Interconnect for on-body analyte monitoring device

Information

  • Patent Grant
  • 10765351
  • Patent Number
    10,765,351
  • Date Filed
    Thursday, August 10, 2017
    6 years ago
  • Date Issued
    Tuesday, September 8, 2020
    3 years ago
Abstract
Disclosed herein are systems and methods for providing a compressible interconnect for allowing electrical communication between an electronics unit and an analyte sensor in an on-body analyte monitoring device. In other embodiments, systems and methods are provided for reducing the Z-height of an on-body analyte monitoring device by utilizing novel interconnects.
Description
FIELD OF THE INVENTION

The present invention relates to an analyte monitoring system. More particularly, the present invention relates to apparatus for establishing electrical communication between an analyte sensor and an electronics unit in an on-body analyte monitoring device.


BACKGROUND OF THE INVENTION

The detection and/or monitoring of glucose levels or other analytes, such as lactate, oxygen, A1C, or the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics generally monitor glucose levels to determine if their glucose levels are being maintained within a clinically safe range, and may also use this information to determine if and/or when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.


Growing clinical data demonstrates a strong correlation between the frequency of glucose monitoring and glycemic control. Despite such correlation, many individuals diagnosed with a diabetic condition do not monitor their glucose levels as frequently as they should due to a combination of factors including convenience, testing discretion, pain associated with glucose testing, and cost.


Devices have been developed for the automatic monitoring of analyte(s), such as glucose, in bodily fluid such as in the blood stream or in interstitial fluid (“ISF”), or other biological fluid. Some of these analyte measuring devices are configured so that at least a portion of the devices are positioned below a skin surface of a user, e.g., in a blood vessel or in the subcutaneous tissue of a user, so that the monitoring is accomplished in vivo.


With the continued development of analyte monitoring devices and systems, there is a need for such analyte monitoring devices, systems, and methods, as well as for processes for manufacturing analyte monitoring devices and systems that are cost effective, convenient, and with reduced pain, provide discreet monitoring to encourage frequent analyte monitoring to improve glycemic control.


Typically, a glucose monitor consists of an analyte sensor that is implanted in a patient and an electronics unit adapted to establish electrical communication with the analyte sensor. The electrical communication may be accomplished utilizing a number of different interconnects. For example, some electronics units utilize pogo pins, polymer pins, solid pins, or springs as interconnects. However, each of these known interconnects has potential drawbacks. For example, pogo pins are not durable and moisture can seep into the spring mechanism, thereby degrading their performance. Similarly, polymer pins can degrade and wear after multiple cleanings Solid pins generally require extensive modification of existing systems, leading to higher costs for the patient. Spring connections are delicate, and may be prone to failure after extended use. Therefore, there clearly exists a need for a low-cost, waterproof, flexible interconnect that allows for efficient and reliable electrical communication between an analyte sensor and an electronics unit.


In other instances, a user may need to wear an on-body analyte monitoring device for an extended period of time. Generally, the on-body monitoring device includes a mounting unit housing an analyte sensor and an electronics unit unit. However, such devices can be bulky and uncomfortable due to the size and vertical height (“Z-height”) of the electronics unit and the size of the mounting unit, which should be sufficiently large to house the electronics unit. Therefore, there exists a need for an on-body analyte monitoring device having a streamlined body and low profile (e.g., reduced Z-height) for a more comfortable wear and patient compliance.


SUMMARY OF THE INVENTION

Generally, the present invention relates to an interconnect configured to establish electrical communication between an analyte sensor and an electronics unit. The analyte sensor, interconnect, and the electronics unit define an on-body analyte monitoring device having a low profile. The on-body analyte monitoring device can be used with analyte monitoring system, such as for example, a continuous glucose monitoring system or analyte measurement system which provides analyte levels on demand. An analyte monitoring system generally includes an on-body analyte monitoring device and one or more receiver/display units. Optionally, the analyte monitoring system can further include a data processing unit, such as for example a CPU. Thus, in one embodiment, the on-body analyte monitoring device comprises an analyte sensor for measuring analyte levels, an electronics unit adapted to process the signals relating to the analyte levels generated by the analyte sensor, and an interconnect adapted to establish electrical conductivity between the electronics unit and the analyte sensor.


In one embodiment, the electronics unit includes a processor disposed within the body of the electronics unit. The processor can comprise an application specific integrated circuit (ASIC). In some embodiments, an elongate interconnect is coupled to the body of the electronics unit, such as for example the sidewall of the electronics unit proximate an analyte sensor. In some embodiments, the elongate interconnect can extend laterally from the electronics unit so as to contact an analyte sensor disposed adjacent the electronics unit.


The elongate interconnect comprises conductive material, such as, but not limited to, conductive cables, such as ribbon cables. In some embodiments, the conductive material can be embedded or etched in a flexible material, such as a flexible strip of thermoplastic material. The flexible strip may be formed from any suitable thermoplastic material. For example, the thermoplastic material includes polyimides such as Apical, Kapton, UPILEX, VTEC PI, Norton TH, polyester, mylar, and Kaptrex. However, in other embodiments, the conductive material can be encapsulated in a flexible sheath.


In some embodiments, the elongate interconnect is coupled to the electronics unit, for example, to a circuit board disposed in the body of the electronics unit, to establish electrical communication between the electronics unit and interconnect. Additionally, the elongate interconnect can establish electrical communication with an analyte sensor. In some embodiments, the elongate interconnect can include a conductive material such as a conductive contact to contact or otherwise couple to the analyte sensor, thereby establishing electrical communication between the interconnect and the analyte sensor. In some embodiments, the elongate interconnect is formed of a flexible material such that the extended length of the interconnect can collapse or otherwise deform when the electronics unit is coupled to the analyte sensor. Upon disengagement of the analyte sensor and the electronics unit, the elongate interconnect can return to its non-collapsed configuration.


The analyte sensor, for example, in some embodiments, includes a substrate having conductive material, such as one or more electrodes and one or more conductive contacts. In some embodiments, the conductive material comprises gold, which can be formed using ablation techniques (e.g., laser ablation). The analyte sensor can be configured to monitor glucose levels or any other analyte of interest, including drugs.


In some embodiments, the electronics unit may further comprise a seal disposed proximate the elongate interconnect. The seal may be an individual molded component made of low durometer silicone, rubber or some other material TPE. In some embodiments, the interconnect extends approximately 1 mm beyond the face of the seal. When the electronics unit is locked into position, the interconnect compresses and makes contact with the conductive pads on the sensor. The seal also compresses to form a barrier around the perimeter of the interconnect/sensor connection. The interconnect may work without the seal, however once liquid or dust got in, the interconnect/sensor interface may be compromised and fail.


In some embodiments, the seal includes an opening to permit direct contact of a conductive contact disposed on the interconnect to the analyte sensor. In this manner, the analyte sensor and the electronics unit can establish electrical conductivity via the closed circuit provided by the interconnect.


In another aspect of the invention, an on-body analyte monitoring device having a reduced vertical height is provided. In one embodiment, the interconnect includes a top surface and a bottom surface adapted to engage, for example, interlock, with the body of the electronics unit. The interconnect includes conductive material, which establishes electrical communication with and between both an analyte sensor and an electronics unit. In some embodiments, the electronics unit may comprise a circuit board for interfacing with a conductive area of the interconnect thereby establishing electrical communication between the interconnect and the electronics unit. Thus, when interconnect is engaged to the electronics unit, the conductive material or areas of the interconnect form a closed circuitry with the electronics unit and the analyte sensor, thereby establishing electrical communication between the analyte sensor and the electronics unit.


In some embodiments, the conductive material includes a conductive film, such as an anisotropic film or an elastomeric connector, such as a Zebra® style connector. Alternatively, the first and second conductive material can include clips.


In one embodiment, the conductive surfaces can further include an adhesive for adhering the electronics unit and analyte sensor to the interconnect. The adhesive can be a UV curable adhesive or any other suitable adhesive. Other examples include a multi-adhesive system, such as a silver loaded epoxy, which allows for the electronics unit and analyte sensor to be adhered together while also placing the electronics unit and analyte sensor in electrical communication.


The interconnect can also include a power source, such as a battery to power the electronics unit. In this manner, the electronics unit can be configured without its own internal power supply.


In some embodiments, the bottom surface of the interconnect includes an adhesive surface capable of bonding with human skin. Accordingly, the interconnect can also serve as a mounting unit to adhere the on-body device to a subject, such that a separate mounting unit component is not required.


In some embodiments, the interconnect is configured to engage the electronics unit to define a two-component on-body monitoring device. In other embodiments, the interconnect, sensor, and electronics unit are integrated to define a single component on-body monitoring device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a block diagram of a data monitoring and management system for practicing one or more embodiments of the present invention;



FIG. 1B illustrates a schematic diagram of the elements of FIG. 1A;



FIG. 2 illustrates a schematic view of an electronics unit according to one or more embodiments of the present invention;



FIG. 3 illustrates a schematic view of the elongate interconnect of the electronics unit of FIG. 2 in a flat position;



FIG. 4 illustrates a schematic view of the electronics unit of FIG. 2 when it is in contact with an analyte sensor;



FIGS. 5A-5D depict various elongate interconnects compatible with one or more embodiments of the present invention;



FIG. 6 depicts a pictorial view of an analyte monitoring device according to another embodiment of the present invention;



FIG. 7A depicts a pictorial view of the analyte monitoring device of FIG. 6 when it is disassembled;



FIG. 7B depicts a bottom view of the on-body analyte monitoring device of FIG. 7A;



FIG. 8 depicts the interconnect of FIG. 7B with the battery and analyte sensor removed.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Before the present disclosure is described in detail, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges as also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure.


Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.


Generally, embodiments of the present disclosure relate to in vivo methods and devices for detecting at least one analyte such as glucose in body fluid. Accordingly, embodiments include in vivo analyte sensors configured so that at least a portion of the sensor is positioned in the body of a user (e.g., within the ISF), to obtain information about at least one analyte of the body, e.g., transcutaneously positioned in user's body. In certain embodiments, an in vivo analyte sensor is coupled to an electronics unit that is maintained on the body of the user such as on a skin surface, where such coupling provides on body, in vivo analyte sensor electronics assemblies.


In certain embodiments, analyte information is communicated from a first device such as an on body electronics unit to a second device which may include user interface features, including a display, and/or the like. Information may be communicated from the first device to the second device automatically and/or continuously when the analyte information is available, or may not be communicated automatically and/or continuously, but rather stored or logged in a memory of the first device. Accordingly, in many embodiments of the system, analyte information derived by the sensor/on body electronics (for example, on body electronics assembly) is made available in a user-usable or viewable form only when queried by the user such that the timing of data communication is selected by the user.


In this manner, analyte information is only provided or evident to a user (provided at a user interface device) when desired by the user even though an in vivo analyte sensor automatically and/or continuously monitors the analyte level in vivo, i.e., the sensor automatically monitors analyte such as glucose on a pre-defined time interval over its usage life. For example, an analyte sensor may be positioned in vivo and coupled to on body electronics for a given sensing period, e.g., about 14 days. In certain embodiments, the sensor-derived analyte information is automatically communicated from the sensor electronics assembly to a remote monitor device or display device for output to a user throughout the 14 day period according to a schedule programmed at the on body electronics (e.g., about every 1 minute or about every 5 minutes or about every 10 minutes, or the like). In certain embodiments, sensor-derived analyte information is only communicated from the sensor electronics assembly to a remote monitor device or display device at user-determined times, e.g., whenever a user decides to check analyte information. At such times, a communications system is activated and sensor-derived information is then sent from the on body electronics to the remote device or display device.


