Interface board for receiving modular interface cards

Information

  • Patent Grant
  • 6539510
  • Patent Number
    6,539,510
  • Date Filed
    Tuesday, August 12, 1997
    27 years ago
  • Date Issued
    Tuesday, March 25, 2003
    21 years ago
Abstract
An interface board and inserted modular IC interface cards allows variable length boundary scan chains. The chain can be constructed of any type of programmable integrated circuit (IC) in any order. The interface board contains a plurality of JTAG interfaces that respectively mate with standard adapter interfaces located on the modular IC interface cards. If less than the maximum number of modular IC interface cards are inserted into the interface board, a terminator card is inserted into the standard interface following the last modular IC interface card of the chain. The last test data output signal of the chain is routed back to a connector of the interface board. The interface board includes an output cascade connector that couples with an input cascade connector of another interface board so that any number of interface boards can be cascaded in series to expand the boundary scan chain.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the field of boundary scan interfaces in accordance with the IEEE 1149.1 standard developed by the Joint Test Action Group (JTAG), and more specifically to the equipment used in connection with circuits employing these boundary scans (hereinafter JTAG) interfaces.




2. Description of the Related Art




Electrically programmable logic devices (EPLDs), complex programmable logic devices (CPLDs), and field programmable gate arrays (FPGAs) are well known in the art. These devices can be programmed by integrated circuit designers to implement particular logic functions. To program an EPLD, CPLD, or FPGA, the device is typically connected to a computer system via an interface cable and the computer system is instructed to download program information into the device. The EPLD, CPLD, or FPGA (hereinafter the programmable logic device or PLD) retains this programming information in nonvolatile computer memory (e.g., flash memory, EEPROM, etc.) or in volatile computer memory (e.g., SRAM).




In the past, the JTAG interface was used primarily for testing devices that were soldered or otherwise fixed to a circuit board. Using the JTAG interface, instructions were sent from a computer system to the mounted devices to test for open circuits and short circuits associated with the pins of those devices. Recently, the JTAG interface has been used to program PLDs that are board mounted (i.e. in-system programmable (ISP) devices). To facilitate this programming, multiple PLDs are coupled in a chain in accordance with the IEEE 1149.1 boundary scan standard. The first device in the JTAG chain, which is coupled to the programming computer via a JTAG interface cable, can be programmed and then put into a bypass mode so that other downstream devices in the JTAG chain are programmed sequentially.




To accomplish this programming, the ISP software includes complex software routines to control the programming order of the PLDs in the JTAG chain. Thus, the programming data is written into the JTAG chain using the placement order of the PLDs. However, the designer often does not have access to the physical embodiment of the JTAG chain that is being programmed, thereby preventing the ISP software from being tested and verified in conjunction with the JTAG chain. Alternatively, the designer has access to the JTAG chain, but wants to test the JTAG chain independently from the overall electronic design.




To solve this problem in the past, the physical JTAG chain was constructed using prototype material, e.g. wirewrap and prototype circuit boards (protoboards). The designer then used the physical JTAG chain to test the ISP software. However, this prototype construction is tedious, complex, and error-prone, thereby making the process disadvantageous for small JTAG chains and entirely impractical for large JTAG chains. Therefore, a need exists for a structure that facilitates testing ISP software and other aspects pertinent to a physical JTAG chain.




SUMMARY OF THE INVENTION




Accordingly, the present invention provides a structure that allows any number of PLDs, of any type and in any order, to be coupled together into a physical JTAG chain. Thus, the present invention facilitates the quick and easy construction of custom JTAG chains that can be used for a broad range of diagnostic purposes. One such diagnostic purpose is to test software designed for ISP PLDs that conform to the IEEE 1149.1 boundary scan standard.




In accordance with the present invention, an interface board includes a plurality of JTAG interfaces for receiving one or more modular integrated circuit (IC) interface cards. Each card has a socket of a particular package type for receiving an IC of the same package type and a connector interface, coupled to the socket, for a removable coupling with one of the standard interfaces of the interface board.




