This application is a national stage application of International application number PCT/CN2016/082195, filed May 16, 2016, titled “An Interdigitated Capacitive Proximity Sensor with Varied Space Electrode Structure,” which claims the priority benefit of Chinese Patent Application No. 201510639121.5, filed on Sep. 29, 2015, which is hereby incorporated by reference in its entirety.
The present disclosure relates to a novel capacitive proximity sensor and, more particularly, to a varied space electrode structure, which is suited to a non-destructive testing operation, such as the detection of dielectric properties of a polymer material structure of which thickness gradually decreases.
Polymer materials are being increasingly used in various engineering applications due to their multiple advantages over traditional metallic materials. Their light weight, high plasticity, corrosion resistance and good insulation are being exploited for applications in the basic support components of instrument board, municipal water supply pipelines network, and insulation parts in the electrical power system, etc. However, polymer materials are always exposed to a variety of degrading influences during normal services, such as extreme temperature, light rays, and oxidation, failures caused by the degradation usually occur. Take the composite insulators which are widely used in the power supply system, for example; the external insulation part is made of high-temperature vulcanization silicone rubber (HTVSR), which is a typical polymer material. To ensure the self-cleaning ability of the composite insulators under contaminated conditions, the umbrella skirt structure is designed to be an inclined plane with a certain angle, whose thickness decreases gradually from nearby of the fiberglass reinforced resin rod to the edge of the umbrella skirt. Under the integrated effects of high voltage surge and environmental factors over extended periods of service, irreversible aging of the HTVSR material occurs. Aging of the composite insulators will lead to an electrical property degradation of the external insulation, which is a serious potential threat to the safe and stable running of the high voltage power grid. Therefore, it is necessary to develop non-destructive testing (NDT) methods for aging damage detection of polymer materials. Especially for the thickness gradually changed structure aging damage detection has significant engineering application values.
Various testing techniques such as the visual inspection, the tensile test method, and infrared spectroscopic analysis are used for the characterization of aging damage degrees of polymer materials. Generally, it is difficult to evaluate the material performance based on the appearance of materials, mechanical properties and its molecular structure. In addition, the above-mentioned methods can not directly characterize the dielectric and insulation properties of polymer materials. Capacitive proximity sensors are newly developed sensing technique based on the fringing effect of the electric field. Capacitance variation caused by the relative dielectric permittivity changed is closely related to the electrical properties of the polymer materials and can be utilized to detect and evaluate the electrical performance of dielectric structures with low conductivity. Compared with the traditional parallel-plate capacitor, capacitive proximity sensors are widely used for a variety of parameters measurement attribute to their features: high sensitivity, non-invasive, and the planar structure that is particularly useful when the access to a test specimen is limited to the only one side. Therefore, they have been widely used in many fields, such as material property monitoring, damage detecting, humidity sensing, electrical insulation properties sensing, chemical sensing, and bio-sensing, etc.
The capacitive proximity sensor is mainly composed of a driving electrode, a sensing electrode, a shielding layer, and a substrate. Existing research indicates that capacitive sensor performances such as signal strength, penetration depth, sensitivity, and noise-to-signal ratio are greatly influenced by the patterns and parameters of the electrodes, which affect the detecting capability of capacitive proximity sensors.
Many efforts have been devoted to improving the performance of capacitive proximity sensors. Several sensor patterns including square-shaped, maze, spiral and comb patterns were investigated by LI (Design principles for multichannel fringing electric field sensors [J]. Sensors Journal, IEEE, 2006, 6(2): 434-440), and it was demonstrated that complex sensor patterns could increase the effective electrode area and then improve sensor signal and sensitivity. A capacitive sensor of interdigitated electrode structure with increased height was fabricated for humidity measurement (Kim J H, Moon B M, Hong S M. Capacitive humidity sensors based on a newly designed interdigitated electrode structure [J]. Microsystem technologies, 2012, 18(1): 31-35). Compared to the traditional interdigitated electrode sensor, the proposed sensor showed higher sensitivity owe to the horizontal electric field lines confined in the polyimide sensing layer. To improve signal strength and sensitivity, Rivadeneyra et al. (Rivadeneyra A, Fernandez-Salmeron J, Banqueri J, et al. A novel electrode structure compared with interdigitated electrodes as capacitive sensor [J]. Sensors and Actuators B: Chemical, 2014, 204: 552-560) designed a serpentine structure which is a combination of meandering and interdigitated electrodes. Compared with the traditional interdigitated sensor, the signal strength of the sensor increased by 28%.
