Disclosed herein is a method of iterative block decoding, for example Low-Density Parity Check (LDPC) decoding, that uses innovative interruption criteria, and associated devices.
Error Correction Codes (ECCs) are commonly used in communication systems and in storage systems. Various physical phenomena occurring both in communication channels and in storage devices result in noise effects that corrupt the communicated or stored information. Error correction coding schemes can be used for protecting the communicated or stored information against the resulting errors. This is done by encoding the information before transmission through the communication channel or storage in the memory device. The encoding process transforms the information bits sequence into a codeword by adding redundancy to the information. This redundancy can then be used in order to recover the information from the possibly corrupted codeword through a decoding process.
In both communication systems and storage systems an information bit sequence i is encoded into a coded bit sequence v that is modulated or mapped into a sequence of symbols x that is adapted to the communication channel or to the memory device. At the output of the communication channel or memory device a sequence of symbols y is obtained. An ECC decoder of the system decodes the sequence y and recovers the bit sequence î, which should reconstruct the original information bit sequence i with high probability.
A common ECC family is the family of linear binary block codes. A length N linear binary block code of dimension K is a linear mapping of length K information bit sequences into length N codewords, where N>K. The rate of the code is defined as R=K/N. The encoding process of a codeword v of dimension 1×N is usually done by multiplying the information bits sequence i of dimension 1×K by a generator matrix G of dimension K×N according to
v=i·G (1)
It is also customary to define a parity-check matrix H of dimension M×N, where M=N−K. The parity-check matrix is related to the generator matrix through the following equation:
GHT=0 (2)
The parity-check matrix can be used in order to check whether a length N binary vector is a valid codeword. A 1×N binary vector v belongs to the code if and only if the following equation holds:
H·v′=0 (3)
(In equation (3), the prime on v′ means that v′ is a column vector.)
In recent years iterative coding schemes have become very popular. In these schemes the code is constructed as a concatenation of several simple constituent codes and is decoded using an iterative decoding algorithm by exchanging information between the constituent decoders of the simple codes. Usually, the code can be defined using a bipartite graph describing the interconnections between the constituent codes. In this case, decoding can be viewed as an iterative message passing over the graph edges.
A popular class of iterative codes is Low-Density Parity-Check (LDPC) codes. An LDPC code is a linear binary block code defined by a sparse parity-check matrix H. As shown in
Next to the first and last check nodes of
LDPC codes can be decoded using iterative message passing decoding algorithms. These algorithms operate by exchanging messages between bit nodes and check nodes along the edges of the underlying bipartite graph that represents the code. The decoder is provided with initial estimates of the codeword bits (based on the communication channel output or based on the read memory content). These initial estimates are refined and improved by imposing the parity-check constraints that the bits should satisfy as a valid codeword (according to equation (3)). This is done by exchanging information between the bit nodes representing the codeword bits and the check nodes representing parity-check constraints on the codeword bits, using the messages that are passed along the graph edges.
In iterative decoding algorithms, it is common to utilize “soft” bit estimations, which convey both the bit estimations and the reliabilities of the hit estimations.
The bit estimations conveyed by the messages passed along the graph edges can be expressed in various forms. A common measure for expressing a “soft” bit estimation is as a Log-Likelihood Ratio (LLR)
where the “current constraints and observations” are the various parity-check constraints taken into account in computing the message at hand and the observations y corresponding to the bits participating in these parity checks. Without loss of generality, for simplicity we assume hereinafter that LLR messages are used throughout. The sign of the LLR provides the bit estimation (i.e., positive LLR corresponds to v=0 and negative LLR corresponds to v=1). The magnitude of the LLR provides the reliability of the estimation (i.e., |LLR|=0 means that the estimation is completely unreliable and |LLR|±∞ means that the estimation is completely reliable and the bit value is known).
Usually, the messages passed during the decoding along the graph edges between bit nodes and check nodes are extrinsic. An extrinsic message m passed from a node n on an edge e takes into account all the values received on edges connected to n other than edge e (this is why the message is called extrinsic: it is based only on new information).
One example of a message passing decoding algorithm is the Belief-Propagation (BP) algorithm, which is considered to be the best algorithm from among this family of message passing algorithms.
Let
denote the initial decoder estimation for bit v, based only on the received or read symbol y. Note that it is also possible that some of the bits are not transmitted through the communication channel or stored in the memory device, hence there is no y observation for these bits. In this case, there are two possibilities: 1) shortened bits—the bits are known a-priori and Pv±∞ (depending on whether the bit is 0 or 1). 2) punctured bits—the bits are unknown a-priori and
where Pr(v=0) and Pr(v=1) are the a-priori probabilities that the bit v is 0 or 1 respectively. Assuming the information bits have equal a-priori probabilities to be 0 or 1 and assuming the code is linear then.
Let
denote the final decoder estimation for bit v, based on the entire received or read sequence y and assuming that bit v is part of a codeword (i.e., assuming H·v=0).
Let Qvc denote a message from bit node v to check node c. Let Rcv denote a message from check node c to bit node v.
The BP algorithm utilizes the following update rules for computing the messages:
The bit node to check node computation rule is:
Here, N(n,G) denotes the set of neighbors of a node n in the graph G and c′εN(v,G)\c refers to those neighbors excluding node ‘c’ (the summation is over all neighbors except c).
The check node to bit node computation rule is:
Here,
and operations in the φ domain are done over the group {0,1}×R+ (this basically means that the summation here is defined as summation over the magnitudes and XOR over the signs). Analogous to the notation of equation (4), N(c,G) denotes the set of bit node neighbors of a check node c in the graph G and v′εN(c,G)\v refers to those neighbors excluding node ‘v’ (the summation is over all neighbors except v).
The final decoder estimation for bit v is:
The order of passing messages during message passing decoding is called the decoding schedule. BP decoding does not imply utilizing a specific schedule—it only defines the computation rules (equations (4), (5) and (6)). The decoding schedule does not affect the expected error correction capability of the code. However, the decoding schedule can significantly influence the convergence rate of the decoder and the complexity of the decoder.
The standard message-passing schedule for decoding LDPC code is the flooding schedule, in which in each iteration all the variable nodes, and subsequently all the check nodes, pass new messages to their neighbors (R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, Mass.: MIT Press 1963). The standard BP algorithm based on the flooding schedule is given in
The standard implementation of the BP algorithm based on the flooding schedule is expensive in terms of memory requirements. We need to store a total of 2|V|+2|E| messages (for storing the Pv, Qv, Qvc, and Rcv messages). Moreover, the flooding schedule exhibits a low convergence rate and hence requires higher decoding logic (e.g., more processors on an ASIC) for providing a required error correction capability at a given decoding throughput.
More efficient, serial message passing decoding schedules, are known. In a serial message passing schedule, the bit or check nodes are serially traversed and for each node, the corresponding messages are sent into and out from the node. For example, a serial schedule can be implemented by serially traversing the check nodes in the graph in some order and for each check node cεC the following messages are sent:
1. Qvc for each vεN(c) (i.e., all Qvc messages into the node c)
2. Rcv for each vεN(c) (i.e., all Rcv messages from node c)
Serial schedules, in contrast to the flooding schedule, enable immediate and faster propagation of information on the graph resulting in faster convergence (approximately two times faster). Moreover, serial schedule can be efficiently implemented with a significant reduction of memory requirements. This can be achieved by using the Qv messages and the Rcv messages in order to compute the Qvc messages on the fly, thus avoiding the need to use an additional memory for storing the Qvc messages. This is done by expressing Qvc as (Qv−Rcv) based on equations (4) and (6). Furthermore, the same memory as is initialized with the a-priori messages Pv is used for storing the iteratively updated Qv a-posteriori messages. An additional reduction in memory requirements is obtained because in the serial schedule we only need to use the knowledge of N(c) ∀cεC, while in the standard implementation of the flooding schedule we use both data structures N(c) ∀cεC and N(v) ∀vεV requiring twice as much memory for storing the code's graph structure. The serially scheduled decoding algorithm appears in
To summarize, serial decoding schedules have the following advantages over the flooding schedule:
Iterative coding systems exhibit an undesired effect called error floor as shown in
It is well known that the error correction capability and the error floor of an iterative coding system improve as the code length increases (this is true for any ECC system, but especially for iterative coding systems, in which the error correction capability is rather poor at short code lengths).