The traces of the interface board provide certain JTAG signals, e.g. a test mode select (TMS) signal and a test clock (TCK) signal, to all of the JTAG interfaces (and thus to the modular IC interface cards and ICs in the JTAG chain) in parallel. Other JTAG signals, e.g. a test data input (TDI) signal and a test data output (TDO) signal, are routed through the ICs in series. Specifically, the TDO signal of one IC becomes the TDI signal of the next IC in the chain. The TDO signal of the last IC in the JTAG chain is provided as a test data final (TDF) signal from the interface board back to a cable (which communicates with the programming system). If less than the maximum number of modular IC interface cards are inserted into the interface board, a terminator card is inserted into the JTAG interface following the last modular IC interface card of the JTAG chain. This terminator card provides the TDF signal.




In accordance with one embodiment of the present invention, the interface board further includes an output cascade connector that can be coupled to an input cascade connector of another interface board. The cascade connectors facilitate the transfer of the JTAG signals between the interface boards. In this manner, any number of interface boards can be coupled in series to expand the size of the physical JTAG chain.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a top view of an interface board of the present invention.





FIG. 2

illustrates a detailed top view of the interface board of the present invention including the multiple JTAG interface stations.





FIGS. 3A-3D

illustrate a schematic diagram of one embodiment of the interface board of the present invention.





FIG. 4

is a schematic diagram of a generic modular IC interface card of the present invention.





FIGS. 5A and 5B

illustrate top and bottom views of a first embodiment of a modular IC interface card in accordance with the present invention.





FIG. 6

illustrates a top view of a second embodiment of a modular IC interface card in accordance with the present invention.





FIG. 7

shows a schematic diagram of a terminator card of the present invention.





FIG. 8

illustrates a top view of one embodiment of a terminator card of the present invention.





FIGS. 9A-9C

show configurations of the interface board of the present invention.





FIG. 10

illustrates two interface boards coupled to form one JTAG chain.











DETAILED DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a top view of an interface board


100


of the present invention which includes a plurality of JTAG interface stations


101


-


106


, each station having one of JTAG interfaces


51


-


56


. Note that providing six interface stations


101


-


106


is exemplary only and that other embodiments of interface board


100


have more or fewer interface stations. Each JTAG interface is designed to receive a modular IC interface card (explained in detail in reference to

FIGS. 4

,


5


A,


5


B, and


6


) which includes a PLD (or any other JTAG-compliant packaged IC chip). In this embodiment, interface board


100


is wired to create a physical JTAG chain that starts at station


101


and ends at station


106


. However, because any modular IC interface card can be connected to any JTAG interface, interface board


100


can support any ordering of devices within the JTAG chain.




A JTAG interface cable


10


is coupled to interface board


100


of the present invention via a cable connector


61


or


65


(both mounted on interface board


100


). The other end of cable


10


is adapted to couple to a communication port (e.g., a serial or parallel port) of a standard computer system (not shown). Cable connector


61


is used when cable


10


is coupled to the parallel port of the computer system. On the other hand, cable connector


65


is used when cable


10


is coupled to the serial port of the computer system.




Note that if the serial port is used, cable


10


includes an additional processing unit. This processing unit is used to translate encoded instructions and data from the computer system to JTAG signals which are then transferred to interface board


100


. One example of a processing unit which can be used with the present invention is described in U.S. Pat. No. 5,694,399, entitled “Processing Unit for Generating Signals for Communication with a Test Access Port,” by N. Jacobson and A. Maraldo, and assigned to Xilinx, Inc. One commercially available cable including the additional processing unit, an XCHECKER cable, is provided by Xilinx, Inc.




Irrespective of the port used, JTAG conforming signals are provided to cable connector


61


or cable connector


65


. In one embodiment, cable connectors


61


and


65


(in one example, standard


18


pin connectors) are positioned such that only one cable


10


can be coupled to board


100


at one time to supply and receive the JTAG signals.




