Interspinous process implant having a thread-shaped wing and method of implantation

Information

  • Patent Grant
  • 8591546
  • Patent Number
    8,591,546
  • Date Filed
    Wednesday, December 7, 2011
    12 years ago
  • Date Issued
    Tuesday, November 26, 2013
    10 years ago
Abstract
A spinal implant adapted to be inserted into an interspinous space between adjacent spinous processes includes a proximal section, a central section, and a distal section disposed sequentially along a longitudinal axis. The distal section has feature(s) that allow the implant to be inserted laterally into the interspinous space, such as an approximately helical groove and/or a thread-like structure. The distal tip of the implant tapers inwardly, and may be rounded. The proximal section may include an outwardly extending wing or flange. The implant may include a main body that includes the wing or flange and a spacer slidably mated to the main body through the wing or flange.
Description
TECHNICAL FIELD

This invention relates to interspinous process implants.


BACKGROUND OF THE INVENTION

The spinal column is a bio-mechanical structure composed primarily of ligaments, muscles, vertebrae and intervertebral disks. The bio-mechanical functions of the spine include: (1) support of the body, which involves the transfer of the weight and the bending movements of the head, trunk and arms to the pelvis and legs, (2) complex physiological motion between these parts, and (3) protection of the spinal cord and the nerve roots.


As the present society ages, it is anticipated that there will be an increase in adverse spinal conditions which are characteristic of older people. By way of example only, with aging comes an increase in spinal stenosis (including, but not limited to, central canal and lateral stenosis), and facet arthropathy. Spinal stenosis results in a reduction foraminal area (i.e., the available space for the passage of nerves and blood vessels) which compresses the cervical nerve roots and causes radicular pain. Humpreys, S. C. et al., Flexion and traction effect on C5-C6 foraminal space, Arch. Phys. Med. Rehabil., vol. 79 at 1105 (September 1998). Another symptom of spinal stenosis is myelopathy, which results in neck pain and muscle weakness. Id. Extension and ipsilateral rotation of the neck further reduces the foraminal area and contributes to pain, nerve root compression and neural injury. Id.; Yoo, J. U. et al., Effect of cervical spine motion on the neuroforaminal dimensions of human cervical spine, Spine, vol. 17 at 1131 (Nov. 10, 1992). In contrast, neck flexion increases the foraminal area. Humpreys, S. C. et al., at 1105.


Pain associated with stenosis can be relieved by medication and/or surgery. It is desirable to eliminate the need for major surgery for all individuals, and in particular, for the elderly.


Accordingly, a need exists to develop spine implants that alleviate pain caused by spinal stenosis and other such conditions caused by damage to, or degeneration of, the spine. Such implants would distract, or increase the space between, the vertebrae to increase the foraminal area and reduce pressure on the nerves and blood vessels of the spine.


A further need exists for development of a minimally invasive surgical implantation method for spine implants that preserves the physiology of the spine.


Further, a need exists for an implant that accommodates the distinct anatomical structures of the spine, minimizes further trauma to the spine, and obviates the need for invasive methods of surgical implantation. Additionally, a need exists to address adverse spinal conditions that are exacerbated by spinal extension and/or flexion.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of an implant including a spacer having a tear-drop shaped cross-section, a distraction guide, a first wing, and a second wing connectable with the distraction guide.



FIG. 1B is a perspective view of an implant including a rotatable spacer having an elliptical cross-section, a distraction guide, a first wing, and a second wing connectable with the distraction guide.



FIG. 2A is a perspective view of a frame of an implant in accordance with an embodiment of the present invention.



FIG. 2B is a perspective view of a spacer for use with the frame of FIG. 2A.



FIG. 2C is a perspective view of the spacer of FIG. 2B seated within the frame of FIG. 2A.



FIG. 3A is a partial cross-sectional posterior view of the frame of the implant of FIGS. 2A-2C positioned adjacent to an interspinous ligament disposed between adjacent spinous processes.