While properly designed LDPC codes are very powerful, and can correct a large number of errors in a code word, a phenomenon known as “trapping sets” may cause the decoder to fail, and increase the error floor of the code, even though the number of incorrect bits may be very small and may be confined to certain regions in the graph. Trapping sets are not well defined for general LDPC codes, but have been described as: “These are sets with a relatively small number of variable nodes such that the induced sub-graph has only a small number of odd degree check nodes.”
Trapping sets are related to the topology of the LDPC graph and to the specific decoding algorithm used, are hard to avoid and are hard to analyze.
Trapping sets are a problem in the field of storage since historically the reliability required from storage devices is relatively high, for example 1 bit error per 1014 stored bits. The result is that codes employed in memory device such as flash memory devices should exhibit low error floor, but trapping sets increase the error floor.
One known way of dealing with trapping sets is to decode a codeword in two phases. During the first phase, conventional iterative decoding is performed along the graph defined by the LDPC code. If a trapping set is suspected to exist, which prevents the decoding process from converging to a legal codeword (i.e., a codeword that satisfies all the parity equations), then the conventional iterative decoding is interrupted and the second phase of the decoding is entered. In the second phase, some of the values associated with the nodes of the graph of the code are modified. For example, the values of the check node messages Rcv may be reset to zero, or the magnitudes of the soft values Qv corresponding to bit probabilities may be truncated to no more than a predetermined value, typically a value between 10 and 16.
In multi-phase decoding scenarios, if the decoder of one phase fails to converge, it would be useful to have a criterion for early interruption of the decoding, in order to transition to the next decoding phase, rather than waiting to perform some predefined large number of iterations before deciding to interrupt the decoding. Such a criterion would save time and power during the phase that fails by skipping most of the non-converging iterations.
The methods described herein are applicable to correcting errors in data in at least two different circumstances. One circumstance is that in which data are retrieved from a storage medium. The other circumstance is that in which data are received from a transmission medium. Both a storage medium and a transmission medium are special cases of a “channel” that adds errors to the data. The concepts of “retrieving” and “receiving” data are generalized herein to the concept of “importing” data. Both “retrieving” data and “receiving” data are special cases of “importing” data from a channel.
Typical storage media to which the technology described below is applicable are nonvolatile memories such as flash memories.
The data that are decoded by the methods presented herein are a representation of a codeword. The data are only a “representation” of the codeword, and not the codeword itself, because the codeword might have been corrupted by noise in the channel before one of the methods is applied for decoding.
Because the existence of a trapping set implies that a small number of bits are failing to converge correctly, the likely existence of a trapping set may be identified, and the iterative decoding interrupted, if all but a small number of bits are stable during successive iterations of the decoding, or if a small number of parity check equations fail consistently while all other parity check equations are satisfied. These exemplary “interruption criteria”, that suggest the existence of a trapping set, are generalized herein to cases of slow convergence or non-convergence that are not necessarily caused by trapping sets.
Although there is an incentive to use the serial scheduler built-in mechanism for convergence detection via the number of satisfied check equations in order to terminate or interrupt the decoding process in case the decoder is not likely to converge, for example if a trapping set is formed during the decoding operation, the innovative interruption criteria presented below are applicable to message passing schedules generally, including flooding schedules, and not just to serial schedules. For example, decoding interruption criteria that are based on properties of an integral number of iterations cal be applied to a flooding scheduler with the same efficiency as to a serial scheduler.
One embodiment provided herein is a method of decoding a representation of a codeword that encodes K information bits as N>K codeword bits, the method including: (a) importing the representation of the codeword from a channel; (b) in a plurality of decoding iterations, updating estimates of the codeword bits; and (c) interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a decoder for decoding a representation of a codeword that encodes K information bits as N>K codeword bits, including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (a) in a plurality of decoding iterations, updating estimates of the codeword bits; and (b) interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a memory controller including: (a) an encoder for encoding K information bits as a codeword of N>K codeword bits; and (b) a decoder including a processor for executing an algorithm for decoding a representation of the codeword by steps including: (i) in a plurality of decoding iterations, updating estimates of the codeword bits, and (ii) interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a receiver including: (a) a demodulator for demodulating a message received from a communication channel, thereby producing a representation of a codeword that encodes K information bits as N>K codeword bits; and (b) a decoder including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (i) in a plurality of decoding iterations, updating estimates of the codeword bits, and (ii) interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a communication system for transmitting and receiving a message, including: (a) a transmitter including: (i) an encoder for encoding K information bits of the message as a codeword of N>K codeword bits, and (ii) a modulator for transmitting the codeword via a communication channel as a modulated signal; and (b) a receiver including: (i) a demodulator for receiving the modulated signal from the communication channel and for demodulating the modulated signal, thereby producing a representation of the codeword, and (ii) a decoder including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (A) in a plurality of decoding iterations, updating estimates of the codeword bits, and (B) interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a computer readable storage medium having computer readable code embodied on the computer readable storage medium, the computer readable code for decoding a representation of a codeword that encodes K information bits as N>K codeword bits, the computer readable code including: (a) program code for, in a plurality of decoding iterations, updating estimates of the codeword bits; and (b) program code for interrupting the decoding iterations if an order-dependent interruption criterion is satisfied.
Another embodiment provided herein is a method of decoding a representation of a codeword that encodes K information bits as N>K codeword bits, the method including: (a) importing the representation of the codeword from a channel; (b) in a plurality of decoding iterations, updating estimates of the codeword bits; and (c) interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a decoder for decoding a representation of a codeword that encodes K information bits as N>K codeword bits, including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (a) in a plurality of decoding iterations, updating estimates of the codeword bits; and (b) interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a memory controller including: (a) an encoder for encoding K information bits as a codeword of N>K codeword bits; and (b) a decoder including a processor for executing an algorithm for decoding a representation of the codeword by steps including: (i) in a plurality of decoding iterations, updating estimates of the codeword bits, and (ii) interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a receiver including: (a) a demodulator for demodulating a message received from a communication channel, thereby producing a representation of a codeword that encodes K information bits as N>K codeword bits; and (b) a decoder including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (i) in a plurality of decoding iterations, updating estimates of the codeword bits, and (ii) interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a communication system for transmitting and receiving a message, including: (a) a transmitter including: (i) an encoder for encoding K information bits of the message as a codeword of N>K codeword bits, and (ii) a modulator for transmitting the codeword via a communication channel as a modulated signal; and (b) a receiver including: (i) a demodulator for receiving the modulated signal from the communication channel and for demodulating the modulated signal, thereby producing a representation of the codeword, and (ii) a decoder including a processor for executing an algorithm for decoding the representation of the codeword by steps including: (A) in a plurality of decoding iterations, updating estimates of the codeword bits, and (B) interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a computer readable storage medium having computer readable code embodied on the computer readable storage medium, the computer readable code for decoding a representation of a codeword that encodes K information bits as N>K codeword bits, the computer readable code including: (a) program code for, in a plurality of decoding iterations, updating estimates of the codeword bits; and (b) program code for interrupting the decoding iterations if an interruption criterion, that includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations, is satisfied.
Another embodiment provided herein is a method of decoding a representation of a codeword that has been encoded according to a code, including: (a) importing the representation of the codeword from a channel; (b) providing an iterative procedure for decoding the representation of the codeword; and (c) following at most one iteration of the iterative procedure, deciding, according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code and a rate of the code, whether to modify the iterative procedure.
Another embodiment provided herein is a decoder for decoding a representation of a codeword that has been encoded according to a code, including a processor for executing an algorithm for deciding, following at most one iteration of an iterative procedure for decoding the representation of the codeword, and according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code and a rat of the code, whether to modify the iterative procedure.
