The present invention relates to optical interferometric systems, and in particular to an interferometric system and method for simultaneously obtaining absorptive and refractive properties of a sample with a high signal to noise ratio.
Optical Coherence Tomography (OCT) and Optical Low Coherence Reflectometry (OLCR) are interferometry-based techniques that have been successfully used in non-invasive and non-destructive analysis and imaging of structures in turbid media, especially in biological tissues. OLCR is a one-dimensional optical ranging technique where the amplitude and longitudinal delay of broadband light scattered from a sample is resolved using a low-coherence interferometer. OCT constructs a two-dimensional transverse image of the sample from a series of one-dimensional scans; it is a non-invasive, non-destructive and non-contact imaging method that typically uses a low coherence interferometer to extract depth-resolved sample information, and a scanning system to build a 2D image. Recently, Fourier-domain OCT techniques such as swept-source OCT (SS-OCT) that utilizes a narrow-line swept-wavelength laser source have also been disclosed. Both OCT and OLCR techniques allow the localization of reflecting sites within a transparent or semi-transparent sample with a micrometer spatial resolution.
In both of these interferometric techniques, broadband or swept-frequency light traveling a reference path is mixed on the surface of a single or multiple detectors with light returning from or traversing a sample. With a broad-band light source, a variable delay line in the reference arm is used to select a small range of depth, conventionally referred to as the “coherence gate”, within the sample wherefrom the reflected or scattered signal results in interferometric fringes that can be detected and processed. The position of the coherence gate is defined and controlled by matching the optical path in two interferometer arms using the variable delay line.
Particular OCT implementations may take the form of a time-domain OCT or frequency domain OCT. Time-domain OCT is based on heterodyne interferometry, wherein light from the sample is combined with frequency shifted reference light, with the frequency shift resulting either from passing through an optical modulator located in the reference arm, or from the Doppler effect when the reference light is reflected from a moving reference mirror. Mixing of the sample and reference light in a square-law detector results in an electrical signal having DC and AC frequency components. The AC frequency component, which is caused by the interference of the sample light with the time-delayed reference light, is processed to extract sample information.
In the Fourier domain OCT the reference mirror position is fixed during the measurement, and the OCT setup is based on homodyne interferometry. The complete interferometric signal consists of DC components arising from non-mixing light from each of the arms, and interferometric components arising from mixed light.
The central part in both homodyne and heterodyne OCT systems is an interferometer, typically of a Michelson or a Mach-Zehnder type, illuminated for example by a low coherence light source.
In the OCT system 100, a Mach-Zehnder interferometer formed using two 2×2 couplers 102 and 104 is illuminated by a broadband light source 106; a sample 114 under examination is placed in a sample arm 108. A reference arm 110 includes a reflective delay line formed using a movable mirror 118, which is inserted into the reference arm 110 through a circulator 116. The sample arm 108 includes another circulator 112 which serves to illuminate the sample 114 with light coupled into the sample arm 108 by the coupler 102, and to direct light reflected from the sample 114 into the output coupler 104, wherein it is combined with light from the reference arm 110 and passed via its two output ports onto a balanced receiver 120, which includes two photodetectors D1 and D2 with differentially connected outputs. Due to the limited coherence length of the source, typically 10-15 microns, light transmitted through the reference arm 110 and light backscattered by internal sample reflections interferes constructively or destructively only when the interferometer arm optical path lengths are matched to within the source coherence length. Scanning the reference arm 110 length through a position corresponding to the depth of a reflecting site within the sample generates a localized interference pattern, which is recorded as a localized modulation of the detector current as a function of the reference arm position. The balanced receiver 120 current generated by a sample containing multiple reflecting sites distributed along its depth, such as biological tissue, contains the sum of multiple, overlapping copies of this interference pattern. A map of tissue reflectivity versus depth, which is conventionally referred to as an A-Scan, is obtained by scanning the reference mirror 118 at constant velocity, while recording the envelope of the detector current, e.g. by demodulating the detector current at the resulting Doppler frequency. Cross-sectional images of the sample backscatter, typically referred to as “B-Scans”, may be acquired by obtaining sequential A-scans while scanning the probe beam across the tissue surface using a lateral scanning optic device. The resulting two-dimensional datasets are plotted as gray-scale or false-color images.