In still other embodiments, the information may be communicated from the first device to the second device automatically and/or continuously when the analyte information is available, and the second device stores or logs the received information without presenting or outputting the information to the user. In such embodiments, the information is received by the second device from the first device when the information becomes available (e.g., when the sensor detects the analyte level according to a time schedule). However, the received information is initially stored in the second device and only output to a user interface or an output component of the second device (e.g., display) upon detection of a request for the information on the second device.


Accordingly, in certain embodiments once a sensor electronics assembly is placed on the body so that at least a portion of the in vivo sensor is in contact with bodily fluid such as ISF and the sensor is electrically coupled to the electronics unit, sensor derived analyte information may be communicated from the on body electronics to a display device on-demand by powering on the display device (or it may be continually powered), and executing a software algorithm stored in and accessed from a memory of the display device, to generate one or more request commands, control signal or data packet to send to the on body electronics. The software algorithm executed under, for example, the control of the microprocessor or application specific integrated circuit (ASIC) of the display device may include routines to detect the position of the on body electronics relative to the display device to initiate the transmission of the generated request command, control signal and/or data packet.


Display devices may also include programming stored in memory for execution by one or more microprocessors and/or ASICs to generate and transmit the one or more request command, control signal or data packet to send to the on body electronics in response to a user activation of an input mechanism on the display device such as depressing a button on the display device, triggering a soft button associated with the data communication function, and so on. The input mechanism may be alternatively or additionally provided on or in the on body electronics which may be configured for user activation. In certain embodiments, voice commands or audible signals may be used to prompt or instruct the microprocessor or ASIC to execute the software routine(s) stored in the memory to generate and transmit the one or more request command, control signal or data packet to the on body device. In the embodiments that are voice activated or responsive to voice commands or audible signals, on body electronics and/or display device includes a microphone, a speaker, and processing routines stored in the respective memories of the on body electronics and/or the display device to process the voice commands and/or audible signals. In certain embodiments, positioning the on body device and the display device within a predetermined distance (e.g., close proximity) relative to each other initiates one or more software routines stored in the memory of the display device to generate and transmit a request command, control signal or data packet.


Different types and/or forms and/or amounts of information may be sent for each on demand reading, including, but not limited to, one or more of current analyte level information (i.e., real time or the most recently obtained analyte level information temporally corresponding to the time the reading is initiated), rate of change of an analyte over a predetermined time period, rate of the rate of change of an analyte (acceleration in the rate of change), historical analyte information corresponding to analyte information obtained prior to a given reading and stored in memory of the assembly. Some or all of real time, historical, rate of change, rate of rate of change (such as acceleration or deceleration) information may be sent to a display device for a given reading. In certain embodiments, the type and/or form and/or amount of information sent to a display device may be preprogrammed and/or unchangeable (e.g., preset at manufacturing), or may not be preprogrammed and/or unchangeable so that it may be selectable and/or changeable in the field one or more times (e.g., by activating a switch of the system, etc.). Accordingly, in certain embodiments, for each on demand reading, a display device will output a current (real time) sensor-derived analyte value (e.g., in numerical format), a current rate of analyte change (e.g., in the form of an analyte rate indicator such as an arrow pointing in a direction to indicate the current rate), and analyte trend history data based on sensor readings acquired by and stored in memory of on body electronics (e.g., in the form of a graphical trace). Additionally, the on skin or sensor temperature reading or measurement associated with each on demand reading may be communicated from the on body electronics to the display device. The temperature reading or measurement, however, may not be output or displayed on the display device, but rather, used in conjunction with a software routine executed by the display device to correct or compensate the analyte measurement output to the user on the display device.


As described, embodiments include in vivo analyte sensors and on body electronics that together provide body wearable sensor electronics assemblies. In certain embodiments, in vivo analyte sensors are fully integrated with on body electronics (fixedly connected during manufacture), while in other embodiments they are separate but connectable post manufacture (e.g., before, during or after sensor insertion into a body). On body electronics may include an in vivo glucose sensor, electronics, battery, and antenna encased (except for the sensor portion that is for in vivo positioning) in a waterproof housing that includes or is attachable to an adhesive pad. In certain embodiments, the housing withstands immersion in about one meter of water for up to at least 30 minutes. In certain embodiments, the housing withstands continuous underwater contact, e.g., for longer than about 30 minutes, and continues to function properly according to its intended use, e.g., without water damage to the housing electronics where the housing is suitable for water submersion.


Embodiments include sensor insertion devices, which also may be referred to herein as sensor delivery units, or the like. Insertion devices may retain on body electronics assemblies completely in an interior compartment, i.e., an insertion device may be “pre-loaded” with on body electronics assemblies during the manufacturing process (e.g., on body electronics may be packaged in a sterile interior compartment of an insertion device). In such embodiments, insertion devices may form sensor assembly packages (including sterile packages) for pre-use or new on body electronics assemblies, and insertion devices configured to apply on body electronics assemblies to recipient bodies.


Embodiments include portable handheld display devices, as separate devices and spaced apart from an on body electronics assembly, that collect information from the assemblies and provide sensor derived analyte readings to users. Such devices may also be referred to as meters, readers, monitors, receivers, human interface devices, companions, or the like. Certain embodiments may include an integrated in vitro analyte meter. In certain embodiments, display devices include one or more wired or wireless communications ports such as USB, serial, parallel, or the like, configured to establish communication between a display device and another unit (e.g., on body electronics, power unit to recharge a battery, a PC, etc.). For example, a display device communication port may enable charging a display device battery with a respective charging cable and/or data exchange between a display device and its compatible informatics software.


Compatible informatics software in certain embodiments include, for example, but are not limited to, stand alone or network connection enabled data management software program, resident or running on a display device, personal computer, a server terminal, for example, to perform data analysis, charting, data storage, data archiving and data communication as well as data synchronization. Informatics software in certain embodiments may also include software for executing field upgradable functions to upgrade firmware of a display device and/or on body electronics unit to upgrade the resident software on the display device and/or the on body electronics unit, e.g., with versions of firmware that include additional features and/or include software bugs or errors fixed, etc..


Embodiments may include a haptic feedback feature such as a vibration motor or the like, configured so that corresponding notifications (e.g., a successful on-demand reading received at a display device), may be delivered in the form of haptic feedback.


Embodiments include programming embedded on a computer readable medium, i.e., computer-based application software (may also be referred to herein as informatics software or programming or the like) that processes analyte information obtained from the system and/or user self-reported data. Application software may be installed on a host computer such as a mobile telephone, PC, an Internet-enabled human interface device such as an Internet-enabled phone, personal digital assistant, or the like, by a display device or an on body electronics unit. Informatics programming may transform data acquired and stored on a display device or on body unit for use by a user.


Embodiments of the subject disclosure are described primarily with respect to glucose monitoring devices and systems, and methods of glucose monitoring, for convenience only and such description is in no way intended to limit the scope of the disclosure. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes at the same time or at different times.


For example, analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times, with a single sensor or with a plurality of sensors which may use the same on body electronics (e.g., simultaneously) or with different on body electronics.


As described in detail below, embodiments include devices, systems, kits and/or methods to monitor one or more physiological parameters such as, for example, but not limited to, analyte levels, temperature levels, heart rate, user activity level, over a predetermined monitoring time period. Also provided are methods of manufacturing. Predetermined monitoring time periods may be less than about 1 hour, or may include about 1 hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about 3 or more days, e.g., about 5 days or more, e.g., about 7 days or more, e.g., about 10 days or more, e.g., about 14 days or more, e.g., about several weeks, e.g., about 1 month or more. In certain embodiments, after the expiration of the predetermined monitoring time period, one or more features of the system may be automatically deactivated or disabled at the on body electronics assembly and/or display device.


For example, a predetermined monitoring time period may begin with positioning the sensor in vivo and in contact with a body fluid such as ISF, and/or with the initiation (or powering on to full operational mode) of the on body electronics. Initialization of on body electronics may be implemented with a command generated and transmitted by a display device in response to the activation of a switch and/or by placing the display device within a predetermined distance (e.g., close proximity) to the on body electronics, or by user manual activation of a switch on the on body electronics unit, e.g., depressing a button, or such activation may be caused by the insertion device, e.g., as described in U.S. patent application Ser. No. 12/698,129 filed on Feb. 1, 2010 and U.S. Provisional Application Nos. 61/238,646, 61/246,825, 61/247,516, 61/249,535, 61/317,243, 61/345,562, and 61/361,374, the disclosures of each of which are incorporated herein by reference for all purposes.


When initialized in response to a received command from a display device, the on body electronics retrieves and executes from its memory software routine to fully power on the components of the on body electronics, effectively placing the on body electronics in full operational mode in response to receiving the activation command from the display device. For example, prior to the receipt of the command from the display device, a portion of the components in the on body electronics may be powered by its internal power supply such as a battery while another portion of the components in the on body electronics may be in powered down or low power including no power, inactive mode, or all components may be in an inactive mode, powered down mode. Upon receipt of the command, the remaining portion (or all) of the components of the on body electronics is switched to active, fully operational mode.


Embodiments of on body electronics may include one or more circuit boards with electronics including control logic implemented in ASIC, microprocessors, memory, and the like, and transcutaneously positionable analyte sensors forming a single assembly. On body electronics may be configured to provide one or more signals or data packets associated with a monitored analyte level upon detection of a display device of the analyte monitoring system within a predetermined proximity for a period of time (for example, about 2 minutes, e.g., 1 minute or less, e.g., about 30 seconds or less, e.g., about 10 seconds or less, e.g., about 5 seconds or less, e.g., about 2 seconds or less) and/or until a confirmation, such as an audible and/or visual and/or tactile (e.g., vibratory) notification, is output on the display device indicating successful acquisition of the analyte related signal from the on body electronics. A distinguishing notification may also be output for unsuccessful acquisition in certain embodiments.


In certain embodiments, the monitored analyte level may be correlated and/or converted to glucose levels in blood or other fluids such as ISF. Such conversion may be accomplished with the on body electronics, but in many embodiments will be accomplished with display device electronics. In certain embodiments, glucose level is derived from the monitored analyte level in the ISF.


Analyte sensors may be insertable into a vein, artery, or other portion of the body containing analyte. In certain embodiments, analyte sensors may be positioned in contact with ISF to detect the level of analyte, where the detected analyte level may be used to infer the user's glucose level in blood or interstitial tissue.


Embodiments include transcutaneous sensors and also wholly implantable sensors and wholly implantable assemblies in which a single assembly including the analyte sensor and electronics are provided in a sealed housing (e.g., hermetically sealed biocompatible housing) for implantation in a user's body for monitoring one or more physiological parameters.