Another embodiment provided herein is a memory controller, for controlling a memory, including: (a) an encoder for encoding a plurality of bits as a codeword according to a code; and (b) a decoder including a processor for executing an algorithm for deciding, following at most one iteration of an iterative procedure for decoding a representation of the codeword, and according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code, a rate of the code and a resolution with which the representation of the codeword is read from the memory, whether to modify the iterative procedure.
Another embodiment provided herein is a receiver including: (a) a demodulator for demodulating a message received from a communication channel, thereby producing a representation of a codeword that encodes a plurality of bits according to a code; and (b) a decoder including a processor for executing an algorithm for deciding, following at most one iteration of an iterative procedure for decoding the representation of the codeword, and according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code and a rate of the code, whether to modify the iterative procedure.
Another embodiment provided herein is a communication system for transmitting and receiving a message, including: (a) a transmitter including: (i) an encoder for encoding a plurality of bits as a codeword according to a code, and (ii) a modulator for transmitting the codeword via a communication channel as a modulated signal; and (b) a receiver including: (i) a demodulator for receiving the modulated signal from the communication channel and for demodulating the modulated signal, thereby producing a representation of the codeword, and (ii) a decoder including a processor for executing an algorithm for deciding, following at most one iteration of an iterative procedure for decoding the representation of the codeword, and according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code and a rate of the code, whether to modify the iterative procedure.
Another embodiment provided herein is a computer readable storage medium having computer readable code embodied on the computer readable storage medium, the computer readable code for decoding a representation of a codeword that encodes a plurality of bits according to a code, the computer readable code including program code for deciding, following at most one iteration of an iterative procedure for decoding the representation of the codeword, and according to a criterion that depends on at least one parameter selected from the group consisting of a syndrome of the representation of the codeword, a degree of the code and a rate of the code, whether to modify the iterative procedure.
Another embodiment provided herein is a method of decoding a representation of a codeword that has been encoded according to a code, including: (a) reading the representation of the codeword from a memory; (b) deciding, according to a criterion that depends on a degree of the code, whether and how to modify at least one parameter used in the reading; and (c) if the decision is to modify the at least one parameter: to modify the at least one parameter and to re-read the representation of the codeword using the at least one parameter as so modified.
Another embodiment provided herein is a memory controller for controlling a memory, including: (a) an encoder for encoding a plurality of bits as a codeword according to a code; (b) a decoder including a processor for executing an algorithm for deciding, according to a criterion that depends on a degree of the code, whether and how to modify at least one parameter that has been used to read a representation of the codeword from the memory; and (c) circuitry: (i) for reading the representation of the codeword from the memory, and (ii) if the decision is to modify the at least one parameter: (A) for modifying the at least one parameter in accordance with the decision, and (B) for re-reading the representation of the codeword from the memory using the at least one parameter as so modified.
Another embodiment provided herein is a memory device including: (a) a memory; and (b) a memory controller, for controlling the memory, including: (i) an encoder for encoding a plurality of bits as a codeword according to a code, (ii) a decoder including a processor for executing an algorithm for deciding, according to a criterion that depends on a degree of the code, whether and how to modify at least one parameter that has been used to read a representation of the codeword from the memory; and (iii) circuitry: (A) for reading the representation of the codeword from the memory, and (B) if the decision is to modify the at least one parameter: (I) for modifying the at least one parameter in accordance with the decision, and (II) for re-reading the representation of the codeword from the memory using the at least one parameter as so modified.
Another embodiment provided herein is a computer readable storage medium having computer readable code embodied on the computer readable storage medium, the computer readable code for decoding a representation, of a codeword that encodes a plurality of bits according to a code, that has been read from a memory, the computer readable code including program code for deciding, according to a criterion that depends on a degree of the code, whether and how to modify at least one parameter that has been used to read the representation of the codeword from the memory.
Two general methods are provided herein for decoding a representation, that has been imported from a channel, of a codeword that encodes K information bits as N>K codeword bits. Most embodiments of the methods are applicable to block codes generally, not to just message-passing codes (codes, such as LDPC codes, that typically are decoded by using message passing decoding algorithms). In both general methods, estimates of the codeword bits are updated in a plurality of decoding iterations. The decoding iterations are interrupted if an interruption criterion is satisfied.
According to the first general method, the interruption criterion is order-dependent. As defined below, an order-dependent interruption criterion is a criterion that distinguishes among vectors, such as syndrome vectors, whose elements have the same values but in different orders. This is in contrast to “order-independent” criteria that are defined below as criteria that inspect properties, of vectors that are involved in the decoding, that are independent of the order in which specific values of the vector elements appear in the vectors.
In message passing decoding algorithms used to decode codes such as LDPC codes, the updating includes, in a graph that includes N bit nodes and N−K check nodes, exchanging messages between the bit nodes and the check nodes. Preferably, the interrupting includes modifying at least one element of at least one vector, such as the vector of Qv's, the vector of Qvc's, and/or the vector of Rcv's, that is associated with the decoding, and then resuming the decoding iterations. Also preferably, the interruption criterion includes that a norm of absolute values of LLR estimates of selected codeword bits fails to increase within a predetermined number of iterations. Most preferably, the method also includes partitioning at least a portion of the graph into a plurality of sub-graphs. At least a portion of the message exchange is effected separately within each sub-graph, and the selected codeword bits are codeword bits within one of the subgraphs.
Equivalently, in message passing decoding algorithms used to decode codes such as LDPC codes, the updating includes, in a parity check matrix that includes N−K rows and N columns, exchanging messages between the rows and the columns. Preferably, the interrupting includes modifying at least one element of at least one vector, such as the vector of Qv's, the vector of Qvc's, and/or the vector of Rcv's, that is associated with the decoding, and then resuming the decoding iterations. Also preferably, the interruption criterion includes that a norm of absolute values of LLR estimates of selected codeword bits fails to increase within a predetermined number of iterations. Most preferably, the method also includes partitioning at least a portion of the parity check matrix into a plurality of sub-matrices. At least a portion of the message exchange is effected separately within each sub-matrix, and the selected codeword bits are codeword bits within one of the sub-matrices.
Alternatively, the interrupting consists of terminating the decoding iterations.
One preferred order-dependent interruption criterion includes the failure of a norm of absolute values of LLR estimates of selected estimated codeword bits failing to increase within a predetermined number of iterations. Most preferably, the selected estimated codeword bits are estimated codeword bits that contribute to non-zero elements of the syndrome, i.e., estimated codeword bits that correspond to 1's in rows of the parity check matrix that correspond to non-zero elements of the syndrome.
Another preferred order-dependent interruption criterion includes that the numbers of zero elements in runs of consecutive zero elements of the syndrome do not tend to increase, either within one decoding iteration or across the border between two decoding iterations.
Another preferred order-dependent interruption criterion includes that the largest number of consecutive zero elements of the syndrome does not increase from one decoding iteration to the next.
Another preferred order-dependent interruption criterion includes that the largest number of consecutive zero elements of the syndrome does not increase monotonically across a pre-determined number (at least three) of consecutive decoding iterations.
According to the second general method, the interruption criterion includes an estimate of mutual information between the codeword and a vector that is used in the decoding iterations.
In message passing decoding algorithms used to decode codes such as LDPC codes, the updating includes, in a graph that includes N bit nodes and N−K check nodes, exchanging messages between the bit nodes and the check nodes. Preferably, the interrupting includes modifying at least one element of at least one vector (possibly but not necessarily the vector used in the interruption criterion), such as the vector of Qv's, the vector of Qvc's, and/or the vector of Rcv's, that is associated with the decoding, and then resuming the decoding iterations. Most preferably, the vector, the estimate of mutual information between which and the codeword is included in the interruption criterion, is a vector of LLR estimates Q of the codeword bits, and the estimate of mutual information is
where E is the number of edges in the graph.
Equivalently, in message passing decoding algorithms used to decode codes such as LDPC codes, the updating includes, in a parity check matrix that includes N−K rows and N columns, exchanging messages between the rows and the columns. Preferably, the interrupting includes modifying at least one element of at least one vector (possibly but not necessarily the vector used in the interruption criterion), such as the vector of Qv's, the vector of Qvc's, and/or the vector of Rcv's, that is associated with the decoding, and then resuming the decoding iterations.