When the optical path difference for light raveling in the reference and sample arms of a low-coherence interferometer is zero, the OCT receiver 120 generates a signal which has an interferometric component Is max. As the optical path difference increases far beyond the coherence length of the used source, the receiver generates a noise signal which is conventionally characterized by the standard deviation σi of the receiver photocurrent. The signal to noise ratio (SNR) Is max2/σi2 is an important characteristic of an OCT interferometer, which defines the image contrast for the sample.
To obtain a high-contrast image from a turbid medium, such as a biological sample, an imaging system should have a high SNR. A significant advantage of using a low-coherence interferometer, such as the interferometer 100, for signal detection is that the mixing of the reference light with the light scattered from the sample at the square-low detector provides a dramatic increase in the signal to noise ratio (SNR) and the dynamic range, as compared to direct detection of the scattered light. Indeed, since the interferometric component of the detector current is proportional to the product of the electric field amplitudes returning from each arm, the detected envelope signal is proportional to the square root of the sample reflectivity; as the result, very small reflections in the sample on the order of 10−11 of the incident power can be detected in A-scans recorded in a fraction of a second.
The Mach-Zehnder based interferometric system 100 shown in
The interferometric component of the receiver 120 signal depends sinusoidaly on the optical path length difference between the arms of the interferometer, and also on any additional phase delay between the reference and sample arm fields. When this phase term is zero, the interferometric signal varies as a cosine of the optical path length difference between the arms, and when the phase term is 90 degrees, the interferometric signal varies as a sine of the path length difference. The zero and 90 degree phase delayed versions of the interferometric signal are commonly referred to as the real and imaginary components, or zero and 90 degree quadrature components, of a complex interferometric signal I.
A limitation of the interferometric system 100, as well as many other prior-art interferometric systems used in Fourier domain OCT imaging, is that it provides only one of two quadrature components of the interferometric signal resulting from the mixing the sample and reference light, or, equivalently, only a real part of a complex interferometric signal, so that information carried by the imaginary part of the signal is lost. One drawback resulting from this limitation of conventional single-channel OCT systems is the appearance of the co-called complex conjugate artefact, due to which positive and negative distances in an OCT scan are not resolved, so that only half of the potentially available imaging depth can be realized.
Another drawback of the prior-art single-channel OCT systems is that the detected interferometric signal typically depends on both the refractive and absorptive properties of the imaged sample, and it becomes difficult to separate them and obtain refractive and absorptive properties of the imaged sample individually. Prior-art attempts at such separation have been based on so-called Kramers-Kronig (KK) relations, which connect frequency dependencies of real and imaginary parts of a complex refractive index in one integral relationship. This, however, requires first acquiring, for example, the absorption coefficient of a sample in a wide spectral range, before the refraction coefficient of the sample at a given frequency can be computed. This approach has considerable drawbacks, since it requires expensive widely-tunable sources of light for performing OCT measurements over a wide wavelength range, for example from 200 nm to 1000 nm, with a relatively small frequency step, and the results of KK-computations are very sensitive to the accuracy of the initial absorption spectra measurements. An example of such approach is disclosed, for example, in an article entitled “Oxygen Saturation-Dependent Absorption and Scattering of Blood”, by Dirk J. Faber et al, published in Phys. Rev. Letters, V. 93, No 2, 9 Jul. 2004.
U.S. Pat. No. 7,019,838 to Izatt et al, which is incorporated herein by reference, discloses an OCT system that is enhanced for simultaneous acquisition of both quadrature components of the complex interferometric signal; the system, which is shown in
One drawback of the OCT system shown in
An object of the present invention is to provide an interferometric system that employs differential detection to obtain both quadrature components of a complex interferometric signal with enhanced SNR.
Another object of the present invention is to provide an interferometric system and method to generate refraction and absorption properties of a sample simultaneously by utilizing both quadrature components of a complex interferometric signal that is obtained using differential detection.
