1. Field of the Invention
The present invention relates to communications, and more particularly, to an interrupt mode for messaging applications intended to run on smart phones, tablets and other communication devices.
2. Description of Related Art
In recent years, mobile communications and computing has become very popular. More and more people are using mobile communication devices, such as smart phones and tablets, for a variety of reasons, including messaging. With messaging, the user of the smart phone or tablet is typically required to download an application that runs on the device. When in use, the messaging application typically allows the user to create one or more conversations with remote users of the same application and to send and receive messages within the context of the one or more conversations respectfully.
One issue with the above-mentioned messaging applications is that typically an incoming message is automatically rendered only when (i) the application is open on the device and (ii) the conversation for which incoming message pertains has been selected for participation. For example, if the application is closed, or the recipient is participating in a first conversation when a message is received pertaining to a second conversation, then the recipient is typically only notified of the receipt of the incoming message. The incoming message, however, is not rendered when it is received in these circumstances.
The present invention is directed to an interrupt mode for messaging applications intended to run on smart phones, tablets and computers. The interrupt mode enables the automatic rendering of incoming messages, in accordance with various embodiments, when (i) the application is closed, (ii) the conversation for which the message pertains has not been selected for participation, (iii) the interrupt mode has been designated for the sender of the message or (iv) any combination of (i) through (iii). When a message is rendered in the interrupt mode, the media of the message is automatically rendered. As a result, the user of the communication device is interrupted.
In a non-exclusive embodiment, if there are a plurality of messages to be rendered in the interrupt mode at approximately the same time, the plurality of messages are placed in a queue and rendered out of the queue. In variations of this embodiment, the messages in the queue may be rendered in a first-in, first-out order, or alternatively, in accordance with a predefined priority scheme.
In other non-exclusive embodiments, the received media rendered in the interrupt mode may include, but is not limited to, voice, text, photos, video, GPS or positional data, or any other type of media.
In yet other embodiments, the interrupt mode may be used for Push-to-Talk (PTT) messaging applications, or any other communication application capable of transmitted and/or receiving media in the form of messages.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate specific embodiments of the invention.
It should be noted that like reference numbers refer to like elements in the figures.
The above-listed figures are illustrative and are provided as merely examples of embodiments for implementing the various principles and features of the present invention. It should be understood that the features and principles of the present invention may be implemented in a variety of other embodiments and the specific embodiments as illustrated in the Figures should in no way be construed as limiting the scope of the invention.
The invention will now be described in detail with reference to various embodiments thereof as illustrated in the accompanying drawings. In the following description, specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art, that the invention may be practiced without using some of the implementation details set forth herein. It should also be understood that well known operations have not been described in detail in order to not unnecessarily obstruct the invention.
Referring to
In one embodiment, the device 10 may be a mobile device, such as a smart phone or tablet. For example, the device 10 may be a mobile phone or tablet such as those designed for the iOS by Apple, Android by Google, or similar operating systems by Blackberry, Microsoft, or any other operating system platform. In an alternative embodiment, the device 10 can be a desktop or laptop computer running the messaging application, either through a Web browser or as a native application.
The communication device 10 is configured to run the messaging application, which is implemented in computer code, stored in memory 14, and executed by the controller 12. The user interacts with the messaging application using the elements 16 through 28 in a well-known manner. In various embodiments, the messaging application may be capable of transmitting and/or receiving messages containing one or more of the following types of media, including voice, text, photos, video, GPS or positional data, or any other type of media.
For the sake of illustration, the present invention is described within the context of the Voxer® Walkie Talkie PTT messaging application, distributed by the assignee of the present application. Voxer is a progressive, store and forward, messaging application designed to operate on smart phones, tablets and computers. As a progressive application, outgoing “Vox” messages are progressively stored and progressively transmitted by the sending device as the media of the message is created. Incoming Vox messages are also progressively stored on a receiving device as the media is received over the network. With the progressive processing and storage of media, Voxer allows users to selectively render incoming Vox messages in either near real-time as the media is received over the network or in a time-shifted mode by rendering the message out of storage. Voxer also has the ability to allow users to create and participate in one or more conversations with other Voxer users by semantically threading together the exchanged Vox messages between two or more persons (i.e., a group) sharing a common attribute. With the storage of messages threaded together into conversations, the users of Voxer can transition between conversation for participation and have the ability to review the history of each of the conversations when convenient. Voxer is also capable of operating in both a half-duplex and a full-duplex mode. In other words, a communication device running Voxer is capable of both sending and receiving Vox messages at the same time. In situations when two Vox users are sending and rendering received messages from one another at substantially the same time, the user experience is similar to that of a conventional, synchronous, telephone call. On the other hand when the two users are sending messages back and forth at discrete times, then the user experience is similar to asynchronous messaging. Yet another advantage of Voxer is that Vox messages are not limited to voice media. On the contrary, Vox messages may include one or more types of media, including voice, video, text, photos, GPS or positional data, or other sensor data. Finally, Voxer provides the advantages of guaranteed delivery of Vox messages. Besides the progressive storage of Vox messages on transmitting and receiving devices, Voxer also provides for the progressive storage of Vox messages on the network. As a result, messages can be transmitted out of storage by a transmitting device in situations when network conditions are poor or non-existent when the message was created or transmitted out of storage on the network if the recipient was not available when the message was created and transmitted. In addition, Voxer uses transmission protocols that ensure the delivery of complete messages. For more details regarding the Voxer application, see co-pending, commonly assigned, U.S. application Ser. No. 12/037,749, incorporated herein for all purposes.