In accordance with one embodiment of the present invention, interface board


100


is completely modular. Therefore, multiple interface boards


100


can be cascaded together, as needed, by connecting an input cascade connector


67


of a downstream interface board to an output cascade connector


63


of its immediate upstream interface board to create longer JTAG chains (explained in greater detail in reference to FIG.


10


).




The Interface Board





FIG. 2

illustrates another view of interface board


100


of the present invention including its multiple JTAG interface stations


101


-


106


. Each interface station includes: (1) one of JTAG interfaces


51


-


56


; (2) area for a modular IC interface card; (3) one of blocks


41


-


46


for supporting the modular IC interface card; and (4) connecting traces (shown and described in reference to

FIGS. 3A-3D

) used to couple JTAG interfaces


51


-


56


to form the physical JTAG chain.




In one embodiment, an optional prototype area


77


is provided to allow additional circuitry to be added to interface board


100


. Examples of additional circuitry include chips having buffers that boost output signal strength if multiple interface boards are cascaded. This additional circuitry is typically coupled to interface board


100


by physical cuts to the traces of output cascade connector


63


. Jumpers are then connected to the buffers, and from the buffers back to cascade connector


63


.





FIGS. 3A

,


3


B,


3


C, and


3


D illustrate a schematic diagram of JTAG interfaces


51


-


56


, cascade connectors


63


and


67


, and cable connectors


61


and


65


. Cable connector


61


(or cable connector


65


) provides JTAG signals from the computer system (not shown) to interface board


100


. For example, the TDI (test data input) signal is provided on line


61




b


; the TCK (test clock) signal is provided on line


61




c


; and the TMS (test mode select) signal is provided on line


61




d


. These lines, except line


61




b


, are coupled to all JTAG interfaces


51


-


56


. Thus, the TCK and TMS signals are provided in parallel to JTAG interfaces


51


-


56


. Line


61




b


, which provides the TDI signal, is coupled only to JTAG interface


51


. The TDO (test data output) signal of JTAG interface


51


is provided as the TDI signal of JTAG interface


52


via line


210


. A similar coupling is provided for JTAG interfaces


52


-


56


. Thus, JTAG interfaces


51


-


56


are coupled in series using lines


210


,


218


,


212


,


214


, and


216


.




In accordance with one embodiment of the present invention, interface board


100


receives power from either power supply port


73


or an external power connector


75


. In one embodiment, power supply


20


(

FIG. 1

) provides 9V and ground to power supply port


73


. A switch


35


provides the 9V supply to voltage regulators


31


and


33


which in turn provide 3.3V and 5V, respectively, to each of JTAG interfaces


51


-


56


in parallel. Voltage regulators


31


and


33


are coupled to ground (line


79




a


) via capacitors to stabilize their output voltage. The assignee of the present invention provides a power supply, commercially called the HW-130 universal power supply, but other power supplies of varying voltages, and provided by different manufacturers, can be used within the scope of the present invention.




Alternatively, external power connector


75


provides 3.3 volts and 5 volts to each of JTAG interfaces


51


-


56


in parallel. Typically, external power connector


75


is used if power supply


20


has another type of connector, i.e. a connector incompatible with power supply port


73


, a greater current than that provided by power supply


20


is needed, or voltages other than 3.3 or 5V is required. Note that external power connector


75


can also provide ground to all the JTAG interfaces on line


61




a


.




Jumper


79


(

FIG. 3B

) controls the voltage level supplied to cable connectors


61


and


65


. Specifically, if jumper


79


is switched to the left, 5V is supplied from line


33




b


to cable connectors


61


and


65


via line


226


. If jumper


79


is switched to the right, 3.3V is supplied from line


31




b


to cable connectors


61


and


65


.




Lines


61




a


,


61




c


,


61




d


,


61




e


, and


69


are coupled to output cascade connector


63


. In this manner, if multiple interface boards


100


are cascaded, the appropriate JTAG signals (including TCK, TMS, and TDO) and ground would be provided to the next downstream interface board. Note that line


69


(which transfers the TDO signal to the next interface board


100


) is coupled to line


61




b


(which would receive the transferred TDO signal as the cascaded TDI signal on the next interface board).