Embodiments of In Vivo Analyte Monitoring Systems



FIGS. 1A and 1B show an exemplary in vivo-based analyte monitoring system 100 in accordance with embodiments of the present disclosure. As shown, in certain embodiments, analyte monitoring system 100 includes on body electronics 110 electrically coupled to in vivo analyte sensor 101 and attached to adhesive layer 140 for attachment on a skin surface on the body of a user. On body electronics 110 includes on body housing 119, that defines an interior compartment. Also shown in FIG. 1B is insertion device 150 that, when operated, transcutaneously positions a portion of analyte sensor 101 through a skin surface and in fluid contact with interstitial fluid, and positions on body electronics 110 and adhesive layer 140 on a skin surface. In certain embodiments, on body electronics 110, analyte sensor 101 and adhesive layer 140 are sealed within the housing of insertion device 150 before use, and in certain embodiments, adhesive layer 140 is also sealed within the housing or itself provides a terminal seal of the insertion device 150. Devices, systems and methods that may be used with embodiments herein are described, e.g., in U.S. patent application Ser. No. 12/698,129 and U.S. Provisional Application Nos. 61/238,646, 61/246,825, 61/247,516, 61/249,535, 61/317,243, 61/345,562, and 61/361,374, the disclosures of each of which are incorporated herein by reference for all purposes.


Referring back to the FIG. 1B, analyte monitoring system 100 includes display device 120 which includes a display 122 to output information to the user, an input component 121 such as a button, actuator, a touch sensitive switch, a capacitive switch, pressure sensitive switch, jog wheel or the like, to input data or command to display device 120 or otherwise control the operation of display device 120. It is noted that some embodiments may include display-less devices or devices without any user interface components. These devices may be functionalized to store data as a data logger and/or provide a conduit to transfer data from on body electronics and/or a display-less device to another device and/or location. Embodiments will be described herein as display devices for exemplary purposes which are in no way intended to limit the embodiments of the present disclosure. It will be apparent that display-less devices may also be used in certain embodiments.


In certain embodiments, on body electronics 110 may be configured to store some or all of the monitored analyte related data received from analyte sensor 101 in a memory during the monitoring time period, and maintain it in memory until the usage period ends. In such embodiments, stored data is retrieved from on body electronics 110 at the conclusion of the monitoring time period, for example, after removing analyte sensor 101 from the user by detaching on body electronics 110 from the skin surface where it was positioned during the monitoring time period. In such data logging configurations, real time monitored analyte level is not communicated to display device 120 during the monitoring period or otherwise transmitted from on body electronics 110, but rather, retrieved from on body electronics 110 after the monitoring time period.


In certain embodiments, input component 121 of display device 120 may include a microphone and display device 120 may include software configured to analyze audio input received from the microphone, such that functions and operation of the display device 120 may be controlled by voice commands. In certain embodiments, an output component of display device 120 includes a speaker for outputting information as audible signals. Similar voice responsive components such as a speaker, microphone and software routines to generate, process and store voice driven signals may be provided to on body electronics 110.


In certain embodiments, display 122 and input component 121 may be integrated into a single component, for example a display that can detect the presence and location of a physical contact touch upon the display such as a touch screen user interface. In such embodiments, the user may control the operation of display device 120 by utilizing a set of pre-programmed motion commands, including, but not limited to, single or double tapping the display, dragging a finger or instrument across the display, motioning multiple fingers or instruments toward one another, motioning multiple fingers or instruments away from one another, etc. In certain embodiments, a display includes a touch screen having areas of pixels with single or dual function capacitive elements that serve as LCD elements and touch sensors.


Display device 120 also includes data communication port 123 for wired data communication with external devices such as remote terminal (personal computer) 170, for example. Example embodiments of the data communication port 123 include USB port, mini USB port, RS-232 port, Ethernet port, Firewire port, or other similar data communication ports configured to connect to the compatible data cables. Display device 120 may also include an integrated in vitro glucose meter, including in vitro test strip port 124 to receive an in vitro glucose test strip for performing in vitro blood glucose measurements.


Referring still to FIG. 1B, display 122 in certain embodiments is configured to display a variety of information—some or all of which may be displayed at the same or different time on display 122. In certain embodiments the displayed information is user-selectable so that a user can customize the information shown on a given display screen. Display 122 may include but is not limited to graphical display 138, for example, providing a graphical output of glucose values over a monitored time period (which may show important markers such as meals, exercise, sleep, heart rate, blood pressure, etc., numerical display 132, for example, providing monitored glucose values (acquired or received in response to the request for the information), and trend or directional arrow display 131 that indicates a rate of analyte change and/or a rate of the rate of analyte change, e.g., by moving locations on display 122.


As further shown in FIG. 1B, display 122 may also include date display 135 providing for example, date information for the user, time of day information display 139 providing time of day information to the user, battery level indicator display 133 which graphically shows the condition of the battery (rechargeable or disposable) of the display device 120, sensor calibration status icon display 134 for example, in monitoring systems that require periodic, routine or a predetermined number of user calibration events, notifying the user that the analyte sensor calibration is necessary, audio/vibratory settings icon display 136 for displaying the status of the audio/vibratory output or alarm state, and wireless connectivity status icon display 137 that provides indication of wireless communication connection with other devices such as on body electronics, data processing module 160, and/or remote terminal 170. As additionally shown in FIG. 1B, display 122 may further include simulated touch screen button 125, 126 for accessing menus, changing display graph output configurations or otherwise for controlling the operation of display device 120.


Referring back to FIG. 1B, in certain embodiments, display 122 of display device 120 may be additionally, or instead of visual display, configured to output alarms notifications such as alarm and/or alert notifications, glucose values etc., which may be audible, tactile, or any combination thereof. In one aspect, the display device 120 may include other output components such as a speaker, vibratory output component and the like to provide audible and/or vibratory output indication to the user in addition to the visual output indication provided on display 122. Further details and other display embodiments can be found in, e.g., U.S. patent application Ser. No. 12/871,901, now U.S. Pat. No. 8,514,086, U.S. Provisional Application Nos. 61/238,672, 61/247,541, 61/297,625, the disclosures of each of which are incorporated herein by reference for all purposes.


After the positioning of on body electronics 110 on the skin surface and analyte sensor 101 in vivo to establish fluid contact with interstitial fluid (or other appropriate body fluid), on body electronics 110 in certain embodiments is configured to wirelessly communicate analyte related data (such as, for example, data corresponding to monitored analyte level and/or monitored temperature data, and/or stored historical analyte related data) when on body electronics 110 receives a command or request signal from display device 120. In certain embodiments, on body electronics 110 may be configured to at least periodically broadcast real time data associated with monitored analyte level which is received by display device 120 when display device 120 is within communication range of the data broadcast from on body electronics 110, i.e., it does not need a command or request from a display device to send information.


For example, display device 120 may be configured to transmit one or more commands to on body electronics 110 to initiate data transfer, and in response, on body electronics 110 may be configured to wirelessly transmit stored analyte related data collected during the monitoring time period to display device 120. Display device 120 may in turn be connected to a remote terminal 170 such as a personal computer and functions as a data conduit to transfer the stored analyte level information from the on body electronics 110 to remote terminal 170. In certain embodiments, the received data from the on body electronics 110 may be stored (permanently or temporarily) in one or more memory of the display device 120. In certain other embodiments, display device 120 is configured as a data conduit to pass the data received from on body electronics 110 to remote terminal 170 that is connected to display device 120.


Referring still to FIG. 1B, also shown in analyte monitoring system 100 are data processing module 160 and remote terminal 170. Remote terminal 170 may include a personal computer, a server terminal a laptop computer or other suitable data processing devices including software for data management and analysis and communication with the components in the analyte monitoring system 100. For example, remote terminal 170 may be connected to a local area network (LAN), a wide area network (WAN), or other data network for uni-directional or bi-directional data communication between remote terminal 170 and display device 120 and/or data processing module 160.


Remote terminal 170 in certain embodiments may include one or more computer terminals located at a physician's office or a hospital. For example, remote terminal 170 may be located at a location other than the location of display device 120. Remote terminal 170 and display device 120 could be in different rooms or different buildings. Remote terminal 170 and display device 120 could be at least about one mile apart, e.g., at least about 10 miles apart, e.g., at least about 100 miles apart. For example, remote terminal 170 could be in the same city as display device 120, remote terminal 170 could be in a different city than display device 120, remote terminal 170 could be in the same state as display device 120, remote terminal 170 could be in a different state than display device 120, remote terminal 170 could be in the same country as display device 120, or remote terminal 170 could be in a different country than display device 120, for example.


In certain embodiments, a separate, optional data communication/processing device such as data processing module 160 may be provided in analyte monitoring system 100. Data processing module 160 may include components to communicate using one or more wireless communication protocols such as, for example, but not limited to, infrared (IR) protocol, Bluetooth® protocol, Zigbee® protocol, and 802.11 wireless LAN protocol. Additional description of communication protocols including those based on Bluetooth® protocol and/or Zigbee® protocol can be found in U.S. Patent Publication No. 2006/0193375 incorporated herein by reference for all purposes. Data processing module 160 may further include communication ports, drivers or connectors to establish wired communication with one or more of display device 120, on body electronics 110, or remote terminal 170 including, for example, but not limited to USB connector and/or USB port, Ethernet connector and/or port, FireWire connector and/or port, or RS-232 port and/or connector.


In certain embodiments, data processing module 160 is programmed to transmit a polling or query signal to on body electronics 110 at a predetermined time interval (e.g., once every minute, once every five minutes, or the like), and in response, receive the monitored analyte level information from on body electronics 110. Data processing module 160 stores in its memory the received analyte level information, and/or relays or retransmits the received information to another device such as display device 120. More specifically in certain embodiments, data processing module 160 may be configured as a data relay device to retransmit or pass through the received analyte level data from on body electronics 110 to display device 120 or a remote terminal (for example, over a data network such as a cellular or WiFi data network) or both.


In certain embodiments, on body electronics 110 and data processing module 160 may be positioned on the skin surface of the user within a predetermined distance of each other (for example, about 1-12 inches, or about 1-10 inches, or about 1-7 inches, or about 1-5 inches) such that periodic communication between on body electronics 110 and data processing module 160 is maintained. Alternatively, data processing module 160 may be worn on a belt or clothing item of the user, such that the desired distance for communication between the on body electronics 110 and data processing module 160 for data communication is maintained. In a further aspect, the housing of data processing module 160 may be configured to couple to or engage with on body electronics 110 such that the two devices are combined or integrated as a single assembly and positioned on the skin surface. In further embodiments, data processing module 160 is detachably engaged or connected to on body electronics 110 providing additional modularity such that data processing module 160 may be optionally removed or reattached as desired.


Referring again to FIG. 1B, in certain embodiments, data processing module 160 is programmed to transmit a command or signal to on body electronics 110 at a predetermined time interval such as once every minute, or once every 5 minutes or once every 30 minutes or any other suitable or desired programmable time interval to request analyte related data from on body electronics 110. When data processing module 160 receives the requested analyte related data, it stores the received data. In this manner, analyte monitoring system 100 may be configured to receive the continuously monitored analyte related information at the programmed or programmable time interval, which is stored and/or displayed to the user. The stored data in data processing module 160 may be subsequently provided or transmitted to display device 120, remote terminal 170 or the like for subsequent data analysis such as identifying frequency of periods of glycemic level excursions over the monitored time period, or the frequency of the alarm event occurrence during the monitored time period, for example, to improve therapy related decisions. Using this information, the doctor, healthcare provider or the user may adjust or recommend modification to the diet, daily habits and routines such as exercise, and the like.