In accordance with the invention, a system is provided for detecting optical characteristics of a sample, comprising an interferometer for mixing light collected from the sample with reference light for interfering therewith, the interferometer comprising:
a first optical coupler having two input ports connected for receiving reference light and light collected from the sample, and at least three output ports;
a first differential detector having two input optical ports coupled to a first two of the at least three output ports of the optical coupler for providing a first electrical signal having a first interferometric component; and,
a second differential detector having two input optical ports coupled to a second two of the at least three output ports of the optical coupler for providing a second electrical signal having a second interferometric component;
wherein the first optical coupler is such that the first and second interferometric components have a relative phase shift therebetween that is not an integer multiple of π, so as to provide information separately characterizing real and imaginary components of a complex interferometric signal related to the sample.
The interferometer is of a Mach-Zehnder type, and includes a first beam splitter having two output ports coupled to the two input ports of the first optical coupler using two connecting arms, and an input port, one of the connecting arms including a time delay means for providing a variable optical time delay to light propagating in said connecting arm.
In accordance with one embodiment of this invention, one of the connecting arms comprises a sample illuminating means for illuminating the sample and for directing the light collected from the sample to one of the input ports of the first optical coupler.
In accordance with another embodiment, a sample illuminating means for illuminating the sample is positioned optically before the first beam splitter and is for directing light reflected from the sample to the input port of the first beam splitter via an optical circulator; it includes a partially transmissive reference reflector for illuminating the sample therethrough and for providing the reference light to the input port of the first beamsplitter vie the optical circulator, said reference reflector forming a Fizeau interferometer with the sample.
Another aspect of the present invention provides a method for simultaneously obtaining refractive and absorptive properties of a sample, the method comprising the steps of: a) illuminating the sample with a portion of broadband light and collecting light from the sample; b) providing light collected from the sample to an input port of an M×N optical coupler having M input ports and N output ports, while simultaneously providing a reference portion of the broad band light into another input port of the M×N optical coupler, wherein N≧3 and M≧2; c) coupling light from a first two of the N output ports of the M×N coupler into a first differential detector to obtain a first electrical signal; d) coupling light from a second two of the N output ports of the M×N coupler into a second differential detector to obtain a second electrical signal; e) generating real and imaginary parts of a complex interferometric signal from the first and second differential signals; f) performing complex deconvolution of the complex interferometric signal and a coherence function of the broadband light to obtain depth-resolved complex scattering function of the sample; and, g) computing real and imaginary parts of a complex refractive index of the sample from the real and imaginary parts of the depth-resolved complex scattering function of the sample.
Another aspect of the present invention provides an interferometric system for detecting optical characteristics of a sample, comprising: a Mach-Zehnder interferometer for providing a variable optical delay between light collected from the sample and reference light, the Mach-Zehnder interferometer comprising an output M×N coupler for mixing the light collected from the sample with the reference light for interfering therewith, the M×N coupler having N≧3 output ports; and, first and second differential detectors, each having two input ports coupled to a different two of the N output ports of the M×N coupler, for producing first and second electrical signals having an interferometric phase shift therebetween, wherein said interferometric phase shift is not equal to an integer multiple of π radians. A processor is provided for computing real and imaginary parts of the complex refractive index of the sample from the first and second electrical signals using complex deconvolution.
The invention will be described in greater detail with reference to the accompanying drawings which represent preferred embodiments thereof, in which like elements are labeled using like reference numerals, and wherein:
The present invention is a novel interferometric system and method for OCT and OCDR which employ differential balanced detection for simultaneous acquisition of quadrature components of a complex interferometer signal, and for obtaining therefrom optical characteristics of a sample such as absorption and refraction parameters.
Exemplary embodiments of the interferometric system of the present invention are shown in
With reference to
The second arm 125, which also be referred to herein as the sample arm 125, includes sample illuminating means for illuminating a sample 140 which is to be investigated, and for directing light collected from the sample along the sample arm 125 into the second input port 122 of the coupler 130. In the shown embodiment, the sample illuminating means are formed by a circulator 127 and a section of a single-mode optical fiber 141, which may have a lensed end for focusing light onto a desired location on or within the sample 140 for locally illuminating thereof and for collecting scattered light as known in the art. In other embodiments, the sample illuminating means can include other focusing or collimating optical elements such as bulk of fiber-optic lenses, and may be arranged so as to collect light transmitted through the sample 140, in which case the circulator 127 can be eliminated.