FIG. 3B partial cross-sectional posterior view of the frame of the implant of FIGS. 2A-2C rotated so that the interspinous ligament is disposed between a portion of the helical shaped second wing and the first wing along a longitudinal axis of the implant.



FIG. 3C partial cross-sectional posterior view of the frame of the implant of FIGS. 2A-2C rotated so that the interspinous ligament is disposed between the entire helical shaped second wing and the first wing along the longitudinal axis.



FIG. 3D partial cross-sectional posterior view of the frame of the implant of FIGS. 2A-2C wherein a spacer is partially arranged over a central body of the frame so that a portion of the spacer partially distracts the interspinous ligament.



FIG. 3E partial cross-sectional posterior view of the frame of the implant of FIGS. 2A-2C wherein the spacer is seated over the central body of the frame so that a portion of the spacer partially distracts the interspinous ligament.



FIG. 4A is an end view of the implant of FIG. 3E positioned between adjacent spinous processes.



FIG. 4B is an front view of the implant of FIG. 3E positioned between adjacent spinous processes.



FIG. 5A is a perspective view of a frame from an alternative embodiment of an implant in accordance the present invention.



FIG. 5B is a perspective view of a spacer for use with the frame of FIG. 5A.



FIG. 5C is a perspective view of the spacer of FIG. 5B seated within the frame of FIG. 5A.



FIG. 6 is a side view of the implant of FIGS. 5A-5C positioned between adjacent spinous processes.



FIG. 7A is a perspective view of a frame from a still further embodiment of an implant in accordance with the present invention.



FIG. 7B is a side view of the frame of FIG. 7A positioned between adjacent spinous processes.



FIG. 7C is a side view of the frame of FIG. 7A positioned between adjacent spinous processes and retracted to collapse the second wing.



FIG. 8 is a perspective view of a frame from a still further embodiment of an implant in accordance with the present invention.



FIG. 9 illustrates an embodiment of a method for implanting an interspinous implant between adjacent spinous processes of the cervical region in accordance with the present invention.



FIG. 10 is a flowchart of a method for implanting an interspinous implant between adjacent spinous processes of the lumbar region in accordance with the present invention.





DETAILED DESCRIPTION

Interspinous Implants



FIG. 1A is a perspective view of an implant as described in U.S. patent application Ser. No. 10/850,267, filed May 20, 2004, incorporated herein by reference. The implant 100 comprises a first wing 130, a spacer 120, and a lead-in tissue expander (also referred to herein as a distraction guide) 110. The distraction guide 110 in this particular embodiment is wedge-shaped, i.e., the implant has an expanding cross-section from a proximal end of the implant 100 to a region 150 where the guide 110 joins with the spacer 120 (referencing for the figures is based on the point of insertion of the implant between spinous processes). As such, the distraction guide 110 functions to initiate distraction of the soft tissue and the spinous processes when the implant 100 is surgically inserted between the spinous processes. It is to be understood that the distraction guide 110 can be pointed and the like, in order to facilitate insertion of the implant 100 between the spinous processes of adjacent cervical vertebrae. It is advantageous that the insertion technique disturb as little of the bone and surrounding tissue or ligaments as possible in order to reduce trauma to the site and promote early healing, and prevent destabilization of the normal anatomy. For embodiments such as those of FIGS. 1A and 1B, there is no requirement to remove any of the bone of the spinous processes and no requirement to sever, or remove from the body, ligaments and tissues immediately associated with the spinous processes. For example, it is unnecessary to sever the supraspinal ligament of the lower vertebrae or the ligamentum nuchae (which corresponds to the supraspinal ligament) which partially cushions the spinous processes of the upper cervical vertebrae.


