This invention relates to interspinous process implants.
The spinal column is a bio-mechanical structure composed primarily of ligaments, muscles, vertebrae and intervertebral disks. The bio-mechanical functions of the spine include: (1) support of the body, which involves the transfer of the weight and the bending movements of the head, trunk and arms to the pelvis and legs, (2) complex physiological motion between these parts, and (3) protection of the spinal cord and the nerve roots.
As the present society ages, it is anticipated that there will be an increase in adverse spinal conditions which are characteristic of older people. By way of example only, with aging comes an increase in spinal stenosis (including, but not limited to, central canal and lateral stenosis), and facet arthropathy. Spinal stenosis results in a reduction foraminal area (i.e., the available space for the passage of nerves and blood vessels) which compresses the cervical nerve roots and causes radicular pain. Humpreys, S. C. et al., Flexion and traction effect on C5-C6 for aminal space, Arch. Phys. Med. Rehabil., vol. 79 at 1105 (September 1998). Another symptom of spinal stenosis is myelopathy, which results in neck pain and muscle weakness. Id. Extension and ipsilateral rotation of the neck further reduces the foraminal area and contributes to pain, nerve root compression and neural injury. Id.; Yoo, J. U. et al, Effect of cervical spine motion on the neuroforaminal dimensions of human cervical spine, Spine, vol. 17 at 1131 (Nov. 10, 1992). In contrast, neck flexion increases the foraminal area. Humpreys, S. C. et al., at 1105. Pain associated with stenosis can be relieved by medication and/or surgery. It is desirable to eliminate the need for major surgery for all individuals, and in particular, for the elderly.
Accordingly, a need exists to develop spine implants that alleviate pain caused by spinal stenosis and other such conditions caused by damage to, or degeneration of, the cervical spine. Such implants would distract, or increase the space between, the vertebrae to increase the foraminal area and reduce pressure on the nerves and blood vessels of the cervical spine.
A further need exists for development of a minimally invasive surgical implantation method for cervical spine implants that preserves the physiology of the spine.
Further, a need exists for an implant that accommodates the distinct anatomical structures of the spine, minimizes further trauma to the spine, and obviates the need for invasive methods of surgical implantation. Additionally, a need exists to address adverse spinal conditions that are exacerbated by spinal extension.
Further details of embodiments of the present invention are explained with the help of the attached drawings in which:
In an embodiment, the segments 132-135,162-165 include complementary structures 192,193 that can be pivotably connected by pins 190 disposed within holes 191 aligned to receive the pins 190 without obstruction (i.e. they are hinged together). The spacer 120 likewise includes a complementary structure 192 for pivotably joining adjacent segments 132,134,162,164. Still further, an end piece 184 and distraction guide (also referred to herein as a tissue expander) 110 include complementary structures 192 for pivotably joining adjacent segments 163,165, 133,135.
As can be seen in
The embodiment of
Referring to
Once the cannula 70 is position, the implant 100 can be urged through the cannula until the distraction guide 110 of the implant 100 is positioned adjacent to the interspinous ligament (Step 106). The implant 100 can then be urged so that the distraction guide 110 forms a space in the interspinous ligament and distracts the fibrous interspinous ligament apart for receipt of the implant 100. The implant 100 is positioned so that the spacer 120 is disposed between the adjacent spinous processes 2,4 (Step 108). Once properly positioned, a rod (also referred to herein as a shaft) 115 connected with the distraction guide 110 and extending through the implant 100 can be urged in a direction opposite a direction of insertion along the longitudinal axis 125 so that the segments 132-135 joining the spacer 120 with the distraction guide 110 pivot away from the rod 115 to form a second wing 130 that resists or limits movement of the implant 100 along the longitudinal axis 125 in a direction opposite a direction of insertion (Step 110). The cannula 70 can be at least partially withdrawn so that segments 162-165 joining the spacer 120 with the end piece 184 are no longer disposed within the cannula 70 (Step 112). With the rod 115 maintained in position, the end piece 184 can be urged in a direction of insertion so that the segments 162-165 connected between the spacer 120 and the end piece 184 pivot away from the rod 115 to form a first wing 160 that resists or limits movement of the implant 100 along the longitudinal axis 125 in the direction of insertion (Step 114). Alternatively, the rod 115 can be urged in a direction opposite a direction of insertion so that the segments 162-165 pivot away from the rod 115 to form a first wing 160 that resists or limits movement of the implant 100 along the longitudinal axis 125 in the direction of insertion. Alternatively, the segments 162-165 can be urged to pivot away from the rod 115 to form a first wing 160 through a combination of urging the rod 115 and urging the end piece 184 in opposite directions. The rod 115 is secured in place by a fastening device 118 (Step 116). For example, in an embodiment the rod 115 can include a bore through which a cotter pin or screw can be positioned to block movement of the rod 115 through the end piece 184. Alternatively a clamp can form a frictional fit with the rod 115. In still further embodiments, the end piece 184 can include a latch and beveled bead, as described below in reference to
In an alternative embodiment, the cannula 70 can be fully removed from over the implant 100 before the first and second wings 160,130 are deployed. In still other embodiments, the cannula can be inserted through the interspinous ligament so that when the implant 100 is positioned at the proximal end of the cannula 70, the cannula 70 need only be retracted over the implant 100 for the implant 100 to be reconfigured to the second, deployed configuration. In light of these teachings, one of ordinary skill in the art will appreciate the myriad different procedural modifications that can be employed to position the implant 100 as desired between adjacent spinous processes 2,4 of the targeted motion segment.