An advantage of the Mach-Zehnder configuration, as compared to a Michelson interferometer configuration, is that the power splitting ratio of the 2×2 coupler 210 can be optimized so as to direct most of the light onto the sample 140; this can be especially important for biological samples which typically reflect only a very small portion of light back into the fiber end 141, so that an overall transmission coefficient TS of the sample arm 125 is small. By way of example, the splitting ratio of the 2×2 coupler 210 is selected to be 90:10, with about 90 percent of light exiting the coupler 210 being directed along the sample arm 125 towards the sample 140.
The reference light from the reference arm 115 and the sample light from the sample arm 125 is re-combined in the first coupler 130 with a relative time delay τ therebetween that is set and can be scanned by the variable time delay 124 inserted into the reference arm 115 via the circulator 123.
Contrary to the prior art Mach-Zehnder based OCT interferometers such as the one shown in
Apart from the coupling coefficients αi,j, a coupler is also characterized by phase shifts associated therewith, so that two optical waves entering the coupler through two different input ports will appear at the output ports with a phase that depends on the output port. This results in each output optical signal from the coupler having an interference component with its own phase that is generally different from the corresponding phase of the interference component of other optical output signals of the coupler, resulting in a phase shift Δφi,j′ between interference components of optical signals output from different output ports j and j′ of the coupler. In the case of a 2×2 coupler, this phase shift is known to be π and does not depend on the coupling coefficients αi,j. However, for couplers with the number of output ports 3 and larger, the phase shift Δφi,j depends on the coupling coefficients αi,j and may generally differ from π. For example, if the 3×3 coupler has a splitting ratio of 33:33:33, meaning that the optical power input into one of the input ports 121, 122 is evenly distributed between the output ports 131-133, then the interference components at the coupler outputs will be out of phase by 2π/3, or 120 degrees.
In the shown embodiment, the M×N coupler 130 is by way of example a fiber-optic 3×3 coupler having 3 input ports and three output port, wherein one of the input ports is not used. Two output ports 131 and 133 of the 3×3 coupler 130 are each optically connected to an input port of two different differential detectors 150 and 155. Second input ports of the differential detectors 150 and 155 are coupled to the same remaining output port 132 of the 3×3 coupler 130 by means of a second beam splitter 135 embodied as a second 2×2 coupler, which has one of its two input ports unused. This novel output configuration of the Mach-Zehnder based interferometric system 101 of the present invention, wherein two differential detectors are each coupled to a different pair of output ports of an M×N coupler, is referred to herein as the dual-differential detection. Advantageously, it enables detection of both quadrature components of a complex sample-related interferometric signal, and simultaneous extraction of such optical characteristics of the sample as its absorption and refraction coefficients, as described hereinbelow in further detail.
In operation, illumination light from a light source 105 is coupled into an input port of the beamsplitter 210, is then split in two light beams according to a pre-defined beam splitting ratio β of the beamsplitter 210, and the two light beams are directed along the reference and sample arms 115, 125, respectively, towards the 3×3 coupler 130, where light from the sample and reference arms is recombined, and the resulting light is evenly split between the three output ports 131-133 according to the ⅓:⅓:⅓ splitting ratio. In other embodiments, the coupler 130 can have a different splitting ratio. The light source 105 can be a broad-band light source, such a super-luminescent semiconductor diode, or a swept-wavelength source such as a continuously tunable laser.