Alternatively, the interrupting consists of terminating the decoding iterations.
A decoder corresponding to one of the two general methods includes one or more processors for decoding the representation of the codeword by executing an algorithm for updating the codeword bit estimates according to the corresponding general method.
A memory controller corresponding to one of the two general methods includes an encoder for encoding K information bits as a codeword of N>K bits and a decoder that corresponds to the general method. Normally, such a memory controller includes circuitry for storing at least a portion of the codeword in a memory and for retrieving a (possibly noisy) representation of the at least portion of the codeword from the memory. A memory device corresponding to one of the two general methods includes such a memory controller and also includes the memory.
A receiver corresponding to one of the two general methods includes a demodulator for demodulating a message received from a communication channel. The demodulator provides a representation of a codeword that encodes K information bits as N>K codeword bits. Such a receiver also includes a decoder that corresponds to the general method.
A communication system corresponding to one of the two general methods includes a transmitter and a receiver. The transmitter includes an encoder for encoding K information bits of a message as a codeword of N>K codeword bits and a modulator for transmitting the codeword via a communication channel as a modulated signal. The receiver is a receiver that corresponds to the general method.
A computer-readable storage medium corresponding to one of the two general methods has computer readable code embodied thereon for using the general method to decode a representation of a codeword that includes K information bits encoded as N>K codeword bits.
A third and a fourth general method are provided herein for decoding a representation of a codeword that has been encoded according to a code.
According to the third general method, the representation of the codeword is imported from a channel. An iterative procedure is provided for decoding the representation of the codeword. After only one iteration of the procedure, or even before effecting any iterations of the procedure, it is decided, according to a criterion that depends on one or more parameters selected from among the syndrome of the representation of the codeword (a vector parameter), a degree of the code (a scalar parameter) (in the case of a code such as a LDPC code the degree could be either the check node degree dc or the variable node degree dv; in the preferred embodiments described below dc is used), the code rate (a scalar parameter) and (if the channel is a storage medium) the resolution with which the representation of the codeword is read from the channel (in general a vector parameter), whether to modify the iterative procedure before continuing. (The check node degree of a code such as a LDPC code is defined below as the number of “1”s in each row of the parity check matrix (or the average number of “1”s if the rows do not all have the same number of “1”s).)
Optionally, if the criterion depends on the syndrome, the criterion is order-independent.
Preferably, the criterion includes a bit error estimate. One preferred bit error estimate is
where M is the number of elements in the syndrome, W is the number of non-zero elements in the syndrome and δ is the relevant degree of the code (typically δ=dc in the case of a code such as a LDPC code).
A decoder corresponding to the third general method includes one or more processors for implementing the decision step of the third general method.
A memory controller corresponding to the third general method includes an encoder for encoding a plurality of bits as a codeword according to a code and a decoder that corresponds to the third general method. Normally, such a memory controller also includes circuitry for storing at least a portion of the codeword in a memory and for retrieving a (possibly noisy) representation of the codeword from the memory. A memory device corresponding to the third general method includes such a memory controller and also includes the memory.
A receiver corresponding to the third general method includes a demodulator for demodulating a message received from a communication channel. The demodulator provides a representation of a codeword that encodes a plurality of bits according to a code. Such a receiver also includes a decoder that includes one or more processors for implementing the decision step of the third general method relative to the representation of the codeword.
A communication system corresponding to the third general method includes a transmitter and a receiver. The transmitter includes an encoder for encoding a plurality of bits as a codeword according to a code and a modulator for transmitting the codeword via a communication channel as a modulated signal. The receiver is a receiver that corresponds to the third general method.
A computer-readable storage medium corresponding to the third general method has computer readable code embodied thereon for implementing the decision step of the third general method.
According to the fourth general method, a representation of the codeword is read from a memory. It is decided, according to a criterion that depends on the degree of the code, whether and how to modify at least one parameter used in the reading of the representation of the codeword from the memory. If the decision is to modify the parameter(s) then the parameter(s) are modified and the representation of the codeword is re-read from the memory using the modified parameter(s).
Preferably, the memory is a flash memory and the parameter(s) is/are respective values of one or more reference voltages and/or a number of reference voltages.
Preferably, the criterion also depends on the syndrome of the representation of the codeword, in which case the criterion optionally is order-independent.
Preferably, the criterion includes a bit error estimate.
A memory controller corresponding to the fourth general method includes an encoder for encoding a plurality of bits as a codeword according to a code, and a decoder that includes one or more processors for implementing the decision step of the fourth general method. The memory controller also includes circuitry for reading the representation of the codeword from the memory and circuitry for modifying the reading parameter(s) and for re-reading the representation of the codeword from the memory using the modified reading parameter(s) if the decision is to modify the reading parameter(s). A memory device corresponding to the fourth general method includes such a memory controller and also the memory that the memory controller controls.
A computer-readable storage medium corresponding to the fourth general method has computer readable code embodied thereon for implementing the decision step of the fourth general method.
Various embodiments are herein described, by way of example only, with reference to the accompanying drawings, wherein:
The principles and operation of low-complexity LPDC decoding and of LPDC decoding that overcomes persistent non-convergence such as non-convergence due to trapping sets may be better understood with reference to the drawings and the accompanying description.
In conventional decoders for LDPC codes, the memory required by the decoder is proportional to the code length N (equal to the number of variable nodes in the code's underlying graph |V|) and to the number of edges in the code's underlying graph |E|. In efficient implementations (e.g. based on serially scheduled decoders), the required memory can be as small as (|V|+|E|)*bpm bits, where |V| is the number of bit estimations, |E| is the number of edge messages and bpm is the number of bits per message stored in the memory of the decoder (note that we assume here that the same number of bits is required for storing bit estimation and edge message, for the sake of simplicity, though this is not necessarily the case). The decoder presented herein uses much smaller memory for implementing the decoding, storing only a small fraction of the |V| bit estimations and of the |E| edge messages simultaneously, without any degradation in decoder's error correction capability, compared to a conventional decoder, assuming sufficient decoding time is available. This is achieved by employing an appropriate decoding schedule and using the decoding hardware described herein.
The methods and decoders described herein operate by dividing the underlying graph representing the code into several sections and to implement the message passing decoding algorithm by sequentially processing the different sections of the graph, one or more sections at a time. At each stage during decoding only the bit estimations and edge messages corresponding to the graph section(s) that is/are currently being processed are stored. This way a very long LDPC code can be employed, providing near optimal error correction capability and very low error floor, while utilizing a low complexity decoding hardware.
The decoders presented herein are highly suitable for usage in memory devices, principally for the three following reasons:
for some bit v can be generated from the corresponding bit observations y that are read from the flash memory device based on an a-priori knowledge of the memory “noise”. In other words, by knowing the memory “noise” statistics we can deduce the probability that a bit v that was stored in a certain memory cell is 0/1 given that ‘y’ is read from the cell.
and if y=1 then
Furthermore, if the number of states that can be read from each cell of the flash device (represented by ‘y’) is 8 because the cell stores a single bit (one “hard bit”) and the device is configured to read eight threshold voltage levels, equivalent to two ‘soft bits”, then each element ‘y’ which requires, in the controller, storage for 3 bits, is converted to an LLR value Pv that may be represented as more than 3 bits, for example as 6 bits (BPM=Bits Per Message=6). These 6 bits are a soft bit estimate as opposed to the 2 soft bits read from the flash cell and corresponding to this 6-bit LLR value.
According to one class of embodiments, the bipartite graph G=(V, C, E) that represents the code is divided into several sections in the following way. 1) Divide the set V of bit nodes into t disjoint subsets: V1, V2, . . . , Vt (such that V=V1∪V2∪ . . . ∪Vt). 2) For each subset Vi of bit nodes, form a subset Ci of check nodes, including all of the check nodes that are connected solely to the bit nodes in Vi. 3) Form a subset CJ of external check nodes, including all of the check nodes that are not in any of the check node subsets formed so far, i.e. CJ=C\(C1∪C2∪ . . . ∪Ct). 4) Divide the graph G into t sub-graphs G1, G2, . . . , Gt such that Gi=(Vi, Ci, Ei) where Ei is the set of edges connected between bit nodes in Vi and check nodes in Ci. Denote the edges connected to the set CJ by EJ (note that EJ=E\(E1∪E2∪ . . . ∪Et)).