As above, the segments 232-235 include complementary structures 292,293 that can be pivotably connected by pins 290 disposed within holes 291 aligned to receive the pins 290 without obstruction (i.e. they are hinged together). The spacer 220 likewise includes a complementary structure 292 for pivotably joining adjacent segments 232,234. The segments 232-235 are shaped to allow a desired amount of pivoting. For example, the segments 232,234 pivotably connected with the spacer 220 have rounded shapes that together curve generally away from the pins 290 joining the segments 232-235 so that during pivoting, the segments 232-235 have a desired range of motion without obstruction.
The embodiment of
As can be seen more clearly in
Embodiments of implants 200 as shown in
In an alternative embodiment shown in
The first wing 260 can optionally include alignment holes (not shown) on one or more surfaces for allowing an insertion tool to grip the implant 200 (for example as described in U.S. Pat. No. 6,712,819 issued to Zucherman et al).
It should be noted that the embodiment of
Once the second wing 230 is deployed, the first wing 260 and the second wing 230 restrict or limit movement of the implant 200 along the longitudinal axis 225, preventing the implant 200 from undesirably, and unintentionally being repositioned. The interspinous ligament can help resist anterior-posterior movement of the implant 200 so that the implant 200 remains positioned as desired between the adjacent spinous processes 2,4.
The rod 215 can further include a neck 218 disposed along the rod 215. As shown in
Referring to
Once the cannula 70 is position, the implant 200 can be urged through the cannula 70 until the distraction guide 210 of the implant 200 is positioned adjacent to the interspinous ligament (Step 206a). The implant 200 can then be urged so that the distraction guide 110 forms a space in the interspinous ligament and distracts the fibrous interspinous ligament apart for receipt of the implant 200. The implant 200 is positioned so that the spacer 220 is disposed between the adjacent spinous processes 2,4 (Step 208a). Once properly positioned, a rod 215 connected with the distraction guide 210 and extending through the implant 200 can be urged in a direction opposite a direction of insertion along the longitudinal axis 225 so that the segments 232-235 joining the spacer 220 with the distraction guide 210 pivot away from the rod 215 to form a second wing 230 that resists or limits movement of the implant 200 along the longitudinal axis 225 in a direction opposite a direction of insertion (Step 210a). The cannula 70 can be withdrawn so that the spacer 220 and rod 215 are no longer disposed within the cannula 70 (Step 212a). The first wing 260 can be inserted into the incision, and the rod 215 can be threaded through a latch 219 of the first wing 260 (Step 214a). Once a keep, such as a beveled bead, passes through the latch 219 of the first wing 260, thereby resisting movement of the rod 215 in a direction of implant insertion, the rod 215 can be separated to remove excess material to prevent irritation of associated tissues and structures surrounding the surgical site (Step 216a). To ease separation, the rod 215 can optionally include a neck or other weakened portion, for example as described above. The rod 215 can be snapped off or easily cut at the neck or other weakened portion. The cannula 70 can be withdrawn and the incision closed (Step 218a).
Referring to
As above, the segments 332-335,362-365 include complementary structures 392,393 that can be pivotably connected by pins 390 disposed within holes 391 aligned to receive the pins 390 without obstruction (i.e. they are hinged together). The first distraction piece 323 and second distraction piece 324 likewise includes a complementary structure for pivotably joining adjacent segments 332,334,362,364. Still further, an end piece 384 and a distraction guide 310 include complementary structures for pivotably joining adjacent segments 333,335, 363,365. As can be seen, a rod 315 connected with the distraction guide 330 passes through a bore in the spacer 320 and passes through a latch 319 extending from the end piece 384. The rod 315 as shown includes a knob 316 for gripping the rod 315 to ease manipulation of the rod 315. In other embodiments a knob 316 need not be employed. As show, the latch 319 is two or more segmented members biased against the rod 315. The segments 332-335,362-365 are shaped to allow a desired amount of pivoting. For example, the segments 332,334,362,364 pivotably connected with the spacer 320 have rounded shapes that together that curve substantially away from the pins 390 joining the segments 332-335,362-365 so that during pivoting, the segments 332-335,362-365 have a desired range of motion without obstruction.
