The present invention concerns an internal combustion engine having a regulating device.
In the regulating strategy known from EP 0 259 382 B1 a charge pressure reference value is generated in dependence on a measured actual power output of the internal combustion engine and the lambda value (ratio of air to fuel) is so adjusted by a first regulating circuit (charge pressure regulator) by way of a reference value-actual value comparison that the actual charge pressure corresponds to the charge pressure reference value and, at that charge pressure reference value, there is a given target value in respect of the NOx emission. As the NOx emission is not directly known the charge pressure is used as an auxiliary regulating parameter. The function relationship is in the form of a set of curves, wherein each curve for a given NOx value specifies the relationship between actual power output and charge pressure reference value. In that respect therefore the charge pressure regulator is actually an emission control circuit in relation to the NOx emission (NOx emission control circuit).
Adjustment of the lambda value is effected by way of influencing a gas metering device. The change in the lambda value would in itself cause a change in the power output of the internal combustion engine, which must be compensated by a second regulating circuit (output regulating circuit). That compensation effect in the power regulating circuit is implemented by way of those actuators which directly influence the charge pressure (throttle flap and compressor bypass). The charge pressure is therefore regulated indirectly by way of the lambda value. That regulating strategy is known as the LEANOX® method.
Accordingly therefore the functional relationship between the charge pressure which prevails upstream of the inlet valves of the engine and which can be relatively easily measured and the power output is put to use.
For that purpose the output of the charge pressure measuring means is connected to an actual value input of the first regulating circuit. Arranged in the first regulating circuit of EP 0 259 382 B1 (charge pressure regulator) is a programmable device for ascertaining an power output-dependent reference value for the charge pressure, from the power output measurement signal supplied by the power output measuring means.
In that arrangement regulation of the charge pressure is effected indirectly by way of regulation of the combustion air ratio (lambda) in the air-gas mixture, wherein for example leaning of the mixture (increasing lambda) causes an increase in the charge pressure upstream of the inlet valves (in the situation requiring demand for a constant engine power output). It will be noted however that various disadvantages like for example stability problems and a detrimental transient behaviour (slow start required) arise due to coupling of an power output regulation to regulation of the charge pressure (as an alternative to direct NOx emission regulation), while maintaining a target value of NOx emission.
The specified logical units do not have to be in the form of physical components but can be embodied in the form of circuits in the regulating device of the internal combustion engine.
The regulating circuit shown at the top in
The circuit shown at the bottom in
The object of the invention is to provide an internal combustion engine having a regulating device which while retaining compliance with a target value in respect of NOx emission avoids the above-described disadvantages and in particular has a favorable transient behaviour.
That object is attained by an internal combustion engine having a regulating device as described herein. Advantageous configurations are defined in the appendant claims.
The invention also provides that NOx emission regulation is effected by means of the auxiliary parameter of charge pressure, but power output regulation is effected by way of the lambda value.
For that purpose according to the invention it is provided that the power output regulating circuit is adapted to adapt an actual power output of the internal combustion engine to a reference power output of the internal combustion engine by way of adjustment of the lambda value and the NOx emission regulating circuit is adapted by way of a—per se known—functional relationship between reference power output and charge pressure to actuate actuators which influence the charge pressure as an alternative parameter for the NOx emission by the charge pressure in such a way that a target charge pressure can be set for each reference power output of the internal combustion engine.
Unlike the state of the art therefore the invention provides that the charge pressure is set by way of a charge pressure regulator which acts directly, that is to say without involvement of the power output regulation, on the corresponding actuators for influencing the charge pressure. The NOx emission regulating circuit actuates the actuators for influencing the charge pressure in such a way that a target charge pressure is set for each reference power output of the internal combustion engine. Examples of such actuators for influencing the charge pressure are for example a compressor bypass valve, a throttle flap, a variable compressor geometry, a waste gate and a variable turbine geometry. Actuation of the actuators for influencing the charge pressure is therefore not affected in the power output regulating circuit but directly in the NOx emission regulating circuit and only in dependence on the reference power output and not the actual power output. In respect of the regulating circuits therefore there is no coupling of NOx emission regulation and power output regulation, but there is a coupling only by way of the inevitable physical relationships within the internal combustion engine.
It is preferably provided that the NOx emission regulating circuit has a charge pressure regulator by which an actual charge pressure can be adapted to a charge pressure reference value, wherein the charge pressure regulator is either in the form of a first comparator and a first PID regulator or in the form of a model-based regulator.
It can be provided that the power output regulating circuit has a first regulator by which actuators—preferably port injection valves or a gas metering device of a gas mixer—which influence the combustion gas mass flow ugas are actuable, wherein the regulator has either a second comparator and a second PID regulator or is in the form of a model-based regulator.
It can preferably be provided that provided in the power output regulating circuit there is additionally a skip fire regulating module to which the reference power output can be fed as an input and which is adapted to actuate the first regulator for the combustion gas mass flow in such a way that no combustion occurs in selected cylinders of the internal combustion engine in the absence of combustion gas.