Output optical power from each of the three output ports of the 3×3 coupler 130 has a component Sidc which does not depend on the light wavelength or the time delay τ, which in this embodiment is the same for all three output signals from the coupler 130, i.e. Sidc=Sdc for i=1,2,3 and will be hereinafter referred as the dc optical component, and an interferometric, or ac component Si which oscillates when either the light wavelength λ or the time delay τ is scanned; when light collected from the sample experienced a single reflection in the sample 140, the ac component Si can be approximately expressed as follows:
S
i
=S
ac·cos(k·Δx+φj) (2)
where j is an index indicating the output port of the coupler 130, i.e. j=1 corresponds to the output port 131, j=2 corresponds to the output port 132, and j=3 corresponds to the output port 133; k=2π/λ is the optical wavenumber, Δx=τc is the optical path length difference between the reference and sample arms, C(Δx) is the interferometric envelope accounting for the finite coherence length of the illumination light, and φj is the interferometric phase accounting for the optical phase shifts resulting from the light coupling within the coupler 130. Also,
Sac≈σ·S0·TR·TS·C(Δx) (3)
is the magnitude of the interferometric component, which in this embodiment is the same for all three output signals from the coupler 130, I0 is the optical power of the illumination light at the input port of the beamsplitter 210, TR and TS are amplitude transmission coefficients of the reference 115 and sample 125 arms, respectively, which accounts for optical losses in the arms, the sample reflectance and the splitting ratio of the input beamsplitter 210, σ ensures that the total power incident on the reference and sample arms is I0, i.e. σ=⅓ for the exemplary case of a 3×3, 33:33:33 coupler that is considered herein.
The first differential detector 150 includes two constituent photodetectors 152 and 154 whose optical inputs serve as the two input ports of the differential detector 150, and a subtraction circuit 153 having an electrical output port 161; it receives and separately detects light from the first and second output ports 131, 132 of the coupler 130 using the two constituent photodetectors 152, 154. The electrical outputs of the photodetectors are passed to a subtraction circuit 155, which outputs, via the output port 161, a first output electrical signal I1 that is equal to the amplified difference between the photocurrents produced by the two detectors 152, 154:
I
1=(g1−0.5·g2)·Sdc+Sac[g1·cos(k·Δx+φ1)−0.5·g2·cos(k·Δx+φ2)]}, (4)
where g1 and g2 are gain coefficients of the photodetectors 152 and 154, respectively, which account for their light-current conversion efficiency and any possible internal amplification.
Similarly, the second differential detector 155, which has the same internal structure as the first differential detector 150, receives and separately detects light from the third and second coupler outputs 131, 132, and produces, via an output port 162, a second output electrical signal I2 which is equal to an amplified difference between photocurrents produced by two constituent photodetectors of the second differential detector 155:
I
2=(g4−0.5·g3)·Sdc+Sac[g4·cos(k·Δx+φ3)−0.5·g3·cos(k·Δx+φ2)]}, (5)
where g3 and g4 are gain coefficients of the photodetectors 157 and 158, respectively.
The output ports 161 and 162 of the differential detectors 150 and 155 are operatively coupled to a processor 190, wherein the first and second output electrical signals I1 and I2 are processed as described hereinbelow.
Differential detection is known to provide improved signal to noise ratio (SNR) by canceling common mode noise, i.e. noise components that are common to signals received at each of the two input ports, when two optical signals with approximately equal dc power, but with ac components which are 180 degrees out of phase, are both present. The ac components of the optical signals Si provided by the output ports 131-133 of the coupler 130 have a phase shift therebetween that is not equal to π, and in particular may be equal to 2π/3 if the 3×3 coupler 130 has a 33:33:33 splitting ratio. Also, the dc components of the optical signals received in the input ports of the differential detectors 150 and 155, e.g. at the ports 148 and 149 of the differential detector 150, are not balanced since the output of the second port 132 of the coupler 130 is split in half between the two differential detectors 150 and 155 by the second beam splitter 135. As a result, each of the first and second output electrical signals I1 and I2 may have dc components I1dc=(g1−0.5·g2)·Sdc and I2dc=(g4−0.5·g3)·Sdc in addition to the desired ac, or interferometric components I1ac and I2ac. In some embodiments, these dc components of the electrical signals output from the differential detectors 150 and 155 can be substantially eliminated by suitably adjusting the photodetector gain coefficients gi, for example by selecting g1=0.5·g2 and g4=0.5·g3. However, we found that, even if all four photodetectors 152, 154, 157 and 158 have substantially equal gain, the differential detection realized in the shown in
With reference to
In both embodiments, the ac, or interferometric components I1ac, I2ac of the first and second electrical signals that are output through the ports 161 and 162 have a phase shift Δφ that is not equal to π or any integer multiple thereof, and may for example be equal to π/3 if the 3×3 coupler 130 has the splitting ratio 33:33:33. Advantageously, this enables one to simultaneously obtain two quadrature components of a complex interferometric signal, and thus provide more information about the sample 140 under investigation by performing suitable data processing. For this purpose, the first and second electric signals I1,2 are first digitized using analog-to-digital converts (not shown), and then passed to the processor 190, which is programmed to subtract their dc components if present, which can be done, for example, by first collecting and storing required calibration data. The remaining digitized ac components I1ac, I2ac are further processed to obtain two quadrature interferometric signal components, and to extract information related to the sample 140. This can be done, for example, as follows.