Modular IC Interface Cards





FIG. 4

is a schematic diagram of a generic modular IC interface card


300


of the present invention including a socket


305


which can receive any number of different chip packages. Each chip package receives a PLD. Thus, a PLD is inserted into the JTAG chain when its associated modular IC interface card


300


is connected onto a JTAG interface using pins


310




a


-


310




e


(also referred to herein as standard interface


310


). Pin


310




a


receives the TCK signal, pin


310




b


receives the TMS signal, pin


310




d


receives the TDI signal, and pin


310




e


provides the TDO signal. Pin


310




c


is reserved for supplying the last TDO output signal in the JTAG chain (i.e. the Test Data Final (TDF) signal) to cable connector


61


/


65


and therefore is not coupled to socket


305


(as explained in greater detail in reference to

FIGS. 3D and 7

, the TDF signal is provided by a terminator card or the last JTAG interface in a fully occupied interface board). Pins


310




f


,


310




h


, and


310




g


receive the 3.3V, 5V, and ground voltage, respectively.




In many cases, a PLD is driven with different voltages for its input/output (I/O) circuitry and for its internal circuitry. Therefore, in one embodiment of the present invention, jumper


340


is coupled to line


350




a


which supplies power to the I/O circuitry of the PLD within socket


305


, and is selectively coupled to pin


310




f


which provides 3.3V or pin


310




h


which provides 5V. In a similar manner, jumper


330


is coupled to line


350




c


which supplies power to the internal circuitry (e.g., non-I/O circuitry) of the PLD within socket


305


, and is selectively coupled to pins


310




f


or


310




h


. Thus, either 3.3V or 5V can also be supplied to the internal circuitry of the PLD. An external voltage can be applied to the I/O circuitry by removing jumper


340


completely and connecting the external voltage to line


350




a


. An external voltage supply level can be applied to the internal circuit (line


350




c


) in a similar manner.





FIG. 5A

illustrates a top view of one embodiment of a modular IC interface card


300




a


for one type of chip package. In card


300




a


, socket


305




a


is a ball grid array type socket (BGA) which receives a PLD of the same BGA package type. In one embodiment, a standard interface


310


uses top-mounted probe pins including: TDI, GND, TMS, TCK, TDF, and TDO. In this embodiment, a female 18 pin connector


310


(

FIG. 5B

) located directly underneath the above-mentioned probe pins, is adapted to couple to any one of JTAG interfaces


51


-


56


of interface board


100


(FIG.


2


).





FIG. 6

illustrates a top view of a second embodiment of a modular IC interface card


300




b


in accordance with the present invention for a second type of chip package. In card


300




b


, socket


305




b


is a plastic leaded chip carrier (PLCC) type socket which receives a PLD of the same PLCC package type. Standard interface


310


includes the top-mounted probe pins and the female connector described in reference to

FIGS. 5A and 5B

. Note that card


300




b


includes an adaptor


335


which replaces jumpers


330


and


340


(

FIG. 5A

, for example). Adaptor


335


is used for devices which do not have different voltages for their I/O and internal circuitry.




Note that in accordance with the present invention package types of different pin counts and different package types may be used. Thus, a socket


305


may be adapted to receive a very thin plastic quad flat pack (VQ), a plastic quad flat pack (PQ), a thin plastic quad flat pack (TQ), a heat sink plastic quad flat pack (HQ), or a ball grid array (BGA). Exemplary pin counts number from


44


to


208


. It is appreciated that any modular IC interface card can be inserted into any of JTAG interfaces


51


-


56


of JTAG interface board


100


of the present invention.




Terminator Card




In accordance with the present invention, the TDO signal from one PLD is provided as the TDI signal of the next PLD in the JTAG chain. The TDO signal of the last PLD in the JTAG chain is routed back as the test data final (TDF) signal to cable connectors


61


and


65


(and thereafter to the computer system for analysis). To provide this signal routing capability in instances where less than all interface stations are occupied, a terminator card


360


, illustrated schematically in

FIG. 7

, is inserted into the JTAG interface station following the last PLD in the JTAG chain. For example, if a JTAG chain is implemented with interface board


100


having modular IC interface cards plugged into interface stations


101


-


104


, then terminator card


360


is plugged into interface station


105


.