The embodiment of
The spacer 320 has a height that can be expanded after the implant 300 has been positioned between the targeted adjacent spinous processes. In an embodiment, the spacer 320 can be expanded to a height to achieve a desired minimum distance between adjacent spinous processes during extension motion (referred to hereinafter as a target height). In an undeployed configuration (see
The height of the spacer can be expanded during actuation of the rod. Height expansion can be achieved by translating a portion of the motion along the longitudinal axis to a component of motion perpendicular to the longitudinal axis. In an embodiment, motion can be translated using ramped surfaces. Referring to
Referring to
As above, referring to
Once the cannula 70 is positioned, the implant 300 can be urged through the cannula 70 until the distraction guide 310 of the implant 300 is positioned adjacent to the interspinous ligament (Step 306). The implant 300 can then be urged so that the distraction guide 310 forms a space in the interspinous ligament and distracts the fibrous interspinous ligament apart for receipt of the implant 300. The implant 300 is positioned so that the spacer 320 is disposed between the adjacent spinous processes 2,4 (Step 308). Once properly positioned, a rod 315 connected with the distraction guide 310 and extending through the implant 300 can be urged in a direction opposite a direction of insertion along the longitudinal axis 325 so that the segments joining a second distraction piece 324 of the spacer 320 with the distraction guide 310 pivot away from the rod 315 to form a second wing 330 that resists or limits movement of the implant 300 along the longitudinal axis 325 in a direction opposite a direction of insertion (Step 310). The cannula 70 can be at least partially withdrawn so that the upper seat 321 and lower seat 322 are no longer disposed within the cannula 70 (Step 312). The rod 315 can then be further urged in a direction opposite a direction of insertion so that the upper seat 321 and lower seat 322 are urged apart, expanding the height of the spacer 320 to a target height (step 314). The cannula 70 can further withdrawn so that segments joining a first distraction piece 323 of the spacer 320 with the end piece 384 are no longer disposed within the cannula 70 (Step 316). The rod 315 can then be still further urged in a direction opposite a direction of insertion so that the segments pivot away from the rod 315 to form a first wing 360 that resists or limits movement of the implant 300 along the longitudinal axis 325 in the direction of insertion (Step 318). The rod 315 is secured in place when a bead (not shown) formed along the rod 315 is urged through a latch 319, which then closes over the bead to resist movement of the rod 315 in the direction of insertion (Step 318). Once fixed in position, excess rod 115 can be separated to prevent irritation of associated tissues and structures surrounding the surgical site (Step 320). The cannula can be withdrawn and the incision closed (Step 322).
In an alternative embodiment, the cannula 70 can be fully removed from over the implant 300 before the first and second wings 360,330 and the spacer seats 321,322 are deployed.
In some embodiments, the implant can be fabricated from medical grade metals such as titanium, stainless steel, cobalt chrome, and alloys thereof, or other suitable implant material having similar high strength and biocompatible properties. Additionally, the implant can be at least partially fabricated from a shape memory metal, for example Nitinol, which is a combination of titanium and nickel. Such materials are typically radiopaque, and appear during x-ray imaging, and other types of imaging. Implants in accordance with the present invention, and/or portions thereof can also be fabricated from somewhat flexible and/or deflectable material. In these embodiments, the implant and/or portions thereof can be fabricated in whole or in part from medical grade biocompatible polymers, copolymers, blends, and composites of polymers. A copolymer is a polymer derived from more than one species of monomer. A polymer composite is a heterogeneous combination of two or more materials, wherein the constituents are not miscible, and therefore exhibit an interface between one another. A polymer blend is a macroscopically homogeneous mixture of two or more different species of polymer. Many polymers, copolymers, blends, and composites of polymers are radiolucent and do not appear during x-ray or other types of imaging. Implants comprising such materials can provide a physician with a less obstructed view of the spine under imaging, than with an implant comprising radiopaque materials entirely. However, the implant need not comprise any radiolucent materials.
