This invention relates to internal combustion engines, and more particularly to systems and methods for testing such engines.
In recent years, it is becoming more common for new engine designs to have their cylinders offset from their crankshaft axes. In other words, each cylinder is positioned with its bore axis slightly offset from the center line of the crankshaft. Engines having these cylinder configurations are referred to as “offset cylinder”, “crank offset”, or “Désaxé” engines.
Typically, a reference to an “offset cylinder” engine is to an internal combustion automotive or motorcycle engine. The offset configuration can have the advantages of increased torque on the crankshaft, as well as reduction in frictional forces between the piston and cylinder.
Experimental testing to determine the effect of cylinder offset is problematic. For a production engine, a new cylinder block casting is needed for each value of offset to be evaluated. Furthermore, with each different offset, to maintain the same compression ratio, either the connecting rod length or the cylinder block height must be adjusted. Adjusting the connecting rod length complicates the testing, and adjusting block height is often impractical.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The following description is directed to an internal combustion test engine having simple mechanisms for testing cylinder offset. These mechanisms are added to a standard test engine, and allow both cylinder offset and cylinder height to be easily varied over a given range. In this manner, a series of test measurements can be made at different cylinder offset values to fully evaluate the effect of cylinder offset.
As stated above, the offset adjustment mechanisms described herein are for use with an internal combustion test engine. For purposes of this description, the test engine is a single cylinder research engine that replicates the operation of light and medium duty production engines. An example of a suitable research engine is one developed by Southwest Research Institute and described in various publications of the Institute, which are incorporated herein by reference.
A crankcase 301 forms the base of the engine 300, and all other components are installed onto this base. Crankcase 301 houses the crankshaft 305 (shown in part), and provides a support base for the cylinder elements. Cylinder head 303 is atop a cylinder barrel, the latter being more clearly shown in subsequent figures. Cylinder head 303 may be a production multi-cylinder head where only one cylinder is used, or a specially designed single cylinder head.
A feature of test engine 300, but not significant to the invention, is that cylinder barrel 302 can be changed when a different cylinder is desired to be tested. However, for purposes of this description, cylinder offset testing as described herein is typically performed with the same cylinder at different cylinder offset positions.
Referring again to
Referring again to
As indicated by the arrows in
When transit plate 61 is moved in this manner, the cylinder barrel 302 and cylinder head 303, which are attached to and supported by transit plate 61, move with it in the same direction and by the same amount. This movement changes the position of the cylinder bore relative to the crankshaft axis, and hence, changes the cylinder offset. It is expected that cylinder offsets in a range of 20 mm or more can be achieved by moving transit plate 61.
Referring to
As stated in the Background, to maintain a constant compression ratio when cylinder offset adjustments are made, one approach is to adjust the cylinder height. As illustrated most clearly in
Wedge plates 75a and 75b have matching angles on their mating (adjacent) faces. The angle of the faces is sufficiently small (4.5° in this case) to be “self-locking”. In other words, wedge plates 75a and 75b will not move laterally in response to a vertical loading.
Self-locking angles larger than 4.5° are possible by configuring the mating surfaces of wedge plates 75a and 75b so that the dry friction coefficient between them is sufficiently high. Where F is the dry friction coefficient between the two mating surfaces, the relationship between F and the maximum wedge angle, a, which allows a self-locking operation is:
F=tan(α).
Friction coefficients of up to 0.5 are possible by choosing the appropriate surface settings. For example, a friction enhancing coating could be used. An example of a suitable coating is offered by the company EKAGRIP. This coating has small diamonds embedded onto the surface, which “dig” onto the mating surface and significantly increases the dry friction coefficient.
If a working friction coefficient is adopted, it is expected that a maximum self-locking wedge angle could be 30° (0.5=tan(30°). This range of face angles between wedge plates 75a and 75b allows substantial changes in compression ratios for relatively small horizontal movement of the wedge plates.
By sliding the wedge plates 75a and 75b relative to each other laterally, the vertical position of the cylinder barrel 302 is changed due to the action of the wedge plates. The lateral position of the cylinder barrel 302 is not affected by this movement.
Like the adjustment of transit plate 61, it is not intended for the adjustment of wedge plates 75a and 75b to be carried out while the test engine is running. The cylinder barrel 302 and wedge plates 75a and 75b are normally secured to the transit plate 61 by bolts 95 or other fasteners, which must be loosened to allow for offset adjustment. In the present example, bolts 95 are fitted into the transit plate 61. These pass through slotted holes in the lower wedge plate 75b, then round holes in the upper wedge plate 75a and lower flange 82 of the cylinder barrel. Nuts acting on the barrel flange 82 tighten the whole assembly together.
The sliding movement of the wedge plates 75a and 75b relative to each other may be controlled manually or by various mechanisms. In the example of this description, the sliding movement is controlled by a screw jack 96 attached to the lower wedge plate 75b, which allows fine adjustment of position.
Typically, for testing cylinder offset, transit plate 61 is moved laterally as described above, to provide successive new offset positions. For each new cylinder offset position, wedge plates 75a and 75b are also moved relative to each other to adjust the cylinder height. This maintains a constant compression ratio and other operating parameters of the cylinder so that the effects of cylinder offset are isolated. The combination of the two mechanisms together provides a convenient solution to the requirement to adjust both cylinder offset and cylinder height.
Alternatively, transit plate 61 and wedge plates 75a and 75b may be used separately. If only transit plate 61 is installed in test engine 300, it would be fixedly attached to the top of the crankcase 301 with bolts 71, as well as to cylinder barrel flange 82 with additional bolts or other attachment means during operation of the engine. As described above, bolts 71 are loosened for cylinder offset adjustment. If only transit plate 61 is installed, some other means may be used to control cylinder height and compression ratio.
Wedge plates 75a and 75b could be used to adjust compression ratio alone without the use of transit plate 61. However, the self-locking taper angles limit the practicably available height adjustment so that the range of compression ratio change would be rather limited. Fixed thickness shims can be also added under the barrel to make larger changes to compression ratio.