In these embodiments, the graph G is processed according to a special message passing schedule, by iteratively performing decoding phases, and in each decoding phase exchanging messages along the graph edges in the following order:
Decoding continues until the decoder converges to a valid codeword, satisfying all the parity-check constraints, or until a maximum number of allowed decoding phases is reached. The stopping criterion for the message passing within each sub-graph i is similar: iterate until either all the parity-check constraints within this sub-graph are satisfied or a maximum number of allowed iterations is reached. In general, the maximum allowed number of iterations may change from one sub-graph to another or from one activation of the decoder to another.
The messages sent along the edges in EJ (Ram messages and QvicJ messages in
Such a decoding algorithm, assuming serially scheduled message passing decoding within each sub-graph, implementing BP decoding, is summarized in
A high-level schematic block diagram of an exemplary decoder 30 according to this class of embodiments is shown in
Decoder 30 includes a plurality of processing units 42 so that the computations involved in updating the messages may be effected in parallel. An alternative embodiment with only one processing unit 42 would not include a routing layer 44.
As noted above, a serial passing schedule traverses serially either the check nodes or the bit nodes. Decoder 30 of
An example of the graph partitioning according to this class of embodiments is shown in
It is preferred that all the sub-graphs be topologically identical, as in the example of
If need be, however, any LDPC graph G can be partitioned into sub-graphs by a greedy algorithm. The first sub-graph is constructed by selecting an arbitrary set of bit nodes. The check nodes of the first sub-graph are the check nodes that connect only to those bit nodes. The second sub-graph is constructed by selecting an arbitrary set of bit nodes from among the remaining bit nodes. Preferably, of course, the number of bit nodes in the second sub-graph is the same as the number of bit nodes in the first sub-graph. Again, the check nodes of the second sub-graph are the check nodes that connect only to the bit nodes of the second sub-graph. This is arbitrary selection of bit nodes is repeated as many times as desired. The last sub-graph then consists of the bit nodes that were not selected and the check nodes that connect only to those bit nodes. The remaining check nodes constitute CJ.
In the class of embodiments described above, the LDPC graph G is partitioned into t sub-graphs, each with its own bit nodes and check nodes, plus a separate subset CJ of only check nodes. In another class of embodiments, as illustrated in
The data stored in the memory cells (M) are read out by column control circuit 2 and are output to external I/O lines via an I/O line and a data input/output buffer 6. Program data to be stored in the memory cells are input to data input/output buffer 6 via the external I/O lines, and are transferred to column control circuit 2. The external I/O lines are connected to a controller 20.
Command data for controlling the flash memory device are input to a command interface connected to external control lines which are connected with controller 20. The command data inform the flash memory of what operation is requested. The input command is transferred to a state machine 8 that controls column control circuit 2, row control circuit 3, c-source control circuit 4, c-p-well control circuit 5 and data input/output buffer 6. State machine 8 can output a status data of the flash memory such as READY/BUSY or PASS/FAIL.
Controller 20 is connected or connectable with a host system such as a personal computer, a digital camera, a personal digital assistant. It is the host which initiates commands, such as to store or read data to or from the memory array 1, and provides or receives such data, respectively. Controller 20 converts such commands into command signals that can be interpreted and executed by command circuits 7. Controller 20 also typically contains buffer memory for the user data being written to or read from the memory array. A typical memory device includes one integrated circuit chip 21 that includes controller 20, and one or more integrated circuit chips 22 that each contain a memory array and associated control, input/output and state machine circuits. The trend, of course, is to integrate the memory array and controller circuits of such a device together on one or more integrated circuit chips. The memory device may be embedded as part of the host system, or may be included in a memory card that is removably insertable into a mating socket of host systems. Such a card may include the entire memory device, or the controller and memory array, with associated peripheral circuits, may be provided in separate cards.
Note that the location of the dashed vertical line in
Although the methods and the decoders disclosed herein are intended primarily for use in data storage systems, these methods and decoders also are applicable to communications systems, particularly communications systems that rely on wave propagation through media that strongly attenuate high frequencies. Such communication is inherently slow and noisy. One example of such communication is radio wave communication between shore stations and submerged submarines.
Returning now to the issue of slow convergence of a block decoder, for example, slow convergence of a LDPC decoder because of the presence of a trapping set, most conventional criteria for interrupting iterative block decoding (e.g., terminating the decoding, or else modifying some of the values associated with the nodes of a Tanner graph and then resuming the decoding) are what are termed herein “order-independent” interruption criteria. These criteria inspect properties, of vectors that are involved in the iterative decoding, that are independent of the order in which specific values of the vector elements appear in the vectors. For example, the most widely used criterion for testing the convergence of a block decoder is to count the number of elements of the syndrome H·v′, where v′ is the column vector of estimated bits, that are non-zero at the end of successive iterations. A similar criterion for interrupting a slowly converging LDPC decoder and resetting the Rcv messages to zero or truncating the soft values Qv is that a predetermined number of elements (typically one element) of the syndrome are non-zero after a pre-determined number of iterations or after a pre-determined time or after a pre-determined number of message exchanges.
One interruption criterion previously suggested by the present inventors, specifically, one of the criteria discussed above that suggest the presence of a trapping set, is an example of what are termed herein “order-dependent” interruption criteria. This criterion is that parity check equations fail only within just one sub-graph of a graph that has been partitioned into sub-graphs as described above, while all the other parity check equations succeed. Such a restricted failure suggests that the sub-graph either is a trapping set or includes a trapping set. This criterion distinguishes among syndromes in which “0” and “1” syndrome elements appear in different orders. In general, “order-dependent” criteria distinguish among vectors in which vector elements having specific values appear in different orders. For example, an order-independent criterion that counts non-zero elements of a syndrome does not distinguish between the two syndromes
That the lengths of runs of consecutive “0”s “tends” to increase includes but is not limited to monotonic increase of the lengths of consecutive runs of “0”s. For example, in
Other useful order-dependent interruption criteria, that are evaluated at the ends of two or more successive iterations, include the largest number of consecutive “0”s in the syndrome not increasing in two successive decoding iterations and the largest number of “0”s in the syndrome not increasing monotonically in a predetermined number of decoding iterations.
Returning to the issue of trapping sets, another useful criterion for suggesting the presence of a trapping set in a LDPC graph is that a norm of the absolute values of the Qv's within one of the sub-graphs fails to increase in successive iterations. This norm could be any mathematical norm function known to those skilled in the art. Exemplary norms include a L1 norm
Σ|Qv|
and a L2 norm
√{square root over (Σ|Qv|2)}
where the sums are over the bit nodes of a sub-graph that is suspected to be or to include a trapping set.
A similar interruption criterion is based on the norm of absolute values of the Qv's whose bit nodes contribute, via the associated codeword bit estimates, to the non-zero syndrome elements. That norm fails to increase within a predetermined number of iterations, for example in successive iterations, suggests the presence of a trapping set, so that the decoding should be interrupted.
For example, a threshold value S of the number of non-zero elements of the syndrome (e.g., S=8 for a code with 900 check nodes) is predefined. An upper Qv norm threshold (e.g. 8), a lower Qv norm threshold (e.g. 5) and an iteration span t also are predefined. When the number of non-zero elements of the syndrome falls below the threshold S, the bit nodes that are directly connected, in the Tanner graph, to the check nodes with non-zero syndrome elements are inspected. The norm of the associated Qv's whose absolute values are less than the predefined lower Qv norm threshold is computed. That norm fails to increase, or fails to increase above the predefined upper Qv norm threshold, after another t iterations (t=1 is the “successive iteration” case) suggests the presence of a trapping set, so that the decoding should be interrupted.