Assuming that the differential detectors 150 and 155 are substantially identical, the ac components of the first and second electrical signals can be expressed as
I
1ac
=κ·S
AC·cos(kΔx+φ0), (6)
and
I
2ac
=c·S
AC·cos(kΔx+φ0+Δφ), (7)
where c is a proportionality coefficient dependent on the photodetectors internal gain and conversion coefficients, and φ0 is a potion of the phase shift which is common to both detection channels. Using these signals, real IRE and imaginary IIM components of a complex interferometric signal I=c·SAC·exp(i·k·Δx+φ0), which are also referred to as the quadrature components, are then computed using the following trigonometric equations:
where in (9) Δφ≠0. The quadrature signals IRE and IIM can be used to provide spatially resolved information about the sample 140. For this purpose, the interferometric system 101 includes means to change relative position of the sample 140 and the fiber end 141 in response to a control signal from the processor 190, for example as shown in
The embodiment of
Signals IRE and IIM
Advantageously, we found that the interferometric system 101 shown in
An embodiment of the present invention which is more robust to environmentally-induced differential changes in the system is shown in
Similar to the sample illuminating means 129 of the interferometric system 101, the sample illuminating means 129′ includes the optical circulator 143 having three fiber-optic ports, with a middle port connected to a first end of an optical fiber 410 for illuminating the sample 140 and for collecting light reflected therefrom. The circulator 143 also has a first, or input port 401 coupled for receiving illumination light from the light source 105, and a third, or output port 403 coupled to the input port 107 of the first beamsplitter 210.
The interferometric arrangement used in the sample illuminating means 129′ of the interferometric system 301 is schematically illustrated in
The partially reflecting fiber end 430 is cleaved and/or polished to provide approximately 4% reflectance; optionally a partially reflecting coating can be utilized to increase the fiber end reflectivity if desired.
The circulator 143 couples combined light consisting of the reference light 420 and the light 440 collected from the sample into the input port 107 of the first beamsplitter 210, which splits the combined light in two portions, each including light reflected from the sample and reference light, and directs these two portions along the two connecting arms 115′ and 125′ of the Mach-Zehnder interferometer towards the 3×3 coupler 130. The first connecting arm 115′ includes the time delay means 128 including the variable optical delay line 124 as described hereinabove with reference to the first embodiment shown in
As shown in
Advantageously, the reference light and light collected from the sample in the interferometric system 301 propagate along substantially the same optical paths, through the same optical fibers and the same optical elements, and therefore are subject to identical environmentally-induced fluctuations, which can therefore be automatically canceled by the differential detection. As a further advantage, in this configuration most of the illumination light, for example about 80% for a typical circulator loss about 1 dB, can be used for sample illumination. This is an important advantage for biological samples, from which only a very small fraction of light, often in the order of 10−5 or less, can be collected back into the system.
The interferometric system of the present invention has been described hereinabove with reference to exemplary embodiments thereof such as those illustrated in
Such an embodiment is illustrated in
The aforedescribed interferometric system of the present invention realizes dual differential detection to simultaneously generate two quadrature interferometric signals, which represent real and imaginary parts of the complex interferometric signal. The system of the present invention can be used in both homodyne and heterodyne OCT systems; the heterodyne approach can be realized, for example, by adding an optical modulator to one of the connecting arms 115, 125 of the Mach-Zehnder interferometer. The light source 105 can be a broad-band light source, in which case the aforedescribed interferometric systems can be used for low-coherence time-domain OCT (TD-OCT), when the axial, i.e. depth, ranging is provided by linearly scanning in time the optical path length difference between the interferometer sample and reference arms.