As can be seen, the spacer 120 can be teardrop-shaped in cross-section perpendicular to a longitudinal axis 125 of the implant 100. In this way, the shape of the spacer 120 can roughly conform to a wedge-shaped space, or a portion of the space, between adjacent spinous processes within which the implant 100 is to be positioned. As shown in FIG. 1A, the spacer 120 (and the first wing 108) is shaped to accommodate the anatomical form or contour of spinous processes (and/or laminae) of the C6 and C7 vertebrae for placement between such spinous processes (i.e., the C6-C7 motion segment). The same shape or variations of this shape can be used to accommodate other motion segments, for example in the thoracic or lumbar regions. In other embodiments the spacer 120 can have alternative shapes such as circular, wedge, oval, ovoid, football, and rectangular with rounded corners, and other shapes. The shape of the spacer 120 can be selected for a particular patient so that the physician can position the implant 100 as close as possible to the anterior portion of the surface of the spinous process. The shape selected for the spacer 120 can affect the contact surface area of the implant 100 and the spinous processes that are to be subject to distraction. Increasing the contact surface area between the implant 100 and the spinous processes can distribute a load force between the spinous frame and the implant 100.


The first wing 130 is likewise teardrop-shaped in cross-section perpendicular to a longitudinal axis 125 of the spacer 120 and distraction guide 110. The dimensions of the first wing 130 can be larger than that of the spacer 120, particularly along the axis of the spine, and can limit or block lateral displacement of the implant 100 in the direction of insertion along the longitudinal axis 125. As with the spacer 120, the first wing 130 can have other cross-sectional shapes, such as elliptical, wedge, circular, oval, ovoid, football, and rectangular with rounded corners and other shapes.


The implant 100 of FIG. 1A further includes an adjustable wing 160 (also referred to herein as a second wing) separate from the distraction guide 110, the spacer 120 and the first wing 130. The second wing 160 is connectable with the distraction guide 110 (and/or the spacer 120) once the implant 100 is positioned between adjacent spinous processes. The second wing 160, similar to the first wing 130, can limit or block lateral displacement of the implant 100, however displacement is limited or blocked in the direction opposite insertion. When both the first wing 130 and the second wing 160 are connected with the implant 100 and the implant 100 is positioned between adjacent spinous processes, a portion of the spinous processes can be sandwiched between the first wing 130 and the second wing 160, limiting displacement along the longitudinal axis 125. As can be seen, the second wing 160 can be teardrop-shaped in cross-section. A lip 180 defining a space 170 through the second wing 160 allows the second wing 160 to pass over the distraction guide 110 to meet and connect with the distraction guide 110 and/or the spacer 120. The second wing 160 is then secured to the distraction guide 110 and/or the spacer 120. The second wing 160, can be designed to be interference-fit onto the spacer 120 or a portion of the distraction guide 110 adjacent to the spacer 120. Where the second wing 160 is interference-fit, there is no additional attachment device to fasten the second wing 160 relative to the remainder of the implant 100.


Alternatively, various fasteners can be used to secure the second wing 160 relative to the remainder of the implant 100. For example, FIG. 1A illustrates an embodiment of an implant 100 including a teardrop-shaped second wing 160 having a tongue 158 at the posterior end of the second wing 160. A bore 155 is disposed through the tongue 158, and is aligned with a corresponding bore 156 on the spacer 120 when the second wing 160 is brought into position by surgical insertion relative to the rest of the implant 100. A threaded screw 154 can be inserted through the aligned bores 155,156 in a posterior-anterior direction to secure the second wing 160 to the spacer 120. The direction of insertion from a posterior to an anterior direction has the screw 154 engaging the bores 155,156 and the rest of the implant 100 along a direction that is generally perpendicular to the longitudinal axis 125. This orientation is most convenient when the physician is required to use a screw 154 to secure the second wing 160 to the rest of the implant 100. The second wing 160 can further be secured to the spacer 120 by some other mechanism, for example such as a flexible hinge (not shown) with a protrusion that engages an indentation of one of the distraction guide 110 and the spacer 120. Alternatively, the second wing 160 can be secured to one of the distraction guide 110 and the spacer 120 by still some other mechanism.



FIG. 1B is a perspective view of an implant as described in U.S. Pat. No. 6,695,842 to Zucherman, et al., incorporated herein by reference. The implant 200 has a main body that includes a spacer 220, a first wing 230, a lead-in tissue expander 210 (also referred to herein as a distraction guide) and an alignment track 203. The main body of the implant 200 is inserted between adjacent spinous processes and remains in place (where desired) without attachment to the bone or ligaments.