In another embodiment, data processing module 160 transmits a command or signal to on body electronics 110 to receive the analyte related data in response to a user activation of a switch provided on data processing module 160 or a user initiated command received from display device 120. In further embodiments, data processing module 160 is configured to transmit a command or signal to on body electronics 110 in response to receiving a user initiated command only after a predetermined time interval has elapsed. For example, in certain embodiments, if the user does not initiate communication within a programmed time period, such as, for example about 5 hours from last communication (or 10 hours from the last communication, or 24 hours from the last communication), the data processing module 160 may be programmed to automatically transmit a request command or signal to on body electronics 110. Alternatively, data processing module 160 may be programmed to activate an alarm to notify the user that a predetermined time period of time has elapsed since the last communication between the data processing module 160 and on body electronics 110. In this manner, users or healthcare providers may program or configure data processing module 160 to provide certain compliance with analyte monitoring regimen, so that frequent determination of analyte levels is maintained or performed by the user.


In certain embodiments, when a programmed or programmable alarm condition is detected (for example, a detected glucose level monitored by analyte sensor 101 that is outside a predetermined acceptable range indicating a physiological condition which requires attention or intervention for medical treatment or analysis (for example, a hypoglycemic condition, a hyperglycemic condition, an impending hyperglycemic condition or an impending hypoglycemic condition), the one or more output indications may be generated by the control logic or processor of the on body electronics 110 and output to the user on a user interface of on body electronics 110 so that corrective action may be timely taken. In addition to or alternatively, if display device 120 is within communication range, the output indications or alarm data may be communicated to display device 120 whose processor, upon detection of the alarm data reception, controls the display 122 to output one or more notification.


In certain embodiments, control logic or microprocessors of on body electronics 110 include software programs to determine future or anticipated analyte levels based on information obtained from analyte sensor 101, e.g., the current analyte level, the rate of change of the analyte level, the acceleration of the analyte level change, and/or analyte trend information determined based on stored monitored analyte data providing a historical trend or direction of analyte level fluctuation as function time during monitored time period. Predictive alarm parameters may be programmed or programmable in display device 120, or the on body electronics 110, or both, and output to the user in advance of anticipating the user's analyte level reaching the future level. This provides the user an opportunity to take timely corrective action.


Information, such as variation or fluctuation of the monitored analyte level as a function of time over the monitored time period providing analyte trend information, for example, may be determined by one or more control logic or microprocessors of display device 120, data processing module 160, and/or remote terminal 170, and/or on body electronics 110. Such information may be displayed as, for example, a graph (such as a line graph) to indicate to the user the current and/or historical and/or and predicted future analyte levels as measured and predicted by the analyte monitoring system 100. Such information may also be displayed as directional arrows (for example, see trend or directional arrow display 131) or other icon(s), e.g., the position of which on the screen relative to a reference point indicated whether the analyte level is increasing or decreasing as well as the acceleration or deceleration of the increase or decrease in analyte level. This information may be utilized by the user to determine any necessary corrective actions to ensure the analyte level remains within an acceptable and/or clinically safe range. Other visual indicators, including colors, flashing, fading, etc., as well as audio indicators including a change in pitch, volume, or tone of an audio output and/or vibratory or other tactile indicators may also be incorporated into the display of trend data as means of notifying the user of the current level and/or direction and/or rate of change of the monitored analyte level. For example, based on a determined rate of glucose change, programmed clinically significant glucose threshold levels (e.g., hyperglycemic and/or hypoglycemic levels), and current analyte level derived by an in vivo analyte sensor, the system 100 may include an algorithm stored on computer readable medium to determine the time it will take to reach a clinically significant level and will output notification in advance of reaching the clinically significant level, e.g., 30 minutes before a clinically significant level is anticipated, and/or 20 minutes, and/or 10 minutes, and/or 5 minutes, and/or 3 minutes, and/or 1 minute, and so on, with outputs increasing in intensity or the like.


Referring again back to FIG. 1B, in certain embodiments, software algorithm(s) for execution by data processing module 160 may be stored in an external memory device such as an SD card, microSD card, compact flash card, XD card, Memory Stick card, Memory Stick Duo card, or USB memory stick/device including executable programs stored in such devices for execution upon connection to the respective one or more of the on body electronics 110, remote terminal 170 or display device 120. In a further aspect, software algorithms for execution by data processing module 160 may be provided to a communication device such as a mobile telephone including, for example, WiFi or Internet enabled smart phones or personal digital assistants (PDAs) as a downloadable application for execution by the downloading communication device.


Examples of smart phones include Windows®, Android®, iPhone® operating system, Palm® WebOS®, Blackberry® operating system, or Symbian® operating system based mobile telephones with data network connectivity functionality for data communication over an internet connection and/or a local area network (LAN). PDAs as described above include, for example, portable electronic devices including one or more microprocessors and data communication capability with a user interface (e.g., display/output unit and/or input unit, and configured for performing data processing, data upload/download over the internet, for example. In such embodiments, remote terminal 170 may be configured to provide the executable application software to the one or more of the communication devices described above when communication between the remote terminal 170 and the devices are established.


In still further embodiments, executable software applications may be provided over-the-air (OTA) as an OTA download such that wired connection to remote terminal 170 is not necessary. For example, executable applications may be automatically downloaded as software download to the communication device, and depending upon the configuration of the communication device, installed on the device for use automatically, or based on user confirmation or acknowledgement on the communication device to execute the installation of the application. The OTA download and installation of software may include software applications and/or routines that are updates or upgrades to the existing functions or features of data processing module 160 and/or display device 120.


Referring back to remote terminal 170 of FIG. 1B, in certain embodiments, new software and/or software updates such as software patches or fixes, firmware updates or software driver upgrades, among others, for display device 120 and/or on body electronics 110 and/or data processing module 160 may be provided by remote terminal 170 when communication between the remote terminal 170 and display device 120 and/or data processing module 160 is established. For example, software upgrades, executable programming changes or modification for on body electronics 110 may be received from remote terminal 170 by one or more of display device 120 or data processing module 160, and thereafter, provided to on body electronics 110 to update its software or programmable functions. For example, in certain embodiments, software received and installed in on body electronics 110 may include software bug fixes, modification to the previously stalled software parameters (modification to analyte related data storage time interval, resetting or adjusting time base or information of on body electronics 110, modification to the transmitted data type, data transmission sequence, or data storage time period, among others). Additional details describing field upgradability of software of portable electronic devices, and data processing are provided in U.S. application Ser. Nos. 12/698,124, 12/794,721, now U.S. Pat. No. 8,595,607, Ser. Nos. 12/699,653, and 12/699,844, and U.S. Provisional Application Nos. 61/359,265, and 61/325,155 the disclosure of which is incorporated by reference herein for all purposes.


Referring to FIGS. 1A and 1B, an analyte monitoring system 100 can generally include, in accordance with one embodiment, an on-body analyte monitoring device, a receiver 120, data processing terminal 170, and secondary receiver unit 106. Generally, analyte sensor 101 operatively contacts an analyte to be monitored in a biological fluid, such as, but not limited to, blood or interstitial fluid, and converts the contacted analyte level into data signals relating to the amount or concentration of the analyte. The data signals are communicated to the on body electronics 110, which is in electrical communication with analyte sensor 101. The electronics unit can be a separate and distinct component, or can be integrated with the analyte sensor to define a single component. The on body electronics 110 processes the data signals (e.g., encodes signals) received from analyte sensor 101 and transmits the processed data signals to receiver 120, e.g., a primary receiver, along a communication link 103. The communication between on body electronics 110 and receiver 120 can be either unidirectional or bidirectional.


In one aspect of the invention, an interconnect is provided to establish electrical communication with a transmitter, transceiver, communications circuit or other electronics. For example, as illustrated in FIG. 2, on-body electronics unit 110 comprises a body including housing 202. The housing includes a top wall connected to a bottom wall by a sidewall. An elongate interconnect 204 can be coupled to the on body electronics 110. The elongate interconnect 204 comprises conductive material disposed at least partially along a body having a first end 212 coupled, e.g., permanently affixed or removably fixed, to housing 202. In one embodiment, the first end 212 can be secured to a printed circuit board 208 disposed in the body of the on body electronics 110. The elongate interconnect can further include a second end 214 engaged to the on body electronics body, for example, the second end 214 in some embodiments, can be engaged to the housing 202, such as slidingly engaged, for example at an end opposite the first end 212. Alternatively, the second end of interconnect 204 may be permanently affixed to the opposite side of housing 202.


As shown in FIG. 2, a length of the elongate interconnect body 204 can be configured to extend laterally from a sidewall of the housing 202. In one embodiment, the elongate interconnect 204 body can include a generally U-shaped configuration along its length. As such, the interconnect can be configured to physically contact an analyte sensor disposed proximate the on body electronics body.


In some embodiments, a conductive contact 206 can be located along a length of the elongate interconnect 204. The contact plate is configured to contact an analyte sensor and establish electrical conductivity between the on body electronics and the analyte sensor. (See FIG. 4). As described, the elongate interconnect comprises conductive material. In one embodiment, the conductive material defines one or more conductive areas along the body of the interconnect. The conductive areas can include one or more conductive contacts and one or more conductive traces disposed between conductive contacts along at least a portion of the length of the elongate interconnect body. Thus, when in direct contact with the electronic circuitry of the on body electronics and/or a sensor, electrical communications can be established.


For example, referring now to FIG. 3, one embodiment of elongate interconnect 204 includes the one or more conductive areas defined by conductive material 302, 306, 308. As shown, conductive traces 302 extend between conductive contacts 306 and 308. In this manner, the elongate interconnect includes a conductive surface attachable to the on body electronics, which can establish electrical communication with the on body electronics during contact.


In some embodiments, the conductive material of elongate interconnect includes conductive traces 302 embedded in a flexible material, such as a flexible strip 304, which generally can be formed from a thermoplastic material. Suitable thermoplastic materials include polyimides such as Apical, Kapton, UPILEX, VTEC PI, Norton TH and Kaptrex. In other embodiments, conductive traces 302 are encapsulated in a flexible sheath. The elongate interconnect can further include conductive films and tapes as described infra.


Suitable elongate interconnects 204 include those depicted in FIGS. 5A-5D. As illustrated, the elongate interconnect can comprise conductive material including conductive cables, including but not limited to high speed ribbon cables, microquick twist ribbon cables, microZip cables, mini probe cables, quick twist cables, ribbonized automation cables, shielded flat ribbon cables, or wide pitch ribbon cables, as illustrated in FIGS. 5A to 5D. In addition, other suitable elongate interconnects include All Flex®, Molex®, Tech-Etch®, and Teknoflex®.


The conductive material associated with the interconnect, as well as the on body electronics and/or analyte sensor, can comprise a non-corroding metal or carbon wire. Suitable conductive materials include, for example, vitreous carbon, graphite, silver, silver-chloride, platinum, palladium, or gold. The conductive material disposed on the component part, e.g., interconnect, sensor, or on body electronics, can comprise a combination of conductive metals, alloys and polymers. In this regard, for example, the electrodes and the conductive traces and/or conductive contacts can be formed from different conductive materials. The conductive material can be applied to the substrate by various techniques including laser ablation, printing, etching, and photolithography. However, any suitable conductive material may be utilized.