In a further preferred embodiment it is provided that the first regulator within the power output regulating circuit is so adapted that further actual parameters can be fed to the regulator as the input thereof, wherein the regulator limits the control parameter of the lambda value having regard to the further actual parameters in such a way that when limit values of the actual parameters are reached no further change in the control parameter of the lambda value occurs in a direction which further adversely influences the actual parameter(s). A detrimental influence would be for example further enriching (lower lambda value) with an already high exhaust gas temperature at the discharge side of the internal combustion engine or a leaning effect (higher lambda value) in the presence of misfiring signals of cylinders of the internal combustion engine.
It can be provided that disposed upstream of the power output regulating circuit and the NOx emission regulating circuit is a trajectory generator adapted to convert a non-steady abrupt presetting of the reference power output by a user into a steady trajectory for the reference power output.
It can preferably be provided that the trajectory generator is adapted to additionally receive the actual power output as input and to monitor a deviation between the instantaneous value of the reference power output in accordance with the steady function and the actual power output such that in the event of an excessively large deviation the steady trajectory of the reference power output is limited to a given value above the actual power output.
There can be provided a dead time compensation device which is adapted to acquire the reference power output, the actual power output and the actual charge pressure at a time and output same again as an output in a form predicted into the future by a dead time D. The dead time D is either estimated continuously during operation by means of suitable models or is determined to start with from tests.
Preferably it can be provided that there is provided a further regulator which is adapted to acquire the output of the dead time compensation device as input and to output a reference value for the lambda value in dependence on the input.
Further advantages and details of the invention will now be discussed for various embodiments by way of example with reference to the drawings, in which:
In comparison with
In the NOx emission regulating circuit the charge pressure reference value pdim is passed to a charge pressure regulator 8 as the input. That charge pressure regulator 8 could certainly be in the form of a comparator 3 and a PID regulator 4 as shown in
The power output regulating circuit in
In the simplest case the functional relationship 2 occurs in the above-described form as a simple curve. As is already known from the specifications founded on EP 0 259 382 B1 the functional relationship 2 can be corrected by incorporation of corrections in respect of the ignition timing, inlet temperature and so forth.
To sum up various advantages are linked to the invention:
Number | Date | Country | Kind |
---|---|---|---|
575/2014 | Jul 2014 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
4867127 | Quirchmayr | Sep 1989 | A |
5660157 | Minowa et al. | Aug 1997 | A |
5738070 | Donaldson | Apr 1998 | A |
5992385 | Hess | Nov 1999 | A |
6178927 | Rieck et al. | Jan 2001 | B1 |
6728625 | Strubhar | Apr 2004 | B2 |
7191772 | Robitschko | Mar 2007 | B2 |
7267100 | Nakagawa et al. | Sep 2007 | B2 |
7932480 | Gu et al. | Apr 2011 | B2 |
8215284 | Suzuki et al. | Jul 2012 | B2 |
8541716 | Gu et al. | Sep 2013 | B2 |
9267483 | Diehl | Feb 2016 | B2 |
20020092498 | Plohberger et al. | Jul 2002 | A1 |
20050103309 | Nakagawa et al. | May 2005 | A1 |
20060011179 | Robitschko et al. | Jan 2006 | A1 |
20070235440 | Gu et al. | Oct 2007 | A1 |
20080120009 | Livshiz et al. | May 2008 | A1 |
20100043744 | Suzuki et al. | Feb 2010 | A1 |
20100288231 | Zumbaugh | Nov 2010 | A1 |
20110106949 | Patel et al. | May 2011 | A1 |
20120061369 | Gu et al. | Mar 2012 | A1 |
20130131956 | Thibault et al. | May 2013 | A1 |
20130291834 | Diehl | Nov 2013 | A1 |
20130298869 | Hirzinger et al. | Nov 2013 | A1 |
20140252885 | Yamamoto | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102667723 | Sep 2012 | CN |
0 687 809 | Dec 1995 | EP |
1 158 149 | Nov 2001 | EP |
1 255 330 | Jul 2002 | EP |
1 602 813 | Dec 2005 | EP |
2 594 443 | May 2013 | EP |
63-502680 | Oct 1988 | JP |
11-324784 | Nov 1999 | JP |
2009-144627 | Jul 2009 | JP |
2013-20646 | Jan 2013 | JP |
2013020464 | Jan 2013 | JP |
2013-107631 | Jun 2013 | JP |
2013-160215 | Aug 2013 | JP |
2013-231428 | Nov 2013 | JP |
02081888 | Oct 2002 | WO |
2012097389 | Jul 2012 | WO |
Entry |
---|
European Search Report dated Dec. 17, 2015 in corresponding European Application No. 15002250 (with English translation). |
Japanese Office Action issued in connection with corresponding JP Application No. 2015142710 dated Jun. 29, 2016. |
Unofficial English Translation of Japanese Office Action issued in connection with corresponding JP Application No. 2015142710 dated Apr. 18, 2017. |
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201510433951.2 dated May 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20160025024 A1 | Jan 2016 | US |