The distraction guide 210 includes a tip from which the distraction guide 210 expands, the tip having a diameter sufficiently small such that the tip can pierce an opening in an interspinous ligament and/or can be inserted into a small initial dilated opening. The diameter and/or cross-sectional area of the distraction guide 210 gradually increases until it is substantially similar to the diameter of the spacer 220. The tapered front end eases the ability of a physician to urge the implant 200 between adjacent spinous processes. When urging the main body of the implant 200 between adjacent spinous processes, the front end of the distraction guide 210 distracts the adjacent spinous processes and dilates the interspinous ligament so that a space between the adjacent spinous processes is approximately the diameter of the spacer 220.


As shown in FIG. 1B, the spacer 220 is elliptically shaped in cross-section, and can swivel so that the spacer 220 can self-align relative to the uneven surfaces of the spinous processes. Self-alignment can ensure that compressive loads are distributed across the surface of the bone. As contemplated in Zucherman '842, the spacer 220 can have, for example, a diameter of six millimeters, eight millimeters, ten millimeters, twelve millimeters and fourteen millimeters. These diameters refer to the height by which the spacer 220 distracts and maintains apart the spinous process. For an elliptically shaped spacer 220, the selected height (i.e., diameter) is the minor dimension measurement across the ellipse. The major dimension is transverse to the alignment of the spinous process, one above the other.


The first wing 230 has a lower portion 231 and an upper portion 232. The upper portion 232 is shaped to accommodate the anatomical form or contour of spinous processes (and/or laminae) of the L4 (for an L4-L5 placement) or L5 (for an L5-S1 placement) vertebra. The same shape or variations of this shape can be used to accommodate other motion segments, such as motion segments in the cervical and thoracic regions. The lower portion 231 can also be rounded to accommodate the spinous processes. The lower portion 231 and upper portion 232 of the first wing 230 act as a stop mechanism when the implant 200 is inserted between adjacent spinous processes. The implant 200 cannot be inserted beyond the surfaces of the first wing 230. Additionally, once the implant 200 is inserted, the first wing 230 can prevent some side-to-side, or posterior-to-anterior movement of the implant 200.


As with the implant 100 of FIG. 1A, the implant 200 of FIG. 1B further includes a second wing 260. Similar to the first wing 230, the second wing 260 includes a lower portion 261 and an upper portion 262 sized and/or shaped to accommodate the anatomical form or contour of the spinous processes and/or lamina. The second wing 260 can be secured to the main body of the implant 200 with a fastener 254. The second wing 260 also has an alignment tab 268. When the second wing 260 is initially placed on the main body of the implant 200, the alignment tab 268 engages the alignment track 203. The alignment tab 268 slides within the alignment track 203 and helps to maintain the adjustable wing 260 substantially parallel with the first wing 230. When the main body of the implant 200 is inserted into the patient and the second wing 260 has been attached, displacement along the longitudinal axis 225 in either the direction of insertion or the direction opposite insertion can be limited or blocked. Further, the second wing 260 also can prevent some side-to-side, or posterior-to-anterior movement.


For both the implant 100 of FIG. 1A and the implant 200 of FIG. 1B, where a second wing 160,260 is connected with the implant 100,200 after the implant 100,200 is positioned between the spinous processes, a procedure for positioning such an implant 100,200 and subsequently connecting the second wing 160,260 with the implant 100,200 can require a bilateral approach wherein a physician must access both sides of the interspinous ligament, a first side to pierce and/or distract the interspinous ligament and position the implant 100,200 so that the movement in the direction of insertion is satisfactorily limited by the first wing 130,230, and a second side to attach the second wing 160,260 such that movement in the direction opposite insertion is satisfactorily limited by the second wing 160,260.