Referring back to FIG. 3, conductive contact 306, which is located proximate first end 212, can establish electrical communication with the on body electronics 110, for example, the printed circuit board. The electrical communication in the form of electrical signals can travel towards or from the analyte sensor (not shown) via the conductive traces 302 and conductive contacts 308. Similarly, conductive area 308, located along a length of elongate member 204, allows conductive traces 302 to be in electrical communication with conductive contact 206 (not shown) such that a closed circuit is established between the analyte sensor, interconnect and on body electronics.


In one embodiment, on body electronics 110 includes a temperature sensor. For each sampled signal from analyte sensor 101, the temperature sensor can provide measured temperature information. In another embodiment, on body electronics 110 includes a low-temperature monitor that disables communication from on body electronics 110 if the measured temperature falls below a predefined threshold (e.g., below 5° C.). This is done to protect the on body electronics from over-stressing the energy source of the on body electronics under low-temperature conditions. If the temperature rises above the predefined threshold, the low-temperature monitor enables communication from on body electronics 110.


In accordance with another aspect of the invention, on body electronics 110 includes a low battery voltage monitor that disables the energy source of the on body electronics if the voltage level is too low to reliably transmit communication. The temperature sensor, low-temperature monitor, and the low battery voltage monitor may be controlled via a processor located in on body electronics 110. In a preferred embodiment, the processor is an application specific integrated circuit (ASIC).


In another aspect, as shown in FIG. 4, an on-body analyte monitoring device 100 is provided. The on-body analyte monitoring device includes on body electronics 110 coupled to analyte sensor 402. In one embodiment, the analyte sensor 402 and on body electronics 110 are housed in a mounting unit 404. The mounting unit includes adhesive applied to the bottom surface to attach the on-body unit to a user.


As illustrated in FIG. 4, elongate interconnect conductive contact 206 can be in direct contact with analyte sensor 402 to establish electrical communication between the on body electronics 110 and sensor 402. When analyte sensor 402 is in contact with on body electronics 110, elongate member 204 can be compressed or collapsed and seal 210 forms a protective barrier around the connection from harmful elements (e.g., dust, liquid, dirt) between the on body electronics and sensor. In one embodiment, seal 210 is formed from a flexible polymer.


Seal 210 may be an individual molded component made of a flexible polymer, low durometer silicone, rubber or some other material TPE. In some embodiments, the interconnect extends approximately 1 mm beyond the face of seal 210. When on body electronics 110 is locked into position, elongate interconnect 204 compresses and makes contact with the conductive pads on analyte sensor 402. The seal also compresses to form a barrier around the perimeter of the interconnect/sensor connection. Interconnect 204 may function without the seal, however once liquid or dust got in, the interconnect/sensor interface may be compromised and fail.


In some embodiments, the seal 210 includes an opening to permit direct contact of a conductive contact disposed on the interconnect to the analyte sensor. In this manner, the analyte sensor and the on body electronics can establish electrical conductivity via the closed circuit provided by the interconnect.


In another embodiment, the elongate member 204 returns to its original configuration after analyte sensor 402 is disengaged from on body electronics 110. The signals generated by the analyte sensor relating to the measured analyte levels from biological fluid can be processed by the on body electronics 110 by the electrical contact between sensor 402 and on body electronics via contact plate 206 of interconnect.


The analyte sensor 402 employed in the on-body device, in some embodiments, comprises a substrate, one or more electrodes, a sensing layer and a barrier layer, as described below and disclosed in U.S. Patent Nos. 6,284,478 and 6,990,366, the disclosures of which are incorporated herein by reference. As the sensor is employed by insertion and/or implantation into a user's body for a period of days, in some embodiments, the substrate is formed from a relatively flexible material to improve comfort for the user and reduce damage to the surrounding tissue of the insertion site, e.g., by reducing relative movement of the sensor with respect to the surrounding tissue.


Suitable materials for a flexible substrate include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials. Suitable plastic or polymeric materials include thermoplastics such as polycarbonates, polyesters (e.g., Mylar® and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate). In other embodiments, the sensor includes a relatively rigid substrate. Suitable examples of rigid materials that may be used to form the substrate include poorly conducting ceramics, such as aluminum oxide and silicon dioxide. Further, the substrate can be formed from an insulating material. Suitable insulating materials include polyurethane, teflon (fluorinated polymers), polyethyleneterephthalate (PET, Dacron) or polyimide.


The sensor can include a distal end and a proximal end having different widths. In such embodiments, the distal end of the substrate may have a relatively narrow width. Moreover, sensors intended to be transcutaneously positioned into the tissue of a user's body can be configured to have a narrow distal end or distal point to facilitate the insertion of the sensor. For example, for insertable sensors designed for continuous or periodic monitoring of the analyte during normal activities of the patient, a distal end of the sensor which is to be implanted into the user has a width of 2 mm or less, preferably 1 mm or less, and more preferably 0.5 mm or less.


A plurality of electrodes is disposed near the distal end of the sensor. The electrodes can include a working electrode, counter electrode and reference electrode. Other embodiments, however, can include less or more electrodes. For example, as noted, a two electrode sensor can be utilized. Each of the electrodes is formed from conductive material, for example, a non-corroding metal or carbon wire. Suitable conductive materials include, for example, vitreous carbon, graphite, silver, silver-chloride, platinum, palladium, or gold. The conductive material can be applied to the substrate by various techniques including laser ablation, printing, etching, and photolithography. In one embodiment, each of the electrodes is formed from gold by a laser ablation technique. As further illustrated, the sensor can include conductive traces and extending from the one or more electrodes to respective contacts. In one embodiment, an insulating substrate (e.g., dielectric material) and electrodes can be arranged in a stacked orientation (i.e., insulating substrate disposed between electrodes. Alternatively, the electrodes can be arranged in a side by side orientation, as described in U.S. Pat. No. 6,175,752, the disclosure of which is incorporated herein by reference.


The sensor can include a sensing layer to facilitate the electrolysis of the analyte of interest. For example, the sensing layer can be an immobilized sensing layer comprising a catalyst and an electron transfer agent. Examples of immobilized sensing layers are described in U.S. Pat. Nos. 5,262,035, 5,264,104, 5,264,105, 5,320,725, 5,593,852, and 5,665,222, each of which is incorporated herein by reference. In some embodiments, the sensor can further include a barrier layer to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte into the region around the working electrode. Examples of suitable barrier layers are described in U.S. Pat. Nos. 6,990,366 and 6,175,752, each of which is incorporated herein by reference.


In some embodiments, the sensor is a self-powered analyte sensor, which is capable of spontaneously passing a currently directly proportional to analyte concentration in the absence of an external power source. Any exemplary sensor is described in U.S. patent application Ser. No. 12/393,921, filed Feb. 26, 2009, entitled “Self-Powered Analyte Sensor,” which is hereby incorporated by reference in its entirety herein for all purposes.



FIGS. 6, 7A-7B, and 8 illustrate on body electronics including a module interconnect in certain embodiments, with FIGS. 8 and 7A illustrate top perspective views, while FIGS. 7B and 8 illustrating bottom perspective views. Referring to FIGS. 6 and 7A, on body electronics 600 includes modular sensor assembly 604 which includes analyte sensor 710 (see e.g., FIG. 7B), for engageably coupling with electronics component 604. As illustrated, the modular sensor assembly 602 may be configured to interlock or otherwise engage with the electronics component 604. Accordingly, upon engagement of modular sensor assembly 602 and electronics component 604, on body electronics 600 with analyte sensor 710 may be provided.


In certain embodiments, modular sensor assembly 602 may be a molded device, such as for example, formed by injection molding techniques. As illustrated in FIG. 7A, modular sensor assembly 602 includes bottom surface 701 connected to top surface 702 by sidewall 703. As can be seen in the perspective views of FIGS. 7B and 8, in certain embodiments, top surface 702 includes conductive material 714 disposed thereon. Further, top surface 702 may include a vertical surface extending downwardly, which may include conductive material 716 disposed thereon. In certain embodiments, conductive material 716 includes conductive traces and/or conductive contacts.


Still referring to the figures, on body electronics 600 in certain embodiments include modular sensor assembly 602 and electronics component 604 configured for a slidable engagement. As illustrated in FIG. 7A, the bottom of electronics component 604 may include a surface configured to slidably receive modular sensor assembly 602. Further, in certain embodiments, top surface 702 of modular sensor assembly 602 may be configured to define a tongue to interlock with a corresponding groove 704 defined in electronics component 604 to define the shape of on body electronics 600.


Electronics component 604 in certain embodiments may include one or more PCBs including conductive material 708 disposed thereon, such as one or more conductive traces and/or conductive contacts. During engagement of electronics component 604 with modular sensor assembly 602, the conductive material 708 can interface with interconnect conductive material 714. Thus, during engagement, the electronics component 604 and modular sensor assembly 602 establishes electrical communication.


As illustrated in FIG. 7B, modular sensor assembly 602 includes analyte sensor 710 secured or otherwise coupled to a surface of the modular sensor assembly 602. For example, analyte sensor 710 may be coupled to the vertical surface extending from the top surface of the modular sensor assembly 602. In this manner, the vertical surface includes conductive material, such as conductive contacts 804 that connect with the one or more conductive contacts of analyte sensor 710 to establish an electrical communication between analyte sensor 710 and modular sensor assembly 602.


In certain embodiments, as best illustrated in FIGS. 7B and 8, analyte sensor 710 may be mounted to the sidewall of modular sensor assembly 602. In this embodiment, distal portion 710a of analyte sensor 710 is inserted perpendicular to the skin (not shown). In this regard, the bottom surface of the modular sensor assembly 602 includes an aperture 720 (FIGS. 7B) to permit the distal portion 710a of analyte sensor 710 to extend from the bottom of on body electronics 600 such that distal portion 710a of analyte sensor 710 may be implanted into the body of a user when in use. In certain embodiments, modular sensor assembly 602 may also include a power source 712, such as a battery. Power source 712 may provide power via conductive traces 714 to the electronics component 604. In this manner, the electronics component 604 may be powered by power source 712 of modular sensor assembly 602 such that the electronics component 604 does not need an internal power source.


The conductive material disposed on the modular sensor assembly 602 and/or the electronics component 604 and analyte sensor 710 may include conductive film, such as, but not limited to, an anisotropic film. Conductive material, such as the conductive film and/or the Zebra style connector, can provide both a mechanical and electrical connection between modular sensor assembly 602 and sensor 710 or electronics component 604. Modular sensor assembly 602, analyte sensor 710, and electronics component 604 may also be bonded together utilizing an adhesive, such as a UV curable adhesive, or a multi-adhesive, such as a silver loaded epoxy can be used. Other adhesives can alternatively be employed.


The sensor and the on body electronics can establish electrical communication by way of the interconnect. In this manner, the one or more electrodes of the analyte sensor generate a signal relative to the analyte levels depicted in the bodily fluid of the user, the conductive traces permit the signal to travel to the conductive contacts of the sensor which is in electrical communication with the conductive material, e.g., conductive contacts 804 of the interconnect. By way of the conductive traces 716 and 802, which establish electrical communication with the on body electronics 600, the signals relative to the analyte levels are communicated to the on body electronics 600. The bottom surface of the on body electronics 600 and/or modular sensor assembly 602 can include an adhesive to attach to the skin of the user. Thus, the interconnect can serve as a mounting unit for the on-body monitoring device to be worn by a user. The on-body analyte monitoring device, as described above, can be employed as a component of an analyte monitoring system, such as the systems illustrated in FIGS. 1A and 1B.