Other embodiments can use a narrowband wavelength-swept laser as the light source 105, in which case a Fourier-based swept-source OCT (SS-OCT) technique can be employed using the interferometric system of the present invention. In SS-OCT, the location of scatter centers within the sample, for example a tissue, is derived by the Fourier transformation of an interferogram, which is obtained by recording the interferometric signal while the light wavelength is swept. If only the real components of the interferometric signal is used, the Fourier transform of the interferogram, which is Hermitian symmetric, introduces a complex conjugate artifact in which positive and negative distances are not resolved, thus only a half of the total imaging depth can be utilized. The interferometric system of the present invention enables to obviate the problem of the complex conjugate artefact, which is also referred to as the depth-degeneracy, by providing simultaneously both the real and imaginary parts of the interferogram, thereby enabling to increase imaging depth in SS-OCT applications. Experimental results related to SS-OCT imaging using the system of the present invention are described in an article entitled “Sensitivity Investigation of Instantaneous Complex Conjugate Resolved Swept-Source OCT Using a Mach-Zehnder Interferometer with a 3×3 Fiber Coupler” by Youxin Mao, Costel Flueraru, Sherif Sherif, Shoude Chang, and E. Murdock, SPIE Proceeding of Photonics North 2007 (in press), which is incorporated herein by reference for all purposes.
Another aspect of the present invention provides a method for simultaneously obtaining refractive and absorptive properties of a sample, which can be realized using the interferometric system of the instant invention, for example any of the embodiments described hereinabove with reference to
The method is based on the following considerations.
An optical image of a sample may represent a spatial distribution of its refractive index, n(r), where r=(x, y, z) is the location vector within the sample. Since most samples absorb part of the illumination light used to image them, the refractive index n(r) can be considered as a complex valued function, n(r)=nreal(r)+j·nimag(r), where nreal(r) and nimag(r) represent, respectively, the refraction and absorption properties of the sample. In the following, we will be referring to the complex-valued function n(r) as the complex refractive index, and the real-valued function nreal(r) as the refraction coefficient. The imaginary part nimag of the complex refraction function n(r) relates to an absorption coefficient αa as follows:
αa=4πnimag/λ (10)
where λ is the light wavelength.
The magnitude of the interferometric component Sac of light, which carries the sample information, is a function of the optical time delay τ between the sample and reference light, Sac=S(τ), and is proportional to a convolution of the so-called scattering potential of the sample F(τ)with the coherence function of the light source γ(τ):
S(τ)∝F(τ){circle around (x)}γ(τ), (11)
where {circle around (x)} is the convolution operator.
For a weakly scattering object the time delay τ is linearly proportional to the depth position, z, such that both variables are interchangeable, and we can write n(r)=n(τ), where for now the dependence of the refractive index on the x and y coordinates in plane of the sample's surface is omitted.
The scattering potential within the sample satisfies the following proportionality relationship:
F(τ)∝(n2(τ)−1)=[nreal2(τ)−nimag2(τ)−1+2jnreal(τ)nimag(τ)]. (12)
In a conventional OCT system, the detected signal is proportional to the real part of this interferometric signal S(τ):
I(τ)∝Re{F(τ){circle around (x)}γ(τ)}, (13)
A drawback of this approach is that certain information about the sample which is is contained in the imaginary part of the interferometric signal is lost; another drawback is that in the detected signal the absorption and refraction effects are mixed together, which makes it very difficult, if at all possible, to reliably separate them and to obtain the refraction and absorption characteristics of the sample individually.