Existed research works indicated that there is a restriction relationship among the signal strength, sensor sensitivity and penetration depth for capacitive sensors; so in practical applications, a tradeoff of the sensors' properties need to be considered in the actual sensor designing process. Anything else, the structures designing and parameters optimizing of the capacitive sensor existed in previous research works are all based on the equal thickness structure. Thus the spacing between two adjacent electrodes of conventional interdigitated electrode (IDE) structure sensors is equal. For conventional IDE sensors, the penetration depths of the electric field between two adjacent electrodes are approximately equal, and the sensor is not suitable for the detection of the thickness gradually changed the structure. Aiming at the dielectric property inspection for a thickness decreases gradually structure such as umbrella skirt on the composite insulators, it is intended to design an improved IDE structure sensor which spacing between two adjacent electrodes are not equal, and the electric field of the newly designed sensor is confined within the cross section of the material under test (MUT). The optimal design of the interdigitated capacitive sensor with variable spacing electrode structure is rarely reported.
A novel capacitive proximity sensors with variable spacing interdigitated electrode (VS-IDE) structure is designed for dielectric property testing of thickness gradient polymer materials samples. The present disclosure is to divide the conventional equal spacing interdigitated electrode (ES-IDE) structure sensor into several pairs of adjacent interdigitated units, based on the characteristic of the thickness decreases gradually structure of the MUT, the width of the electrodes and spacing between two adjacent electrodes in each unit are optimized individually. Finally, by combining the different interdigitated units together according to the pre-defined rule, a VS-IDE structure capacitive sensor is designed, through which electric field lines are confined within the MUT mostly as expected. Beyond that, the signal strength and the measurement sensitivity are also improved.
To achieve the above-mentioned destination, the technical proposal adopted in the disclosure is as follows.
A novel capacitive proximity interdigitated sensor may include VS-IDE structure is shown in the
Both the driving and sensing electrodes may include several interdigitated fingers, which are arranged alternately in sequence, and the width and metallization ratio for each interdigitated unit are determined by the local thickness of the test sample. The arrangement of electrodes is shown in
The substrate (3) is a kind of insulation material with a certain strength and stiffness to support the electrode and guarding layer. A through hole is drilled on a substrate (3) for the purpose to lead the driving electrode (1) and the sensing electrode (2) to the reverse side of the substrate (3).
As shown in
As shown in
The detailed procedures about how to decide each single interdigitated unit width and space of the above-mentioned VS-IDE sensors are presented as following.
The fundamental parameters of interdigitated electrode structure are illustrated in
Step 1: The capacitive proximity interdigitated sensor with a single unit as shown in
Step 2: Measuring the capacitance values in the case of different thickness MUT. A series of different thickness MUT are placed on the sensor surface fabricated in step 1 respectively, and the relevant capacitance is recorded simultaneously.
Step 3: Computing the relative capacitance ratio to the constant value at each different MUT thickness. The evaluation of the penetration depth is according to the distribution of the relative capacitance ratio d %, which can be represented as
wherein Ch→∞ is the stable capacitance at the same metallization ratio. The relative capacitance ratio curves are obtained.
Step 4: Compute the penetration depth curves of the proximity interdigitated sensors with a single unit. Based on Step 3, a horizontal line equals to 10% is drawn, and the effective penetration depth corresponds to the position where the relative capacitance equals 10%.
Step 5: Repeating the above steps 1 to 4, and the effective penetration depth curves for the proximity interdigitated sensors with a single unit, whose unit width, and metallization ratio are C and γ, respectively.
Step 6: The width and spacing of each interdigitated unit are determined, and a novel structure interdigitated proximity capacitive sensor with a variable spacing electrode is obtained. According to the correspondence between the effective penetration depth h, the length of each unit and metallization ratio of the electrode, combined with the characteristic of the thickness decreases structure of the MUT gradually, the width of the electrodes and spacing between two adjacent electrodes in each unit are optimized individually. Finally, by combining the different interdigitated units together according to the pre-defined rule, the novel VS-IDE structure capacitive sensors are designed, and the novel structure is shown in the
Step 7: Optimizing selection of the proximity interdigitated sensors with varied space electrode. The sensor's performance of the different combinations obtained in step are tested, and the optimal VS-IDE structure sensor is chosen according to the comparison of the electric field line distribution and signal strength between different combinations.