One group of biocompatible polymers are the polyaryl ester ketones which has several members including polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). PEEK is proven as a durable material for implants, and meets the criterion of biocompatibility. Medical grade PEEK is available from Victrex Corporation of Lancashire, Great Britain under the product name PEEK-OPTIMA. Medical grade PEKK is available from Oxford Performance Materials under the name OXPEKK, and also from CoorsTek under the name BioPEKK. These medical grade materials are also available as reinforced polymer resins, such reinforced resins displaying even greater material strength. In an embodiment, the implant can be fabricated from PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex. Other sources of this material include Gharda located in Panoli, India. PEEK 450G has the following approximate properties:
PEEK 450G has appropriate physical and mechanical properties and is suitable for carrying and spreading a physical load between the adjacent spinous processes. The implant and/or portions thereof can be formed by extrusion, injection, compression molding and/or machining techniques.
It should be noted that the material selected can also be filled. Fillers can be added to a polymer, copolymer, polymer blend, or polymer composite to reinforce a polymeric material. Fillers are added to modify properties such as mechanical, optical, and thermal properties. For example, carbon fibers can be added to reinforce polymers mechanically to enhance strength for certain uses, such as for load bearing devices. In some embodiments, other grades of PEEK are available and contemplated for use in implants in accordance with the present invention, such as 30% glass-filled or 30% carbon-filled grades, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass-filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to unfilled PEEK. The resulting product is known to be ideal for improved strength, stiffness, or stability. Carbon-filled PEEK is known to have enhanced compressive strength and stiffness, and a lower expansion rate relative to unfilled PEEK. Carbon-filled PEEK also offers wear resistance and load carrying capability.
As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable, have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. As mentioned, the implant can be comprised of polyetherketoneketone (PEKK). Other material that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), polyetheretherketoneketone (PEEKK), and generally a polyaryletheretherketone. Further, other polyketones can be used as well as other thermoplastics. Reference to appropriate polymers that can be used in the implant can be made to the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials;” and, PCT Publication WO 02/00270 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials.” Other materials such as Bionate®, polycarbonate urethane, available from the Polymer Technology Group, Berkeley, Calif., may also be appropriate because of the good oxidative stability, biocompatibility, mechanical strength and abrasion resistance. Other thermoplastic materials and other high molecular weight polymers can be used.
The foregoing description of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to practitioners skilled in this art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This U.S. Patent Application incorporates by reference all of the following co-pending applications and issued patents: U.S. Provisional Patent Application No. 60/672,402 entitled “Interspinous Process Implant Having Deployable Wings and Method of Implantation,” by Zucherman et al., filed Apr. 18, 2005 (Attorney Docket No. SFMT-01096US0); U.S. patent application Ser. No. 10/850,267 entitled “Distractible Interspinous Process Implant and Method of Implantation,” by Zucherman et al., filed May 20, 2004 (Attorney Docket No. SFMT-01087US2); U.S. patent application Ser. No. 11/095,680 entitled “Interspinous Process Implant Including a Binder and Method of Implantation,” by Zucherman et al., filed Mar. 31, 2005 (Attorney Docket No. SFMT-01109US1); U.S. patent application Ser. No. 11/389,002 entitled “Interspinous Process Implant Having Deployable Wings and Method of Implantation,” by Zucherman et al., filed Mar. 24, 2006 (Attorney Docket No. SFMT-01096US1); U.S. Patent Application No. 60/853,963 entitled “System and Methods for In Situ Assembly of an Interspinous Process Distraction Implant,” by Mitchell et al., filed Oct. 24, 2006 (Attorney Docket No. SFMT-01152US0); U.S. Pat. No. 6,419,676, entitled “Spine Distraction Implant and Method,” issued Jul. 16, 2002 to Zucherman, et al.; U.S. Pat. No. 6,451,019, entitled “Supplemental Spine Fixation Device and Method,” issued Sep. 17, 2002 to Zucherman, et al.; U.S. Pat. No. 6,582,433, entitled “Spine Fixation Device and Method,” issued Jun. 24, 2003 to Yun; U.S. Pat. No. 6,652,527, entitled “Supplemental Spine Fixation Device and Method,” issued Nov. 25, 2003 to Zucherman, et al; U.S. Pat. No. 6,695,842, entitled “Interspinous Process Distraction System and Method with Positionable Wing and Method,” issued Feb. 24, 2004 to Zucherman, et al; U.S. Pat. No. 6,699,246, entitled “Spine Distraction Implant,” issued Mar. 2, 2004 to Zucherman, et al; and U.S. Pat. No. 6,712,819, entitled “Mating Insertion Instruments for Spinal Implants and Methods of Use,” issued Mar. 30, 2004 to Zucherman, et al.