In the embodiment shown in

FIG. 7

, terminator card


360


includes a standard interface


370


(including pins


370




a


-


370




h


), as well as jumpers


340


and


330


(see modular IC interface card


300


of FIG.


4


). Because terminator card


360


provides only routing functionality, pin


370




d


(receiving the TDO signal) and pin


370




c


(providing the TDF signal) are the only required pins on terminator card


360


. Note that terminator card


360


contains a connector (not shown) located on the bottom side (see, for example,

FIG. 5B

) for mating with one of JTAG interfaces


51


-


56


of interface board


100


.




Using the above-described configuration, only one terminator card


360


is required for a JTAG chain in accordance with the present invention. On the other hand, if all six interface stations


101


-


106


of interface board


100


contain PLDs, then terminator card


360


is not required because the TDO pin of JTAG interface


56


(

FIG. 3B

) can instead be coupled to TDF line


61




e


via line


220


and jumper


85


(FIG.


3


D).





FIG. 8

illustrates a top view of one embodiment of terminator card


360




a


in which line


380


(

FIG. 7

) is implemented with a jumper


380




a


. Terminator card


360




a


includes a circuit prototype area


375


in which an IC package can be mounted. In this manner, terminator card


360




a


can be used as a modular IC interface card with an IC package (of any type and pin count). If an IC package is mounted in region


375


, jumper


380




a


is disconnected.




Single Interface Board





FIG. 9A

illustrates a first exemplary configuration


400


of interface board


100


of the present invention in which one modular IC interface card


300




a


(

FIG. 5A

) is inserted into JTAG interface


51


(of interface station


101


), one terminator card


360




a


(

FIG. 8

) is inserted into JTAG interface


52


(of interface station


102


), and interface stations


103


-


106


are unused. In configuration


400


, only one PLD, inserted into socket


305




a


, is within the physical JTAG chain implemented on interface board


100


. During programming in configuration


400


, JTAG signals (the TDI, TCK, and TMS signals) are applied to cable connector


61


(see

FIG. 1

) from the computer system (not shown) using cable


10


. Terminator card


360




a


routes the TDO signal from JTAG interface


51


(because JTAG interface


51


is the last in the chain, this TDO signal becomes the TDF signal) back to cable connector


61


via line


61




e


(FIG.


3


A). Cable connector


61


directs the TDF signal back to the computer system using cable


10


.





FIG. 9B

illustrates a second exemplary configuration


410


of interface board


100


. In configuration


410


, a first modular IC interface card


300




a


(

FIG. 5A

) is inserted into JTAG interface


51


, a second modular IC interface card


300




c


(including a plastic leaded chip carrier socket


305




c


of the PC44 type) is inserted into JTAG interface


52


, modular terminator card


360




a


(

FIG. 8

) is inserted into JTAG interface


53


, and interface stations


104


-


106


are unused. In operation, a first PLD is inserted into socket


305




a


and a second PLD is inserted into socket


305




c


, thereby providing two programmable IC devices within the JTAG chain. Terminator card


360




a


routes the TDO signal from JTAG interface


52


(i.e. the TDF signal) back to cable connector


61


/


65


via line


61




e.







FIG. 9C

illustrates a third exemplary configuration


420


of interface board


100


in which six modular IC interface cards


300




a


,


300




c


,


300




d


,


300




b


′,


300




b


, and


300




e


are respectively inserted into JTAG interfaces


51


-


56


. First and second modular IC interface cards


305




a


and


300




c


are the same as described in reference to

FIG. 9B. A

third modular IC interface card


300




d


uses a plastic quad flat pack socket


305




d


of the PQ100 type; a fourth modular IC interface card


300




b


′ uses a plastic leaded chip carrier socket


305




b


′ of the PC84 type; a fifth modular IC interface card


300




b


uses a plastic leaded chip carrier socket


305




b


′ of the PC84 type; and a sixth modular IC interface card


300




e


uses a very thin quad flat pack of the VQ44 type. In operation, PLDs are inserted into sockets


305




a


,


305




b


′,


305




b


,


305




c


,


305




d


, and


305




e


, thereby providing six programmable IC devices within the JTAG chain. Because no other interface board is cascaded to interface board


100


, jumper


85


is placed to couple lines


220


and


61




e


(FIG.