Another useful interruption criterion is based on the mutual information between the codeword and a vector that is used in the decoding iterations. The mutual information between two random variables is a quantity that measures the dependence between the two variables. The most common unit for measurement of info cation is in bit[s], when base-2 logarithms are used. Formally, the mutual information between two discrete random variables X and Y is defined as
where p(x,y) is the joint probability distribution function of X and Y, p1(x) is the marginal probability distribution function of X, and p2(y) is the marginal probability distribution function of Y. It can be shown that, if the definition of codeword bit values are modified by mapping v=0 into {circumflex over (v)}=1 and v=1 into {circumflex over (v)}=−1, then in a decoding procedure that exchanges messages along the edges of a Tanner graph, the mutual information between a codeword and its LLR estimate Q is
where E is the number of edges in the Tanner graph and the sum is over the bit nodes. I is expected to increase steadily from iteration to iteration in a successful decoding. That I fails to increase from iteration to iteration suggests that the decoding should be interrupted.
This expression for I is not useful as such for testing convergence of LDPC decoding because the codeword v is unknown and is indeed what is sought by the decoding; but if most of the Qv's are correct then this expression can be approximated as
Decoders 30 and 31 of
Returning to the issue of using order-independent criteria to decide whether to interrupt block decoding, the conventional order-independent criteria all evaluate the behavior of the iterative decoding across at least two iterations. We have discovered order-independent criteria that can be applied after only one decoding iteration, or even before commencing any decoding iterations, to decide whether to modify (not just interrupt) the block decoding.
One such criterion is based on an estimate of the bit error rate. For a LDPC code of check node degree dc (i.e., the number of “1”s in each row of the parity-check matrix if the LDPC code is right regular, or the average number of “1”s per row if the rows do not all have the same number of “1”s if the LDPC code isn't right regular, is dc), it can be shown that a good estimate of the bit error rate of a given representation of a codeword is
where M is the number of elements in the syndrome and W is the number of non-zero elements (i.e., the number of “1”s) in the syndrome. W also is called the “syndrome weight”. Solving for W/M in terms of q gives
For example, if the representation of the codeword has been read from a memory with a bit error rate of q=0.5% and the error correction code is a regular LDPC code with dc=30, then W/M is expected to be at most about 0.13. If, before decoding or after one decoding iteration; W/M is greater than e.g. 0.15, the decoding should at least be interrupted, if not actually modified e.g. by substituting a powerful but slow decoding algorithm for a weak but fast decoding algorithm.
In the case of a representation of a codeword that is obtained by reading a flash memory, if W/M is greater than expected before decoding or after a pre-determined number of decoding iterations, another option is to change how the representation of the codeword is read. Command circuits 7 and state machine 8 (
To read a cell that has been programmed according to the threshold voltage distributions shown in
Alternatively, it may be beneficial to read the threshold voltages of the relevant cells at a finer resolution, as illustrated in
The discussion above of W/M assumes that all of the stored bits are equally reliable (bit error rate q). W/M also can be estimated for the case of different stored bits having different reliabilities. For example, in the bit pattern assignments of
The bit error rate q can be estimated for a specific code and flash technology via empirical measurements. For example, in each of a series of off-line simulations or measurements for a specific flash device, a codeword is stored in the flash device and is read from the flash device, the bit error rate (BER) or cell error rate (CER) is computed, and the syndrome weight W is computed. For each syndrome weight value the weighted average of the BER (or CER) is computed and tabulated. This table is then employed during the lifetime of the device by its controller in order to estimate the BER (or CER) from the syndrome weight of each codeword representation that is read from the device. Such an empirical model is preferred over the above formula because the above formula assumes, inaccurately, that the probabilities of error for each of dc bits in each check are independent. In a real life scenario this is not the case since for example two bits may arrive from the same flash cell, or one cell may induce cross coupling noise on other cells and thus even bits from different cells may have a dependency between their error probabilities if they both are affected by the same disturbing cell. Another case in which an empirical method for estimating the BER (or CER) might be preferred over the formulation presented above is when for each page of a multi-page flash memory the bit error rate is different. Furthermore, assuming that the ratio between the bit error rates of different pages is completely known (as in the above formula for 3 bits per cell) is valid only if the noise model is well defined, for example if the noise model is a Gaussian model. Unfortunately, in a real life flash device this often is not the case. Furthermore, in decoding a codeword read from a wordline of a multi-page flash memory, the number of bits from the lower page of one check can be different than the number of bits from the lower page of another check, which makes our assumption that the bits participating in each check uniformly divided between the pages of the wordline inaccurate.
The empirical simulations or measurements yield a table of W vs. q. When a codeword representation is read from the flash device, W is computed and the corresponding q is looked up in the table. If, for a specific code rate and reading resolution, q is too large, the memory controller decides whether it is worthwhile to re-read the codeword representation at a higher resolution, and if so, at what resolution, or, alternatively, whether it is necessary to change the reference voltage values that are used to read the flash memory.
The foregoing has described a limited number of embodiments of methods for decoding a representation of a codeword, of decoders that use these methods, of memories whose controllers include such decoders, and of communication systems whose receivers include such decoders. It will be appreciated that many variations, modifications and other applications of the methods, decoders, memories and systems may be made.