On body electronics 600 may be mounted to the user as one component or separately. For example, with reference to FIG. 7A, the modular sensor assembly 602 may be first mounted on the skin such that the distal portion 710a (not shown) of the sensor 710 is at least partially inserted into the skin. An adhesive (not shown) is used to fix modular sensor assembly 602 to the skin. Subsequently, the electronics component 604 may be attached to modular sensor assembly 602, for example, by sliding the electronics component 604 in the direction of arrow 7A, such that the modular sensor assembly 602 and electronics component 604 are secured together. In some embodiments, the electronics component 604 is mounted first and the modular sensor assembly 602 is mounted subsequently.


In some embodiments, the modular sensor assembly 602 and electronics component 604 are secured together, and then subsequently mounted onto the patient as a single unit 600. Insertion of electronics unit 600 by an inserter, such as inserter 150 (FIG. 1B) is further described as an insertion device, e.g., as described in U.S. patent application Ser. No. 12/698,129 filed on Feb. 1, 2010 and U.S. Provisional Application Nos. 61/238,646, 61/246,825, 61/247,516, 61/249,535, 61/317,243, 61/345,562, and 61/361,374, the disclosures of each of which are incorporated herein by reference for all purposes.


In some embodiments, the analyte monitoring system 100 can include a secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the on body electronics 110. Moreover, the secondary receiver unit 106 can be configured to communicate with the display unit 120 as well as a data processing terminal 170. The secondary receiver unit 106 may be configured for bi-directional wireless communication with each or one of the display unit 104 and the data processing terminal 170.


In one embodiment, the secondary receiver unit 106 may be configured to include a limited number of functions and features as compared with the display unit 104. As such, the secondary receiver unit 106 may be configured substantially in a smaller compact housing or embodied in a device such as a wrist watch, pager, mobile phone, PDA, for example. Alternatively, the secondary receiver 106 may be configured with the same or substantially similar functionality as the display unit 104. The receiver unit may be configured to be used in conjunction with a docking cradle unit, for example for one or more of the following or other functions: placement by bedside, for re-charging, for data management, for night time monitoring, and/or bi-directional communication device.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims. Additional detailed description of embodiments of the disclosed subject matter are provided in, but not limited to: U.S. Pat. Nos. 7,299,082; 7,167,818; 7,041,468; 6,942,518; 6,893,545; 6,881,551; 6,773,671; 6,764,581; 6,749,740; 6,746,582; 6,736,957; 6,730,200; 6,676,816; 6,618,934; 6,616,819; 6,600,997; 6,592,745; 6,591,125; 6,560,471; 6,540,891; 6,514,718; 6,514,460; 6,503,381; 6,461,496; 6,377,894; 6,338,790; 6,299,757; 6,284,478; 6,270,455; 6,175,752; 6,161,095; 6,144,837; 6,143,164; 6,121,009; 6,120,676; 6,071,391; 5,918,603; 5,899,855; 5,822,715; 5,820,551; 5,628,890; 5,601,435; 5,593,852; 5,509,410; 5,320,715; 5,264,014; 5,262,305; 5,262,035; 4,711,245; 4,545,382; 5,356,786; 5,543,326; 6,103,033; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,579,690; 6,605,200; 6,605,201; 6,618,934; 6,654,625; 6,676,816; 6,730,200; 6,736,957; 6,932,892; U.S. Publication No. 2004/0186365, now U.S. Pat. No. 7,811,231; U.S. Publication No. 2005/0182306, now U.S. Pat. No. 8,771,183; U.S. Publication No. 2006/0025662, now U.S. Pat. No. 7,740,581; U.S. Publication No. 2006/0091006; U.S. Publication No. 2007/0056858, now U.S. Pat. No. 8,298,389; U.S. Publication No. 2007/0068807, now U.S. Pat. No. 7,846,311; U.S. Publication No. 2007/0095661; U.S. Publication No. 2007/0108048, now U.S. Pat. No. 7,918,975; U.S. Publication No. 2007/0199818, now U.S. Pat. No. 7,811,430; U.S. Publication No. 2007/0227911, now U.S. Pat. No. 7,887,682 ; U.S. Publication No. 2007/0233013; U.S. Publication No. 2008/0066305, now U.S. Pat. No. 7,895,740; U.S. Publication No. 2008/0081977, now U.S. Pat. No. 7,618,369; U.S. Publication No. 2008/0102441, now U.S. Pat. No. 7,822,557; U.S. Publication No. 2008/0148873, now U.S. Pat. No. 7,802,467; U.S. Publication Nos. 2008/0161666; 2008/0267823; 2009/0054748, now U.S. Pat. No. 7,885,698; U.S. patent application Ser. No. 10/745,878, filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231, and entitled “Continuous Glucose Monitoring System and Methods of Use”, U.S. patent application Ser. No. 12/143,731, filed Jun. 20, 2008, now U.S. Pat. No. 8,597,188, and entitled “Health Management Devices And Methods”; U.S. patent application Ser. No. 12/143,734, filed Jun. 20, 2008, now U.S. Pat. No. 8,617,069, and entitled “Health Monitor”; U.S. Provisional Patent Application No. 61/149,639, filed Feb. 3, 2009, and entitled “Compact On-Body Physiological Monitoring Devices And Methods Thereof”; U.S. Provisional Application No. 61/291,326, filed Dec. 30, 2009, and U.S. Provisional Application No. 61/299,924 filed Jan. 29, 2010; U.S. patent application Ser. No. 11/461,725, now U.S. Pat. No. 7,866,026; U.S. patent application Ser. Nos. 12/131,012; 12/242,823, now U.S. Pat. No. 8,219,173; U.S. patent application Ser. No. 12/363,712, now U.S. Pat. No. 8,346,335; U.S. patent application Ser. Nos. 12/698,124; 12/698,129; 12/714,439; 12/794,721, now U.S. Pat. No. 8,595,607; U.S. patent application Ser. Nos. 12/842,013; 61/238,646; 61/345,562; 61/361,374; and elsewhere, the disclosures of each are incorporated by reference in their entirety herein for all purposes.