3


D), thereby transferring the TDO signal (now TDF signal) from JTAG interface


56


back to cable connector


61


/


65


.




Multiple Interface Boards




To create JTAG chains of devices longer than the number of interface stations (e.g., six) on one interface board, multiple interface boards are connected using an output cascade connector of the upstream interface board and an input cascade connector of the next downstream interface board. In

FIG. 10

, an exemplary configuration


430


includes two interface boards


100




a


and


100




b


connected to form one JTAG chain having seven PLDs. The first or “upstream” interface board


100




a


is identical to configuration


420


(FIG.


9


C), whereas the second or “downstream” interface board


100




b


contains a modular IC interface card


300




f


(including a heat sink plastic quad flat pack socket


305




f


of the HQ208 type) inserted into interface station


101


and a terminator card


360




a


inserted into interface station


102


.




In configuration


430


, output cascade connector


63




a


of interface board


100




a


is connected to an input cascade connector (not shown) of interface board


100




b


. Specifically, lines


61




a


,


61




c


,


61




d


,


61




e


, and


69


(as shown in

FIGS. 3C and 3D

) of interface board


100




a


are respectively coupled to lines


61




a


,


61




c


,


61




d


,


61




e


, and


61




b


(as shown in

FIG. 3A

) of interface board


10




b


. This connection transfers the TCK, TMS, and TDO signals, as well as the ground voltage from the upstream interface board to the downstream interface board. This connection also transfers the TDF signal from the downstream interface board (provided by terminator card


360




a


) to the upstream interface board and thus to cable


10


via cable connector


61


/


65


(see line


61




e


of

FIGS. 3A

,


3


B, and


3


C). In one embodiment, each interface board is separately coupled to the universal power supply (FIG.


1


). Alternatively, the voltages can be provided from one power supply to all interface boards via connector


75


(in parallel).




Note that jumper


85


(

FIG. 3D

) is switched to a position labeled CABLE if JTAG interface station


106


is occupied with a modular IC interface card and either is the only interface board used in a JTAG chain or is the last downstream interface board in a series of interface boards. In this configuration, line


220


(providing the TDO signal) of interface station


106


is coupled to line


61




e


(providing the TDF signal to cable connector


61


/


65


). Jumper


85


is switched to a position labeled TDO if JTAG interface station


106


is occupied with a modular IC interface card and is not the only interface board used in a JTAG chain nor is the last downstream interface board in a series of interface boards. In this configuration, line


220


(providing the TDO signal) of interface station


106


is coupled to line


69


(which transfers this TDO signal as the TDI signal to line


61




b


of input cascade connector


67


). In all other instances, jumper


85


may be switched to either position, i.e. a “don't care” configuration.




While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.



