disclosure is susceptible to various modifications and alternative forms, specific embodiments or implementations have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention(s) as defined by the appended claims.
Each of these embodiments, and obvious variations thereof, is contemplated as falling within the spirit and scope of the claimed invention(s), which are set forth in the following claims. Moreover, the present concepts expressly include any and all combinations and sub-combinations of the preceding elements and aspects.
This application is a division of U.S. patent application Ser. No. 15/875,492, filed Jul. 7, 2020, entitled “INTERCHANGEABLE BACKWIRE/COMBINED SIEVE AND DYNAMIC COMBINED CLEANER,” now allowed, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1799416 | Gillespie | Apr 1931 | A |
2332780 | Cecka | Oct 1943 | A |
2455383 | Pickard | Dec 1948 | A |
2723752 | Conkling | Nov 1955 | A |
3960731 | Brandt | Jun 1976 | A |
4929346 | Si-Lin | May 1990 | A |
5165550 | Pierson | Nov 1992 | A |
5538139 | Keller | Jul 1996 | A |
6095339 | Filip | Aug 2000 | A |
6336557 | Ruter | Jan 2002 | B1 |
20040040895 | Fiorini | Mar 2004 | A1 |
20070108107 | Morrow | May 2007 | A1 |
20170333950 | Kunzle | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
370633 | Mar 1923 | DE |
8713767 | Dec 1987 | DE |
0706836 | Apr 1996 | EP |
2465616 | Jun 2012 | EP |
332584 | Oct 1903 | FR |
1187206 | Sep 1959 | FR |
WO 2006040517 | Apr 2006 | WO |
WO 2014019925 | Feb 2014 | WO |
Entry |
---|
International Search Report and Written Opinion of International Patent Application No. PCT/IB2019/050442, dated Sep. 26, 2019 (20 pages). |
Number | Date | Country | |
---|---|---|---|
20200346249 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15875492 | Jan 2018 | US |
Child | 16929927 | US |