Claims
  • 1. A method for monitoring an analyte level, the method comprising: positioning at least a portion of an analyte sensor under a skin layer and in contact with a bodily fluid of a user; andcommunicating, through an interconnect, one or more signals indicative of an analyte level from the analyte sensor to an electronics unit, wherein the electronics unit comprises a circuit board, and wherein the interconnect comprises: a first portion electrically connecting a first surface of the circuit board to an electrical contact of the analyte sensor; anda second portion coupled from the analyte sensor to a second surface of the electronics unit,wherein the first and second portions are compressible.
  • 2. The method of claim 1, further comprising: prior to positioning the at least a portion of the analyte sensor, causing at least a portion of the interconnect to deform when the electronics unit is coupled to the analyte sensor.
  • 3. The method of claim 1, further comprising communicating, by a data communication component coupled to a processor and the circuit board, the one or more signals from the analyte sensor.
  • 4. The method of claim 3, wherein the data communication component is configured to wirelessly communicate the signals from the analyte sensor to a remote location.
  • 5. The method of claim 4, wherein the data communication component is configured to communicate the signals using one or more of an infrared communication protocol, Bluetooth® communication protocol, Zigbee® communication protocol, radio frequency identification (RFID) communication protocol, or 802.11 wireless LAN protocol.
  • 6. The method of claim 3, further comprising transferring, by the interconnect, electrical signals from the analyte sensor to the circuit board.
  • 7. The method of claim 1, wherein the interconnect has a U-shaped configuration.
  • 8. The method of claim 7, wherein the interconnect comprises conductive material partially along the interconnect such that the second portion has a second end without conductive contacts.
  • 9. The method of claim 1, wherein the first portion has a first end with conductive contacts in contact with the first surface of the circuit board.
  • 10. The method of claim 1, wherein the interconnect comprises a flexible material that compresses upon engagement with the analyte sensor.
  • 11. The method of claim 10, wherein the interconnect comprises conductive material embedded in the flexible material.
  • 12. The method of claim 11, wherein the conductive material comprises carbon.
  • 13. The method of claim 11, wherein the conductive material comprises a polymer.
  • 14. The method of claim 1, wherein the analyte sensor comprises a plurality of electrical contacts in contact with a plurality of conductive contacts of the interconnect.
  • 15. The method of claim 1, wherein the second surface is opposite to and faces the circuit board.
  • 16. The method of claim 15, wherein the electronics unit comprises a housing, and wherein the second surface is on the housing.
  • 17. The method of claim 1, wherein the electronics unit comprises a housing, and wherein the interconnect is configured to slidably engage with the housing.
  • 18. The method of claim 1, wherein the analyte sensor comprises a plurality of electrodes including a working electrode, wherein the working electrode comprises an analyte-responsive enzyme and a mediator, wherein at least one of the analyte-responsive enzyme and the mediator is chemically bonded to a polymer disposed on the working electrode, and wherein at least one of the analyte-responsive enzyme and the mediator is crosslinked with the polymer.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/140,309, filed Apr. 27, 2016, which is a continuation of U.S. patent application Ser. No. 12/895,015, filed Sep. 30, 2010, now U.S. Pat. No. 9,351,669, which claims the benefit of U.S. Provisional Application No. 61/247,516, filed Sep. 30, 2009, both of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (1447)
Number Name Date Kind
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3653841 Klein Apr 1972 A
3719564 Lilly et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danninger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatasetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627842 Katz Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardieri Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Probaska Jul 1987 A
4684463 Williams Aug 1987 A
4684537 Graetzel et al. Aug 1987 A
4685466 Rau Aug 1987 A
4698057 Joishy Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4813424 Wilkins Oct 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4921199 Villaveces May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchhouse Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagata Jul 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliano Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. May 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynch et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftel Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Hogen et al. Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah et al. Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5533977 Matcalf et al. Jul 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupel et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Sakoda et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5741211 Iliff Jan 1998 A
5733044 Rose et al. Mar 1998 A
D393313 Meisner et al. Apr 1998 S
5735285 Albert et al. Apr 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931868 Gross et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thorne et al. Sep 1999 A
5954643 Van Antwerp et al. Sep 1999 A
5954685 Tierney Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Sham et al. Feb 2000 A
6068399 Tseng Mar 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massy et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Rogues Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554795 Lam et al. Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097637 Triplett et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7697967 Stafford Apr 2010 B2
7705653 Schell Apr 2010 B2
7705980 Smous et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7722536 Godnow et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7775444 DeRocco et al. Aug 2010 B2
7779332 Karr et al. Aug 2010 B2
7780827 Bhullar et al. Aug 2010 B1
7782192 Jeckelmann et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7791467 Mazar et al. Sep 2010 B2
7792562 Shults et al. Sep 2010 B2
7822454 Alden et al. Oct 2010 B1
7826981 Goode et al. Nov 2010 B2
7831310 Lebel et al. Nov 2010 B2
7860574 Von Arx et al. Dec 2010 B2
7873299 Berner et al. Jan 2011 B2
7882611 Shah et al. Feb 2011 B2
7883464 Stafford Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914460 Melker et al. Mar 2011 B2
7920907 McGarraugh et al. Apr 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7955258 Goscha et al. Jun 2011 B2
7970448 Shults et al. Jun 2011 B2
7974672 Shults et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7999674 Kamen Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8072310 Everhart Dec 2011 B1
8090445 Ginggen Jan 2012 B2
8093991 Stevenson et al. Jan 2012 B2
8094009 Allen et al. Jan 2012 B2
8098159 Batra et al. Jan 2012 B2
8098160 Howarth et al. Jan 2012 B2
8098161 Lavedas Jan 2012 B2
8098201 Choi et al. Jan 2012 B2
8098208 Ficker et al. Jan 2012 B2
8102021 Degani Jan 2012 B2
8102154 Bishop et al. Jan 2012 B2
8102263 Yeo et al. Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103241 Young et al. Jan 2012 B2
8103325 Swedlow et al. Jan 2012 B2
8111042 Bennett Feb 2012 B2
8112240 Fennell Feb 2012 B2
8115488 McDowell Feb 2012 B2
8116681 Baarman Feb 2012 B2
8116683 Baarman Feb 2012 B2
8117481 Anselmi et al. Feb 2012 B2
8120493 Burr Feb 2012 B2
8124452 Sheats Feb 2012 B2
8130093 Mazar et al. Mar 2012 B2
8131365 Zhang et al. Mar 2012 B2
8131565 Dicks et al. Mar 2012 B2
8132037 Fehr et al. Mar 2012 B2
8135352 Langsweirdt et al. Mar 2012 B2
8136735 Arai et al. Mar 2012 B2
8138925 Downie et al. Mar 2012 B2
8140160 Pless et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8140299 Siess Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150516 Levine et al. Apr 2012 B2
8179266 Hermle May 2012 B2
8180423 Mang et al. May 2012 B2
8373544 Pitt-Pladdy Feb 2013 B2
8512243 Stafford Aug 2013 B2
8515518 Ouyang et al. Aug 2013 B2
8545403 Peyser et al. Oct 2013 B2
8585591 Sloan et al. Nov 2013 B2
8602991 Stafford Dec 2013 B2
8617071 Say et al. Dec 2013 B2
8622903 Jin et al. Jan 2014 B2
8628498 Safabash et al. Jan 2014 B2
8652043 Drucker et al. Feb 2014 B2
8684930 Feldman et al. Apr 2014 B2
8692655 Zimman et al. Apr 2014 B2
8771183 Sloan Jul 2014 B2
8797163 Finkenzeller Aug 2014 B2
8961413 Teller et al. Feb 2015 B2
9014774 Mao et al. Apr 2015 B2
9031630 Hoss et al. May 2015 B2
9060805 Goodnow et al. Jun 2015 B2
9066697 Peyser et al. Jun 2015 B2
20010011224 Brown Aug 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010039504 Linberg et al. Nov 2001 A1
20010054217 Wang Dec 2001 A1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020026111 Ackerman Feb 2002 A1
20020029157 Marchosky Mar 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020049617 Lencki et al. Apr 2002 A1
20020054320 Ogino May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020055855 Cule et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020072858 Cheng Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020082850 Panelli Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020111832 Judge Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Kuhr et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020169635 Shillingburg Nov 2002 A1
20020170148 Mayne et al. Nov 2002 A1
20020188424 Grinstein et al. Dec 2002 A1
20020188748 Blackwell et al. Dec 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032077 Itoh et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030038047 Sleva et al. Feb 2003 A1
20030040661 Abraham et al. Feb 2003 A1
20030040821 Case Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030047575 Enkerlin et al. Mar 2003 A1
20030053665 Hamid Mar 2003 A1
20030055679 Soll Mar 2003 A1
20030058245 Brazhnik et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030063524 Niemiec et al. Apr 2003 A1
20030064751 Charlier et al. Apr 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030065534 McCartney Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030069753 Brown Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030097279 deLusignan et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030106917 Shetler et al. Jun 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030110059 Janas et al. Jun 2003 A1
20030120516 Perednia Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu Aug 2003 A1
20030158707 Doi Aug 2003 A1
20030158754 Elkind Aug 2003 A1
20030163351 Brown et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199739 Gordon et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030208110 Mault et al. Nov 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225324 Anderson et al. Dec 2003 A1
20030225361 Sabra Dec 2003 A1
20030229514 Brown Dec 2003 A2
20030231552 Markart Dec 2003 A1
20030233257 Matian et al. Dec 2003 A1
20030236738 Lange et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040014069 Cohen et al. Jan 2004 A1
20040035897 Salentine et al. Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040041749 Dixon Mar 2004 A1
20040044548 Marshall et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040056055 Folmer Mar 2004 A1
20040059201 Ginsberg Mar 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040073266 Haefner et al. Apr 2004 A1
20040078215 Dahlin et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040133462 Smith et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040152961 Carlson et al. Aug 2004 A1
20040155079 Shetler et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040165211 Herrmann et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040172284 Sullivan et al. Sep 2004 A1
20040172307 Gruber Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040176913 Kawatahara et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040195284 Iitsuka Oct 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040199409 Brown Oct 2004 A1
20040200867 Chee Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204863 Kim et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040210458 Evans et al. Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040232180 Badillo Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260155 Ciarniello et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050023137 Bhullar et al. Feb 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050045685 Goode, Jr. et al. Mar 2005 A1
20050048194 Sesto Mar 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050055243 Shmulewitz Mar 2005 A1
20050059873 Arndt et al. Mar 2005 A1
20050065555 Er Mar 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050071752 Marlatt Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050092791 Labarca et al. May 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131311 Leuthardt et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050171512 Flaherty Aug 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050203707 Tsutsui et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050238507 Dilanni et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050256417 Rischell et al. Nov 2005 A1
20050260174 Fraser et al. Nov 2005 A1
20050261558 Eaton et al. Nov 2005 A1
20050271996 Sporbert et al. Nov 2005 A1
20050267327 Iizuka et al. Dec 2005 A1
20050267780 Ray et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050281234 Kawamura et al. Dec 2005 A1
20050281706 Funke et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050283386 Powers et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20050288571 Perkins et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060004603 Peterka et al. Jan 2006 A1
20060004607 Marshall et al. Jan 2006 A1
20060006141 Ufer et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060047220 Sokoto et al. Mar 2006 A1
20060051738 Zweig Mar 2006 A1
20060058612 Dave et al. Mar 2006 A1
20060058626 Weiss et al. Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060094952 Ma et al. May 2006 A1
20060095225 Harmon et al. May 2006 A1
20060115790 Alon et al. Jun 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060129328 Leo et al. Jun 2006 A1
20060143041 Tipirneni Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060167718 Tischer Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060189939 Gononelli et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060235009 Glickman et al. Oct 2006 A1
20060240549 Minton Oct 2006 A1
20060241969 Wilhide et al. Oct 2006 A1
20060244465 Kroh et al. Nov 2006 A1
20060247508 Fennell Nov 2006 A1
20060247710 Goetz et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20060287691 Drew Dec 2006 A1
20070010950 Abensour et al. Jan 2007 A1
20070012324 Nirkondar et al. Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070016449 Cohen et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070033114 Minor Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070041626 Weiss et al. Feb 2007 A1
20070055799 Koehler et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070061170 Lorsch et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070067000 Strother et al. Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070074043 Lacey Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070096715 Joy et al. May 2007 A1
20070100215 Powers et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070123819 Mernoe et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070149861 Crothall et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070173698 Kivela et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203539 Stone et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219432 Thompson Sep 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070219597 Kamen et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070231846 Cosentino et al. Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244383 Talbot et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070293932 Zilla et al. Dec 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080004573 Kaufmann et al. Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080026338 Cinader Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080057484 Miyata et al. Mar 2008 A1
20080058626 Miyata et al. Mar 2008 A1
20080058678 Miyata et al. Mar 2008 A1
20080062891 Van der Merwe et al. Mar 2008 A1
20080063948 O'Brien Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk Mar 2008 A1
20080064943 Talbot et al. Mar 2008 A1
20080065236 Bristol Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080071580 Marcus et al. Mar 2008 A1
20080073993 Sortore et al. Mar 2008 A1
20080077433 Kasprisin et al. Mar 2008 A1
20080078567 Miller et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080105479 Lei May 2008 A1
20080105748 Lei May 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119705 Patel et al. May 2008 A1
20080119707 Stafford May 2008 A1
20080125636 Ward et al. May 2008 A1
20080126882 Fulton et al. May 2008 A1
20080127052 Rostoker May 2008 A1
20080129465 Rao Jun 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080145277 Wohland Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080167543 Say et al. Jul 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080183500 Banigan Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234663 Yodfat et al. Sep 2008 A1
20080235469 Drew Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269673 Butoi Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080281167 Soderberg et al. Nov 2008 A1