Claims
  • 1. A system for implementing a boundary scan chain, said system comprising:an interface board comprising: a connector for transferring boundary scan signals; and a plurality of interfaces coupled in series in a predetermined order, and in parallel to receive a plurality of said boundary scan signals; and at least one card comprising: a socket for receiving an integrated circuit; and a connector interface, coupled to said socket, for removably coupling with one of said plurality of interfaces.
  • 2. The system of claim 1 wherein said connector is coupled to a Test Data Input (TDI) pin of a first interface, wherein a Test Data Output (TDO) pin of said first interface is coupled to a TDI pin of a second interface, and wherein a TDO pin of a last interface is selectively coupled to said connector.
  • 3. The system of claim 1 further including a terminator card comprising:a connector interface for removably coupling with one of said plurality of interfaces; and a conductive path for providing the last TDO signal of said boundary scan chain as a Test Data Final (TDF) signal.
  • 4. The system of claim 1 including a plurality of interface boards,wherein a first interface board further comprises a cascade output connector, wherein a second interface board further comprises a cascade input connector for coupling with said cascade output connector.
  • 5. The system of claim 4 wherein said cascade connectors transfer said boundary scan signals between said first and second interface boards.
  • 6. The system of claim 1 wherein said interface board further comprises:a voltage input port for receiving a first voltage from a voltage supply; a first voltage regulator coupled to receive said first voltage and for supplying a second voltage; a second voltage regular coupled to receive said first voltage and for supplying a third voltage, wherein said second voltage and third voltage are supplied in parallel to said plurality of interfaces.
  • 7. The system of claim 6 wherein said card further comprises:means for supplying one of said second voltage and said third voltage to input/output circuitry of said socket; and means for supplying one of said second voltage and said third voltage to internal circuitry of said socket.
  • 8. The circuit as described in claim 1 wherein said connector comprises:a first Joint Test Action Group (JTAG) connector for coupling with a first port of a computer system; and a second JTAG connector for coupling with a second port of said computer system.
  • 9. In combination, an interface board and one or more modular integrated circuit (IC) interface cards inserted into the interface board, wherein the combination comprises:an interface board having a plurality of standard interfaces for receiving one or more modular integrated circuit (IC) interface cards; one or more modular IC interface cards, each modular IC interface card having a socket of a particular package type for receiving an IC of the same package type and a connector interface, coupled to the socket, for a removable coupling with one of the standard interfaces of the interface board.
  • 10. The combination according to claim 9, wherein the interface board further includes traces for providing certain standard signals, including a test mode select (TMS) signal and a test clock (TCK) signal, to all of the standard interfaces (and thus to the modular IC interface cards and ICs in the chain) in parallel.
  • 11. The combination according to claim 10, wherein the interface board traces route other standard signals, including a test data input (TDI) signal and a test data output (TDO) signal, through the ICs in series.
  • 12. The combination according to claim 11, wherein the TDO signal of one modular IC interface card becomes the TDI signal of the next modular IC interface card in the chain, the TDO signal of the last modular IC interface card in the chain is provided as a test data final (TDF) signal from the interface board back to a cable which communicates with a programming system.
  • 13. The combination according to claim 12, further comprising a terminator card and wherein if less than the maximum number of modular IC interface cards are inserted into the interface board, the terminator card is inserted into the standard interface following the last modular IC interface card of the chain and wherein the terminator card provides a test data final (TDF) signal.
  • 14. The combination according to claim 9, wherein the interface board further comprises an output cascade connector that can be coupled to an input cascade connector of another interface board for facilitating the transfer of standard signals between the interface boards, whereby any number of interface boards can be coupled in series to expand the size of the physical chain.
  • 15. The combination according to claim 9, wherein each modular IC interface card has a socket of a different package type.
US Referenced Citations (17)
Number Name Date Kind
5228045 Chiles Jul 1993 A
5331274 Jarwala et al. Jul 1994 A
5343478 James et al. Aug 1994 A
5355369 Greenberger et al. Oct 1994 A
5428624 Blair et al. Jun 1995 A
5428750 Hsieh et al. Jun 1995 A
5483518 Whetsal Jan 1996 A
5498972 Haulin Mar 1996 A
5544309 Chang et al. Aug 1996 A
5574730 End, III et al. Nov 1996 A
5581541 Whetsel Dec 1996 A
5586270 Rotier et al. Dec 1996 A
5617430 Angelotti et al. Apr 1997 A
5640521 Whetsel Jun 1997 A
5649224 Scheer Jul 1997 A
5694399 Jacobson et al. Dec 1997 A
5751736 Deroux-Dauphin et al. May 1998 A
Non-Patent Literature Citations (1)
Entry
IEEE Computer Society, “IEEE Standard Test Access Port and Boundary-Scan Architecture” IEEE Std. 1149.1-1990, Copyright 1993 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017.