This application is a divisional of U.S. patent application Ser. No. 12/646,995, filed Dec. 24, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/469,790, filed May 21, 2009, that claims the benefit of U.S. Provisional Patent Application No. 61/074,701, filed Jun. 23, 2008.
Number | Name | Date | Kind |
---|---|---|---|
5467971 | Hurtubise et al. | Nov 1995 | A |
5573902 | Daubendick et al. | Nov 1996 | A |
5576171 | Olm et al. | Nov 1996 | A |
5582965 | Deaton et al. | Dec 1996 | A |
5608867 | Ishihara | Mar 1997 | A |
5612175 | Eshelman et al. | Mar 1997 | A |
5612176 | Eshelman et al. | Mar 1997 | A |
5612177 | Levy et al. | Mar 1997 | A |
5614358 | Wilson et al. | Mar 1997 | A |
5614359 | Eshelman et al. | Mar 1997 | A |
5641618 | Wen et al. | Jun 1997 | A |
5663041 | Chang et al. | Sep 1997 | A |
5666543 | Gartland | Sep 1997 | A |
5672467 | Buitano et al. | Sep 1997 | A |
5726005 | Chen et al. | Mar 1998 | A |
5728516 | Edwards et al. | Mar 1998 | A |
5728517 | Bryant et al. | Mar 1998 | A |
5736310 | Chen et al. | Apr 1998 | A |
5744297 | Chang et al. | Apr 1998 | A |
5776959 | Covey et al. | Jul 1998 | A |
5824460 | Dickerson | Oct 1998 | A |
5880466 | Benner | Mar 1999 | A |
6027869 | Maskasky et al. | Feb 2000 | A |
6066666 | Covey et al. | May 2000 | A |
6090536 | Maskasky et al. | Jul 2000 | A |
6130090 | Heintz et al. | Oct 2000 | A |
6156574 | Heintz et al. | Dec 2000 | A |
6187525 | Maskasky et al. | Feb 2001 | B1 |
6225036 | Maskasky et al. | May 2001 | B1 |
6264416 | Eaton, Jr. | Jul 2001 | B1 |
6365336 | Maskasky et al. | Apr 2002 | B1 |
6383730 | Maskasky et al. | May 2002 | B1 |
6391534 | Maskasky et al. | May 2002 | B1 |
6395465 | Maskasky et al. | May 2002 | B1 |
6485912 | Heintz et al. | Nov 2002 | B1 |
6513154 | Porterfield | Jan 2003 | B1 |
6518007 | Reed et al. | Feb 2003 | B1 |
6680331 | Ferrendelli et al. | Jan 2004 | B2 |
6740483 | Royster, Jr. | May 2004 | B1 |
6756188 | Keevert et al. | Jun 2004 | B2 |
6803182 | Royster, Jr. | Oct 2004 | B1 |
6893809 | Reed et al. | May 2005 | B2 |
7023735 | Ban et al. | Apr 2006 | B2 |
7046403 | Yhann | May 2006 | B1 |
7164494 | Dalton | Jan 2007 | B1 |
7171802 | Inoue et al. | Feb 2007 | B2 |
7197690 | Shen et al. | Mar 2007 | B2 |
7206463 | Nishide et al. | Apr 2007 | B2 |
7222284 | Stolpman | May 2007 | B2 |
7237181 | Richardson | Jun 2007 | B2 |
7281192 | Shen et al. | Oct 2007 | B2 |
7296216 | Shen et al. | Nov 2007 | B2 |
7337375 | Agazzi et al. | Feb 2008 | B2 |
7370265 | Shen et al. | May 2008 | B2 |
7379209 | Dalton | May 2008 | B1 |
7383487 | Shen et al. | Jun 2008 | B2 |
7383493 | Shen et al. | Jun 2008 | B2 |
7395494 | Lee et al. | Jul 2008 | B2 |
7395495 | Jacobsen | Jul 2008 | B2 |
7564933 | Marrow | Jul 2009 | B2 |
7707476 | Seki | Apr 2010 | B2 |
7752524 | Wehn et al. | Jul 2010 | B2 |
7770090 | Kons et al. | Aug 2010 | B1 |
8127209 | Zhang et al. | Feb 2012 | B1 |
8145987 | Shen et al. | Mar 2012 | B2 |
8219878 | Varnica et al. | Jul 2012 | B1 |
8245098 | Han et al. | Aug 2012 | B2 |
20010028690 | Ebel, Sr. | Oct 2001 | A1 |
20020026615 | Hewitt et al. | Feb 2002 | A1 |
20020042899 | Tzannes et al. | Apr 2002 | A1 |
20030066018 | Yu et al. | Apr 2003 | A1 |
20030078283 | Ferrendelli et al. | Apr 2003 | A1 |
20040063048 | Reed et al. | Apr 2004 | A1 |
20040067455 | Keevert et al. | Apr 2004 | A1 |
20040081371 | Nishide et al. | Apr 2004 | A1 |
20040268205 | Stolpman | Dec 2004 | A1 |
20050055999 | Inou et al. | Mar 2005 | A1 |
20050138520 | Richardson | Jun 2005 | A1 |
20050149843 | Shen et al. | Jul 2005 | A1 |
20050154957 | Jacobsen | Jul 2005 | A1 |
20050166132 | Shen et al. | Jul 2005 | A1 |
20050193320 | Varnica et al. | Sep 2005 | A1 |
20050229088 | Tzannes et al. | Oct 2005 | A1 |
20060005105 | Yoshida | Jan 2006 | A1 |
20060013181 | Stolpman et al. | Jan 2006 | A1 |
20060087220 | Hiroki et al. | Apr 2006 | A1 |
20070033484 | Kim et al. | Feb 2007 | A1 |
20070105595 | Prasad et al. | May 2007 | A1 |
20070113146 | Li et al. | May 2007 | A1 |
20070113163 | Golitschek Edler Von Elbwart et al. | May 2007 | A1 |
20070153838 | Pons et al. | Jul 2007 | A1 |
20070157065 | Pons et al. | Jul 2007 | A1 |
20070162815 | El-Khamy et al. | Jul 2007 | A1 |
20070162818 | Shen et al. | Jul 2007 | A1 |
20070168834 | Eroz et al. | Jul 2007 | A1 |
20070180345 | Ismail | Aug 2007 | A1 |
20070195894 | Shokrollahi et al. | Aug 2007 | A1 |
20070198905 | Bhatt et al. | Aug 2007 | A1 |
20070204197 | Yokokawa | Aug 2007 | A1 |
20070204198 | Kyung et al. | Aug 2007 | A1 |
20070206638 | Santoru et al. | Sep 2007 | A1 |
20070220397 | Kyung et al. | Sep 2007 | A1 |
20070226578 | Eroz et al. | Sep 2007 | A1 |
20070226584 | Hong et al. | Sep 2007 | A1 |
20070234178 | Richardson et al. | Oct 2007 | A1 |
20070234179 | Eroz et al. | Oct 2007 | A1 |
20070234184 | Richardson | Oct 2007 | A1 |
20070245211 | Kim et al. | Oct 2007 | A1 |
20070260944 | Cameron et al. | Nov 2007 | A1 |
20070266300 | Ito et al. | Nov 2007 | A1 |
20070283216 | Kyung et al. | Dec 2007 | A1 |
20070283220 | Kim | Dec 2007 | A1 |
20070283221 | Kyung et al. | Dec 2007 | A1 |
20070300135 | Kamiya | Dec 2007 | A1 |
20080005650 | Shen et al. | Jan 2008 | A1 |
20080010579 | Park et al. | Jan 2008 | A1 |
20080016426 | Li et al. | Jan 2008 | A1 |
20080018802 | Yu | Jan 2008 | A1 |
20080028271 | Chen | Jan 2008 | A1 |
20080028274 | Lin | Jan 2008 | A1 |
20080065947 | Eroz et al. | Mar 2008 | A1 |
20080065953 | Sun et al. | Mar 2008 | A1 |
20080065961 | Shen et al. | Mar 2008 | A1 |
20080065972 | Eroz et al. | Mar 2008 | A1 |
20080082868 | Tran et al. | Apr 2008 | A1 |
20080082894 | Eroz et al. | Apr 2008 | A1 |
20080082895 | Eroz et al. | Apr 2008 | A1 |
20080082897 | Brandman et al. | Apr 2008 | A1 |
20080092026 | Brandman et al. | Apr 2008 | A1 |
20080109698 | Yang et al. | May 2008 | A1 |
20080109699 | Stolpman | May 2008 | A1 |
20080126908 | Lin | May 2008 | A1 |
20080148128 | Sharon et al. | Jun 2008 | A1 |
20080163025 | Djordjevic et al. | Jul 2008 | A1 |
20080163032 | Lastras-Montano | Jul 2008 | A1 |
20080165889 | Shapiro | Jul 2008 | A1 |
20080168324 | Xu et al. | Jul 2008 | A1 |
20080178065 | Khandekar et al. | Jul 2008 | A1 |
20080181291 | Zhou et al. | Jul 2008 | A1 |
20080181344 | Jiang et al. | Jul 2008 | A1 |
20080189589 | Park et al. | Aug 2008 | A1 |
20080201631 | Tillich et al. | Aug 2008 | A1 |
20080215950 | Shen et al. | Sep 2008 | A1 |
20080229168 | Murakami et al. | Sep 2008 | A1 |
20080282129 | Blanksby | Nov 2008 | A1 |
20080294960 | Sharon | Nov 2008 | A1 |
20090006906 | Jacobsen et al. | Jan 2009 | A1 |
20090013237 | Lin et al. | Jan 2009 | A1 |
20090013238 | Blanksby et al. | Jan 2009 | A1 |
20090013239 | Blanksby et al. | Jan 2009 | A1 |
20090019335 | Boyer et al. | Jan 2009 | A1 |
20090049358 | Jalloul et al. | Feb 2009 | A1 |
20090063926 | Cho et al. | Mar 2009 | A1 |
20090138780 | Berens et al. | May 2009 | A1 |
20090193313 | Kong et al. | Jul 2009 | A1 |
20090199074 | Sommer | Aug 2009 | A1 |
20090282320 | Liao et al. | Nov 2009 | A1 |
20090319868 | Sharon et al. | Dec 2009 | A1 |