Advantageously, the interferometric system of the present invention obtains both the real and imaginary parts of the complex interferometric signal simultaneously, and therefore it becomes possible to separately extract the absorption and refraction properties of the sample from the measured interferometric data. This can be done by relating the obtained complex interferometric signal I=I(τ) to the complex convolution of the scatter potential F(τ) and the known complex coherence function of the illumination light
where U is the complex electric field of the illumination light, and a superscript “*” denotes complex conjugate and represent the average over time:
I(τ)=aF(τ){circle around (x)}γ(τ), (14)
where a is a proportionality constant that can be determined by calibration, for example using a sample with known optical properties. By performing a complex deconvolution of the obtained complex interferometric signal
I(τ)=IRE(τ)+j·IIM(τ), (15)
with the complex coherence function γ(τ), and equating the result with the scatter potential F(τ)=(n2(τ)−1), the depth-resolved refraction and extinction coefficients at a particular sample location from which the light was collected can be obtained using the following equations:
n
real(τ)=Re{√{square root over (F(τ)+1)}}, (16)
κ(τ)=−Im{√{square root over (F(τ)+1)}} (17)
where Re {} and Im {} denote real and imaginary parts of {}.
An exemplary embodiment of the method of the present invention for simultaneously determining refractive and absorptive properties of a sample is illustrated in
With reference to
Step 310: determining the coherence function γ(τ) of the broadband light source for a plurality of time delays τ is determined, and saving it, e.g. in memory 195 of the processor 190. This can be done, for example, using a suitable reference mirror in place of the sample 140, recording signals from the differential detectors 150 and 155 while scanning the variable delay line 124 to vary the time delay τ in a desired range, and computing the real and imaginary parts of the interferometric signal using for example equations (8) and (9) to obtain envelope functions thereof.
Step 320: illuminating a selected location in the sample under investigation with a portion of the broadband light, and collecting light reflected or scattered from the sample;
Step 330: providing light collected from the sample to an input port of an M×N optical coupler having M≧2 input ports and N≧3 output ports, while simultaneously providing a reference portion of the broad band light into another input port of the M×N optical coupler. The M×N coupler can be a 3×3 coupler 130 shown in
Step 340: coupling light from a first two of the N output ports of the M×N coupler into a first differential detector to obtain a first electrical signal, and coupling light from a second two of the N output ports of the M×N coupler into a second differential detector to obtain a second electrical signal. This is illustrated for example in
Step 350: generating real and imaginary parts IRE, IIM of a complex interferometric signal I from the first and second differential signals; in the embodiments shown in
Step 360: repeating steps 330-340-350 for a plurality of optical time delays τn between the reference light and light collected from the sample, and store in memory (195) the generated values IRE(τn) and IIM(τn) as functions of the optical time delay τn;
Step 370: performing complex deconvolution of the complex interferometric signal I(τn)=IRE(τn)+j·IIM(τn) and the stored coherence function γ(τ) of the broadband light to obtain the depth-resolved complex scattering function of the sample F(τn); various methods of complex deconvolution, and computer algorithms implementing these methods, are known in the art and can be used in the method of the present invention, for example by suitably programming the processor 190 to perform a selected deconvolution algorithm;
Step 380: computing real and imaginary parts of a complex refractive index of the sample from the real and imaginary parts of the depth-resolved complex scattering function of the sample, for example using equations (16) and (17); and,
Step 390: repeating steps 330-380 for a plurality of sample locations to image the distribution of the refraction and absorption coefficients across the sample.
In another embodiment, instead of combining the generated real and imaginary signals IRE and IIM and performing the complex deconvolution thereof with the saved complex coherence function, two real-valued deconvolutions can be performed in step (h) to obtain the refraction and absorption coefficients
Advantageously, the method of the present invention, which utilizes the dual differential detection provided by the novel interferometric systems described hereinabove, provides instantaneous complex deconvolution of OCT images, and yields simultaneously and separately both the optical propagation and loss properties of an object.
Although the invention has been described hereinabove with reference to particular embodiments thereof, it should be understood that theses embodiments are examples only and should not be construed as limiting the invention. It should also be understood that each of the preceding embodiments of the present invention may utilize a portion of another embodiment.
Of course numerous other embodiments of the method of system of the present invention may be envisioned without departing from the spirit and scope of the invention.
The present invention claims priority from U.S. Provisional Patent Application No. 60/832,612 filed Jul. 24, 2006, entitled “Apparatus and method for complex image extraction and restoration with application in optical coherence tomography (OCT) and optical low coherence reflectometry (OLCR)”, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60832612 | Jul 2006 | US |