When the Voxer application is opened, the conversations of a user are displayed. When a conversation is selected for participation, the conversation history, including the sent and received messages of the selected conversation, is displayed. A Voxer user may participate in a selected conversation by rendering received messages in both (i) near real-time as the media of messages is received from other participant(s) over the network and (ii) in a time-shifted mode by selecting and rendering the media associated with one or more previously received or sent messages from storage. A user may also participate by creating and sending messages pertaining to the conversation. Vox messages including voice media may be created and sent by implementing a virtual “Hold-and-Talk” feature appearing on a screen (or an analogous PTT function) on the communication device and speaking into the microphone. As the media of the Vox message is created, the media is progressively stored and progressively transmitted to the other participant(s) of the conversation. Voxer also enables the transmission of other types of messages within a conversation, including text messages, photos, GPS/positional data, and potentially other types of media, such video or sensor data.
Although the Voxer application is described in detail above, it should be understood that the interrupt mode as described herein is by no means limited to the Voxer application. Rather, the interrupt mode as described herein may be implemented on any communication application capable of transmitting and receiving media within the context of a message. In optional embodiments, the messages rendered in the interrupt mode may or may not be part of conversations. Furthermore, the interrupt mode as described herein is intended for messaging applications configured to run on smart phones, tablet computers, laptops, radios, desktop computers, or any other type of wired or wireless communication device. Regardless of the application, or the type of device, the interrupt mode enables the automatic rendering of incoming messages, in accordance with various embodiments, when (i) the application is closed, (ii) the conversation for which the message pertains has not been selected for participation, (iii) the interrupt mode has been designated for the sender of the message or (iv) any combination of (i) through (iii). When a message is rendered in the interrupt mode, the media of the message is automatically rendered. As a result, the user of the communication device is interrupted.
In a non-exclusive embodiment of the interrupt mode, the communication application executes a background process on the communication device. During this background process, any incoming media is stored and associated with the corresponding conversation. In this manner, all incoming messages are received, stored, and associated with the appropriate conversation, even when the application is closed. In an alternative embodiment, the application runs a background process that implements the interrupt mode as described below, but without storing the message and/or associating the incoming message with a particular conversation.
Referring to
It is useful to note that messages rendered in the interrupt mode, as explained above with regard to
It is also useful to note that the rendering of message in the interrupt mode may or may not occur in near real-time, depending on a number of factors. With progressive messaging applications such as Voxer, an incoming message in the interrupt mode is typically rendered in near real-time, as the media is progressively received over the network and progressively stored on the receiving communication device. If a received message to be rendered in the interrupt mode, however, is not first priority in the queue, then the rendering of the message will be delayed until after the higher priority message(s) is/are rendered. On the other hand with store and forward messaging applications that are not progressive, then incoming media is typically never rendered in near real-time. On the contrary, these messaging applications will typically render messages, including in the interrupt mode, only after the message is received in its entirety. In yet other embodiments, the media of a received message is buffered for rendering as or immediately after the message is received. With these embodiments, rendered media in the buffer is discarded or written over with the contents of another message and is not persistently stored.
In various non-exclusive embodiments, a communication application may selectively implement one or more of the interrupt mode embodiments of
In
Referring to
In a real-world example, consider the operation of a smart-phone and headset cooperating to implement the interrupt mode with a messaging application. With the headset, incoming voice messages rendered in the interrupt mode are automatically played through the speaker in the headset. Reply messages are generated by implementing a Talk function on the headset. In this manner, the user can receive and render messages in the interrupt mode, and generate reply messages, with minimal to no use of their hands to control the operation of the device 10 running the messaging application. As a result, the user is free to consume incoming message in the interrupt mode, and to generate reply messages, while performing other tasks.
While the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. For example, embodiments of the invention may be employed with a variety of components and methods and should not be restricted to the ones mentioned above. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the invention.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/824,323, filed on May 16, 2013, entitled “Interrupt Mode For Communication Applications”, incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61824323 | May 2013 | US |