20100042897 | Han et al. | Feb 2010 | A1 |
20110113294 | Chugg et al. | May 2011 | A1 |
20110154156 | Li et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2000037762 | Oct 2000 | AU |
2000061951 | Feb 2001 | AU |
2002 327253 | Mar 2003 | AU |
769030 | Jan 2004 | AU |
0 699 944 | Mar 1996 | EP |
0 699 946 | Mar 1996 | EP |
0 699 948 | Mar 1996 | EP |
0 699 950 | Mar 1996 | EP |
0 718 679 | Jun 1996 | EP |
1 031 640 | Aug 2000 | EP |
1 213 607 | Jun 2002 | EP |
1 553 705 | Jul 2005 | EP |
1 553 706 | Jul 2005 | EP |
1 612 948 | Jan 2006 | EP |
1 909 394 | Apr 2008 | EP |
WO 9607136 | Mar 1996 | WO |
WO 9613757 | May 1996 | WO |
WO 0059586 | Oct 2000 | WO |
WO 0109297 | Feb 2001 | WO |
WO 0197387 | Dec 2001 | WO |
WO 03007940 | Jan 2003 | WO |
WO 2004114526 | Dec 2004 | WO |
WO 2005062840 | Jul 2005 | WO |
WO 2005077108 | Aug 2005 | WO |
WO 2006055086 | May 2006 | WO |
WO 2006076834 | Jul 2006 | WO |
WO 2006117135 | Nov 2006 | WO |
WO 2006123543 | Nov 2006 | WO |
WO-2007001305 | Jan 2007 | WO |
WO 2007004019 | Jan 2007 | WO |
WO 2007026953 | Mar 2007 | WO |
WO 2008034286 | Mar 2008 | WO |
WO 2008034287 | Mar 2008 | WO |
WO 2008034291 | Mar 2008 | WO |
WO 2009005732 | Jan 2009 | WO |
WO 2009023962 | Feb 2009 | WO |
WO-2009156869 | Dec 2009 | WO |
WO-2009156871 | Dec 2009 | WO |
WO-2009156883 | Dec 2009 | WO |
WO-2009156935 | Dec 2009 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 12/469,790; dated Feb. 15, 2013. |
Ahmed, N., Reliability-Based Schedule for Bit-Flipping Decoding of Low-Density Parity-Check Codes, 2004, IEEE. |
Alghonaim, E. et al., New Technique for Improving Performance of LDPC Codes in the Presence of Trapping Sets, Hindawi Publishing Corporation, EURASIP Journal on Wireless Communications and Networking, vol. 2008, Article ID 362897, 12 pages. |
Alleyne, D. et al., On Stopping Criteria for Low-Density Parity-Check Codes, Communication Systems, Networks and Digital Signal Processing, 2008. CNSDSP 2008. 6th International Symposium, Jul. 2008, 633-637. |
Andriyanova, I. et al., A Family of Non-Binary TLDPC Codes: Density Evolution, Convergence and Thresholds, ISIT2007, IEEE (2007). 1216-1220. |
Casado, A. I. V. et al., Improving LDPC Decoders via Informed Dynamic Scheduling, ITW 2007, Lake Tahoe, CA, Sep. 2-6, 2007, 208-213. |
Cavus, E. et al., A Performance Improvement and Error Floor Avoidance Technique for Belief Propagation Decoding of LDPC Codes, 2005 IEEE 16th Intercational Symposium on Personal Indoor and Mobile Radio Communication, (online) 2005, XP002538103 Retrieved from the Internet: URL: http://ieeexplore.ieee.org/stampstamp.jsp?tp=&arnember=1651870&isnumber=34629 (retrieved on Jul. 21, 2009) pp. 2386-2390. |
Gallager, R. G., Low-Density Parity-Check Codes, Cambridge, MA: MIT Press 1963, 90 pages. |
Goldberger, J., Serial Schedules for Belief-Propagation: Analysis of Convergence Time, IEEE, vol. 54, No. 3 (2008), 1316-1319. |
Han, Y. et al., LDPC Decoder Strategies for Achieving Low Error Floors, Internet Article, (Online) Feb. 1, 2008, XP002538104 Retrieved from the Internet: URL: http://ieeexplore.ieee.org/stamp/stampjsp?arnember=04601062—(retrieved on Jul. 21, 2009) the whole document, p. 1. |
Kienle, F. et al., Low Complexity Stopping Criterion for LDPC Code Decoders, Pro. IEEE VTC 2005-Spring, Stockholm, Sweden, Jun. 2005, 606-609. |
Iryna, A., A Family of Non-Binary TLDPC Codes: Density Evolution, Convergence and Thresholds, 2007, IEEE, pp. 1216-1220. |
Landner, S. et al., Two Methods for Reducing the Error-Floor of LDPC Codes, arXiv:cs/0701006v1 [cs.IT] Dec. 30, 2006, 50 pages. |
Nouh, Ahmed, Reliability-Based Schedule for Bit-flipping Decoding of Low-Density Parity-Check Codes, IEEE, vol. 52, No. 12 (2004), 2038-2040. |
Richardson, T., Error Floors of LDCP Codes, Internet Article, (Online) 2003, XP002538097, Retrieved from the Internet: URL: http://www.stanford.edu/class/ee388/handouts/richardson—ef.pdf (retrieved on Jul. 21, 2009) the whole document, p. 1426-1435. |
Sharon, E. et al., Analysis of Low-Density Parity-Check Codes Based on Exit Functions, IEEE Transactions on Communications, vol. 54, No. 8, Aug. 2006. |
Shin, D. et al., A Stopping Criterion for Low-Density Parity-Check Codes, Vehicular Technology Conference, 2007, VTC2007-Spring, IEEE 65th Apr. 2007, 1529-1533. |
Ueng, Y. et al., A Fast-Convergence Decoding Method and Memory-Efficient VLSI Decoder Architecture for Irregular LDPC Codes in the IEEE 802.16e Standards, IEEE (2007) 1255-1259. |
Yeong, L., A Fast-Convergence Decoding Method and Memory-Efficient VLSI Decoder Architecture for Irregular LDPC Codes in the IEEE 802, 16e Standards, 2007, IEE, p. 1256. |
Zhou, W. et al., Early Stopping for the Iterative Decoding for Q-LDPC, The Journal of China Universities of Posts and Telecommunications, vol. 15, Issue 1, Mar. 2008, pp. 1, 29, 30, 31. |
International Search Report and Written Opinion for Application No. PCT/IB2009/052204 dated Aug. 5, 2009. |
International Preliminary Report on patentability for Application No. PCT/IB2009/052204 dated Jan. 5, 2011. |
Office Action for European Application No. 09 769 693.4 dated Mar. 7, 2012. |
Office Action for U.S. Appl. No. 12/469,790 dated Aug. 2, 2012. |
Notice of Allowance for U.S. Appl. No. 12/646,995 dated Oct. 1, 2012. |
Office Action for U.S. Appl. No. 12/469,790; dated Nov. 21, 2013. |
Kang, J., et al.; “A Two-Stage Iterative Decoding of LDPC Codes for Lowering Error Floors;” Global Telecommunications Conference; dated 2008; retrieved on Jan. 10, 2014 from <https://www.researchgate.net/publication/221285092—A—Two-Stage—Iterative—Decoding—of—LDPC—Codes—for—Lowering—Error—Floors?ev=srch—pub>. |
Pearl, J.; “Probabilistic Reasoning in Intelligent Systems;” 1998; abstract retrieved on Jan. 10, 2014 from <http://dl.acm.org/citation.cfm?id=534975>. |
Sharon, E., et al.; “EXIT functions for binary input memoryless symmetric channels;” IEEE Transactions on Communication, vol. 54; pp. 1207-1214; dated Jul. 2006; retrieved on Jan. 10, 2014 from <http://ect.bell-labs.com/who/aea/MyPapers/EXITpaper1—final.pdf>. |
“Joint probability distribution;” Wikipedia; retrieved on Aug. 24, 2009 from <http://en.wikipedia.org/wiki/Joint—distribution>. |
“Marginal distribution;” Wikipedia; retrieved on Aug. 24, 2009 from <http://en.wikipedia.org/wiki/Marginal—probability>. |
“Mutual information;” Wikipedia; retrieved on Aug. 24, 2009 from <http://en.wikipedia.org/wiki/Mutual—information. |
Office Action for Japanese Application No. 2011-515675; dated Jul. 5, 2013. |
Office Action for Japanese Application No. 2011-515675; dated Mar. 6, 2014. |
Office Action for U.S. Appl. No. 12/469,790 dated Jun. 5, 2014. |
Number | Date | Country | |
---|---|---|---|
20130132791 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61074701 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12646995 | Dec 2009 | US |
Child | 13732888 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12469790 | May 2009 | US |
Child | 12646995 | US |