20080283396 Wang Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090007237 Lorsch Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090018779 Cohen et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090030733 Cohen et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048501 Goodnow Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 Vanantwerp et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090069658 Say Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088427 Clickman et al. Apr 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza Apr 2009 A1
20090105554 Stahman et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090124877 Shariati et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090149717 Brauer et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090187351 Orr et al. Jul 2009 A1
20090189738 Hermle Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090221880 Soderberg et al. Sep 2009 A1
20090224773 Joy et al. Sep 2009 A1
20090224837 Joy et al. Sep 2009 A1
20090227876 Tran et al. Sep 2009 A1
20090227877 Tran et al. Sep 2009 A1
20090228304 Ciarniello et al. Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240127 Ray Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090258790 Cohen et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090267765 Greene et al. Oct 2009 A1
20090269315 Fraser et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090273353 Kroh et al. Nov 2009 A1
20090278553 Kroh et al. Nov 2009 A1
20090281519 Rao et al. Nov 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090289796 Blumberg Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100088199 Tipirneni Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100146300 Brown Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100160760 Shults et al. Jun 2010 A1
20100161269 Kamath et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168540 Kamath et al. Jul 2010 A1
20100168541 Kamath et al. Jul 2010 A1
20100168542 Kamath et al. Jul 2010 A1
20100168543 Kamath et al. Jul 2010 A1
20100168544 Kamath et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100168547 Kamath et al. Jul 2010 A1
20100168645 Kamath et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179399 Goode et al. Jul 2010 A1
20100179400 Brauker et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179405 Goode et al. Jul 2010 A1
20100179407 Goode et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185073 Goode et al. Jul 2010 A1
20100185074 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331653 Stafford Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110004276 Blair et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110046977 Goodnow et al. Feb 2011 A1
20110054275 Stafford Mar 2011 A1
20110060196 Stafford Mar 2011 A1
20110073475 Kastanos et al. Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110106126 Love et al. May 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110145172 Petisce et al. Jun 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110152637 Kateraas et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110184258 Stafford Jul 2011 A1
20110190603 Stafford Aug 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110288574 Curry et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319729 Donnay et al. Dec 2011 A1
20110319733 Stafford Dec 2011 A1
20110319738 Woodruff et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120010642 Lee et al. Jan 2012 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120190989 Kaiser et al. Jul 2012 A1
Foreign Referenced Citations (70)
Number Date Country
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1177802 Feb 2002 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2003-527138 Sep 2003 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
2006-517804 Aug 2006 JP
WO-1996039977 May 1996 WO
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997021457 Jun 1997 WO
WO-1998035053 Aug 1998 WO
WO-1998056293 Dec 1998 WO
WO-1999033504 Jul 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000072181 Nov 2000 WO
WO-2000075814 Dec 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003028784 Apr 2003 WO
WO-2003041231 May 2003 WO
WO-2003049597 Jun 2003 WO
WO-2003073936 Sep 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004054445 Jul 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2004110256 Dec 2004 WO
WO-2005040793 May 2005 WO
WO-2005045744 May 2005 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2005119524 Dec 2005 WO
WO-2006026741 Mar 2006 WO
WO-2006032653 Mar 2006 WO
WO-2006042811 Apr 2006 WO
WO-2006069657 Jul 2006 WO
WO-2006086423 Aug 2006 WO
WO-2006108809 Oct 2006 WO
WO-2006124099 Nov 2006 WO
WO-2007041069 Apr 2007 WO
WO-2007140783 Dec 2007 WO
WO-2007143225 Dec 2007 WO
WO-2008001366 Jan 2008 WO
WO-2008065646 Jun 2008 WO
WO-2008133702 Nov 2008 WO
WO-2009062675 May 2009 WO
WO-20100112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
WO-2011022418 Feb 2011 WO
Non-Patent Literature Citations (128)
Entry
Alcock, et al., “Continuous analyte monitoring to aid clinical practice,” IEEE Engineering in Medicine & BioloXY Magazine, 13:319-25 (1994).
Amour, J.C. et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs,” Diabetes, vol. 39, 1990, pp. 1519-1526.
Bennion, N. et al., “Alternate Site Glucose Testing: A Crossover Design,” Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bendt, D. J., et al., “Introduction to the Minitrack: Databases, Data Warehousing, and Data Mining in Health Care,” System Sciences, Proceedings of 33rd Annual Hawaii Intenrational Conference, Jan. 4-7, 2000, pp. 1588.
Bindra, D.S. et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring,” Anal. Chem., 63(17):1692-1696 (Sep. 1, 1991).
Blank, T.B. et al., “Clinical Results from a Non-Invasive Blood Glucose Monitor,” Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E. et al., “Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats,” J. Biomed. Eng. 15:457-463 (1993).
Brooks, S.L. et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring,” Biosensors, vol. 3, 1987/88, pp. 45-56.
Bühling et al., Journal of Perinatal Medicine, 2005, vol. 33, pp. 125-131.
Cass, A.E. et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose,” Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671.
Cheyne, E.H. et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers,” Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Csoegi, E. et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase,” Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Cullen, M.T., et al., “The Changing Presentations of Diabetic Ketoacidosis During Pregnancy,” Amer. J. Perinatol, 1996, vol. 13, No. 7, pp. 449-451 (abstract only).
Feldman, B. et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B. et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change,” Abbott Diabetes Case, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Gregg, B. A. et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62(3):258-263 (Feb. 1, 1990).
Harrison, D.J. et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood,” Anal. Chem., 60 (19):2002-2007 (Oct. 1, 1988).
Heller, A., “Electrical Connection of Enzyme Redox Centers to Electrodes,” J. Phys. Chem., 96 (9):3579-3587 (1992).
Heller, A., “Electrical Wiring of Redox Enzymes,” Acc. Chem. Res., 23(5):129-134 (1990).
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English language translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R. et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, K., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors and Bioelectronics, 1992, vol. 7, pp. 709-714.
Johnson, P.C., “Peripheral Circulation,” John Wiley & Sons, 1978, pp. 198.
Jovanovic, Diabetes Technology & Therapeutics, 2000, vol. 2, Supplement 1, pp. S-67-S-71.
Jungheim, K. et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K. et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lodwig, V. et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria,” Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J. et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R. et al., “Elimination of Electroaxidizable Interferant-Produced Currents in Amperometric Biosensors,” Analytical Chemistry, 64(23):2889-2896 (Dec. 1, 1992).
Malin, S.F. et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy,” Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J.J. et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate,” Sensors and Biosensors B Chemical, B5:139-144 (1991).
McGarraugh, G. et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger,” TheraSense, Inc., 2001, 16 pages.
McGarraugh, G. et al., “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean B. D. et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information,” 1995.
Moatti-Sirat, D. et al., “Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue,” Diabetolocia, 35(3) (1 page—Abstract only) (Mar. 1992).
Morbiducci, U. et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic algorithms for Parameter Estimation,” Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients,” Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Ohara, T. J. et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy).sub.2 Cl].sup. +/2+ Complexed Poly(I-vinylimadazole) Films,” Analytical Chemistry, 65(23):3512-3516 (Dec. 1, 1993).
Opinion of the Court, Supreme Court of the United States, No. 04-1350, KSR International co., Petitioner v. Teleflex Inc. et al., Apr. 30, 2007.
Pickup, J. et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy,” Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J. et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer,” Diabetologia, vol. 32, 1989, pp. 213-217.
Parker, R. et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model,” AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pishko, M.V. et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels,” Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V. et al., “In vitro and in vivo evaluation in dogs of a miniaturized glucose sensor,” ASAIO Transactions, 37(3) (1 page—Abstract only) (Jul.-Sep. 1991).
Quinn, C.P. et al., Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors, The American Physiological Society, 1995, E155-E161.
Reach, G. et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?” Analytical Chemistry, 64(6):381-386 (Mar. 15, 1992).
Rebrin, K. et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs,” Diabetologia, 32(8):573-576 (Aug. 1989).
Roe, J.N. et al., “Bloodless Glucose Measurements,” Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M. et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentration,” Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M. et al., “Ferrocene-Medicated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane,” Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C. et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D.W. et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin,” Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W. et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M. et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M. et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M. et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor,” Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M. et al., “Needle-Type Glucose Sensor for Wearable Artificial Endocrine Pancreas,” Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M. et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M. et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, 1982, pp. 1129-1131.
Shults, M. C. et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg R. et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M. et al., “In Vivo Probes: Problems and Perspectives,” Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Travenol Laboratories, Inc., An Introduction of “Eugly,” Book 1, 1985, pp. 1-22.
Turner, A. et al., “Diabetes Mellitus: Biosensors for Research and Management,” Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J. et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G. et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wang et al., Journal of the Shanghai Medical University, 2000, vol. 27, pp. 393-395 (Abstract).
Wilson, G.S. et al., “Progress Toward the Development of an Implantable Sensor for Glucose,” Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Ye, L. et al., “High Current Density “Wired” Quinoprotein Glucose Dehydrogenase Electroade,” Anal. Chem., 65(3):238-241 (Feb. 1, 1993).
Canadian Patent Application No. CA-2,752,455, Examiner's Report dated Jun. 13, 2012.
Canadian Patent Application No. CA-2,858,901, Examiner's Report dated Jan. 25, 2016.
Chinese Patent Application No. 200880005149.1, Notification of Granting a Patent Right for an Invention dated Jun. 21, 2013.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Aug. 17, 2011.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Dec. 3, 2012.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Feb. 16, 2012.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Jul. 29, 2010.
European Patent Application No. EP-05756627.5, Supplementary European Search Report dated Dec. 4, 2009.
European Patent Application No. EP-05756627.5, Office Action dated Jun. 24, 200.
European Patent Application No. EP-05756627.5, Decision to Refuse the Application dated Dec. 12, 2013.
European Patent Application No. EP-05756627.5, Decision to Refuse the Application dated Dec. 7, 2012.
European Patent Application No. EP-05756627.5, Examination Report dated Jun. 7, 2013.
European Patent Application No. EP-05756627.5, Official Communication dated Jun. 13, 2012.
PCT Application No. PCT/US2005/020044, International Preliminary Report on Patentability dated Dec. 20, 2006.
PCT Application No. PCT/US2008/054165, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 27, 2009.
PCT Application No. PCT/US2008/054165, International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2008.
PCT Application No. PCT/US2008/067791, International Search Report and Written Opinion of the International Searching Authority dated Sep. 29, 2008.
PCT Application No. PCT/US2008/067791, International Search Report on Patentability and Written Opinion of the International Searching Authority dated Jan. 7, 2010.
PCT Application No. PCT/US2010/022860, International Search Report and Written Opinion dated Mar. 23, 2010.
PCT Application No. PCT/US2010/022860, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 18, 2011.
PCT Application No. PCT/US2010/047381, International Search Report and Written Opinion dated Oct. 15, 2010.
PCT Application No. PCT/US2010/047381, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/050772, International Search Report and Written Opinion dated Dec. 3, 2010.
PCT Application No. PCT/US2010/050772, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/050888, International Search Report and Written Opinion dated Nov. 29, 2010.
PCT Application No. PCT/US2010/050888, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/051861, International Search Report and Written Opinion dated Nov. 30, 2010.
PCT Application No. PCT/US2010/051861, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 19, 2012.
Russian Patent Application No. 2009134334, Original Language and English Translation of Office Action dated Feb. 7, 2012.
U.S. Appl. No. 12/893,974, Office Action dated Mar. 28, 2013.
U.S. Appl. No. 90/008,457, Request for Reexamination of U.S. Pat. No. 6,990,366, filed Jan. 23, 2007.
U.S. Appl. No. 90/009,104 & U.S. Appl. No. 90/009,328, Notice of Intent to Issue Reexamination Certificate dated Nov. 20, 2009.
U.S. Appl. No. 90/009,104 & U.S. Appl. No. 90/009,328, Office Action dated Aug. 4, 2009.
U.S. Appl. No. 90/009,104 & U.S. Appl. No. 90/009,328, Office Action dated Sep. 30, 2009.
U.S. Appl. No. 90/009,104, Office Action dated Oct. 16, 2008.
U.S. Appl. No. 90/009,104, Order Granting Request for Reexamination dated Jun. 5, 2008.
U.S. Appl. No. 90/009,104, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Apr. 8, 2008.
U.S. Appl. No. 90/009,328, Order Granting Request for Reexamination dated Dec. 9, 2008.
U.S. Appl. No. 90/009,328, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Nov. 10, 2008.
U.S. Appl. No. 90/010,791, Notice of Intent to Issue Reexamination Certificate dated May 17, 2011.
U.S. Appl. No. 90/010,791, Office Action dated Dec. 17, 2010.
U.S. Appl. No. 90/010,791, Office Action dated May 28, 2010.
U.S. Appl. No. 90/010,791, Order Granting Request for Reexamination dated Feb. 22, 2010.
U.S. Appl. No. 90/010,791, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Dec. 22, 2009.
U.S. Appl. No. 90/011,730, Notice of Intent to Issue Reexam Certificate for U.S. Pat. No. 6,990,366 dated Apr. 5, 2012.
U.S. Appl. No. 90/011,730, Office Action dated Jan. 11, 2012.
U.S. Appl. No. 90/011,730, Order Granting Request for Reexamination of U.S. Pat. No. 6,990,366 dated Aug. 24, 2011.
U.S. Appl. No. 90/011,730, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Jun. 3, 2011.
U.S. Appl. No. 95/002,113, Order Denying Request for Reexamination of U.S. Pat. No. 6,990,366 dated Nov. 13, 2012.
U.S. Appl. No. 95/002,113, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 6,990,366 dated Dec. 13, 2012.
U.S. Appl. No. 95/002,113, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Aug. 30, 2012.
U.S. Appl. No. 95/002,162, Order Denying Request for Reexamination of U.S. Pat. No. 8,175,673 dated Nov. 13, 2012.
U.S. Appl. No. 95/002,162, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 8,175,673 dated Dec. 13, 2012.
U.S. Appl. No. 95/002,162, Request for Reexamination of U.S. Pat. No. 8,175,673 filed Sep. 7, 2012.
Related Publications (1)
Number Date Country
20170340249 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
61247516 Sep 2009 US
Continuations (2)
Number Date Country
Parent 15140309 Apr 2016 US
Child 15674439 US
Parent 12895015 Sep 2010 US
Child 15140309 US