The present disclosure has the following advantages. 1) Under the same detection area conditions, the effective electrode area of the VS-IDE structure sensor is increased and increased the signal strength directly. The electric field line distribution of the designed sensors is confined within the thickness gradually changed materials under test mostly as expected simultaneously. 2) Capacitive sensing is ideally suited for characterization of dielectric materials due to the close relationship between the measured capacitance and the relative permittivity (dielectric constant) of the material. And the capacitive sensing technique has the advantage of high sensitivity and non-invasive etc. 3) Without the need for destructive testing of materials, to achieve a true sense of the nondestructive testing, and can achieve continuous on-line monitoring.
As shown in the figures above, the following numbers refer to one or more components, respectively: 1. A driving electrode; 2. a sensing electrode; 3. a substrate; 4. a guarding layer; 5. a lead connector; 6. a thickness gradually changed testing specimen; 7. an impedance analyzer; 8. a VS-IDE sensor.
The design of a VS-IDE capacitive proximity sensor is further described below with reference to
Based on the fringing effect of the electric field, a novel capacitive sensor with variable spacing electrode structure is designed and used to evaluate the dielectric properties of the polymer materials with thickness decreases gradually structure.
A novel capacitive proximity interdigitated sensor may include VS-IDE structure is shown in
As described in
The substrate 3 was made of a PMMA plate having a size of 60*50*2.5 mm, and two diameters of 2 mm holes were obtained at a distance of 10 mm from the left and right end faces respectively. A copper foil with a width of 2 mm was selected as the lead, the driving electrode 1 and the sensing electrode 2 are led to the back surface of the substrate by a lead wire, so as to be easily connected to the lead connector 5.
As shown in the
As shown in the
The detailed procedures about how to decide each single interdigitated unit width and space of the above-mentioned VS-IDE sensors are presented as following.
Step 1: Fabrication of the capacitive proximity interdigitated sensor with a single unit, whose basic unit width C is 10 mm and the metallization ratio γ is 0.5. According to the sensor structure illustrated in
Step 2: Measuring the capacitance values in the case of different thickness MUT. A 1 mm, thick high-temperature vulcanized silicone rubber slice, is placed above the capacitive proximity sensor fabricated in step 1, and the capacitance value measured at that time was recorded. Then, a silicone rubber sheet having a thickness of 1 mm was superimposed on each layer, and the capacitance value measured after increasing the thickness of 1 mm was recorded. Finally, the capacitance value varies with the thickness of the silicone rubber curve shown in
Step 3: Computing the relative capacitance ratio to the constant value at each different MUT thickness. The capacitance values at different silicone rubber thicknesses obtained in step 2 are calculated according to formula (1), and the rate of change of the capacitance value relative to the stable value under the thickness h of the sample to be measured is shown in
Step 4: Computing the penetration depth curves of the interdigitated capacitive proximity sensors with a single unit. Based on step (3), a 10% is selected as the difference %, and a horizontal line is drawn as shown in the dashed line in
Step 5: Repeating steps (1) to (4), the different single unit capacitive sensors are fabricated. The unit width C is 4 mm\5 mm\6 mm\7 mm\8 mm\9 mm\10 mm, and the metallization ratio are 0.1˜0.9. Measure and calculate the effective penetration depth of the sensor under different combinations of parameters, plotted as shown in
Step 6: Determining the width and spacing of each interdigitated unit, and combine to obtain a novel structure interdigitated capacitive proximity sensor with a variable spacing electrode. Analysis of the characteristics of the geometric dimensions of the thickness decrease specimen gradually to be measured as shown
Step 7: Optimizing selection of the proximity interdigitated sensors with variable spacing electrode structure.
The above is a typical application of the present disclosure, and the application of the present disclosure is not limited thereto.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0639121 | Sep 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/082195 | 5/16/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/054461 | 4/6/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5537872 | Frere | Jul 1996 | A |
8829928 | Gonzalez | Sep 2014 | B2 |
20110146400 | Humbert | Jun 2011 | A1 |
20110185810 | Humbert | Aug 2011 | A1 |
20140197851 | Astley | Jul 2014 | A1 |
20150338246 | Robert | Nov 2015 | A1 |
20170307413 | Yamai | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
101156034 | Apr 2008 | CN |
105158582 | Dec 2015 | CN |
Number | Date | Country | |
---|---|---|---|
20170331474 A1 | Nov 2017 | US |