Implants Having a Lead-In Screw


Referring to FIGS. 2A through 3C, implants 300 and methods for positioning such implants in accordance with the present invention can include, in an embodiment, a frame 302 having a central body 304 extending along a longitudinal axis 325 of the implant 300. The central body 304 can include a distraction guide 306 at a proximal end of the central body 304. The distraction guide 306 can have a tapered shape so that the distraction guide 306 can pierce and/or distract an interspinous ligament associated with the targeted motion segment. A first wing 330 extends from a distal end of the central body 304 and acts to limit or block movement of the implant 300 along the longitudinal axis 325 in the direction of insertion.


A substantially thread-shaped lead-in screw (also referred to herein as a second wing) 360 extends from the periphery of the central body 304 distally located relative to the distraction guide 306. For example, the second wing can be helically shaped, wherein a helical shape is generally a three-dimensional curve that lies on a cylinder or a cone, so that its angle to a plane perpendicular to the axis is constant. Helical shapes as described herein need not lie along a constant angle, but rather can lie along an angle that varies. A helical shape need only include a curve that has a gap 361 (also referred to herein as a groove) between overlapping surfaces such that structures related to the adjacent spinous processes and the spinous processes can pass within the groove 361. It is to be understood that a lead-in screw shape other than helical is within the spirit and scope of the invention. For example, a shape with a constant diameter thread, or with different or constant thread pitches can be used. Generally and preferably the second wing 360 can have an outer diameter that steadily increases from near the proximal end of the central body 304 distally toward the first wing 330. The second wing 360 terminates so that a spacer 320 (FIG. 2B) can be arranged between the second wing 360 and the first wing 330. The helical shape of the second wing 360 can facilitate implantation between adjacent spinous processes 2,4 (shown in FIGS. 3A-3E) from one or more incisions formed on one side of an interspinous ligament 6 extending between the adjacent spinous processes 2,4.


Implantation can be accomplished in such embodiments as described above by initially piercing or distracting the interspinous ligament 6 with the distraction guide 306, and subsequently rotating the central body 304. One or both of the interspinous ligament 6 and the adjacent spinous processes 2,4 slip within the groove 361 of the helically shaped second wing 360 as the central body 304 is rotated and the central body 304 is drawn or urged along the longitudinal axis 325 in the direction of insertion. The interspinous ligament 6 and/or associated spinous processes 2,4 travels along the groove 361 and therefore along the central body 304, causing the second wing 360 to be positioned, when the implant 300 is seated, at an opposite side of the interspinous ligament 6 from the first wing 330 such that the interspinous ligament 6 is disposed between the first wing 330 and the second wing 360 along the longitudinal axis 325. Arranging the interspinous ligament 6, and/or the associated spinous processes 2,4 between the first wing 330 and the second wing 360 limits or blocks movement along the longitudinal axis 325.


In some embodiments, the distraction guide 306 can have a generally conical shape, rather than a wedge-shape as described above in reference to FIGS. 1A and 1B. Where the distraction guide 306 includes a wedge-shape, rotation of the central body 304 can cause the distraction guide 306 to distract the adjacent spinous processes 2,4 and/or interspinous ligament 6 a distance according to the major dimension of the distraction guide 306.


Referring to FIG. 2A, as with the distraction guide 306, the first wing 330 has a rounded shape, having substantially the same minor and major dimension. The first wing 330 is shaped so that the first wing 330 can rotate along with the central body 304 while minifying interference from surrounding structures. Further, the rounded shape of the first wing 330 can accommodate slots as described below, while providing a surface to contact the adjacent spinous processes 2,4 during implantation, thereby limiting movement along the longitudinal axis 325 in the direction of insertion. However, in other embodiments, the first wing 330 need not have a rounded shape.


The first wing 330 can include one or more slots to receive a spacer 320 so that the spacer 320 can be arranged over the central body 304 between the second wing 360 and the first wing 330. As shown, the first wing 330 includes two slots 332,334 having a substantially arced shape, and arranged in opposition to one another. The maximum distance between the peripheries of the slots 332,334 can substantially define a minor (or alternatively a major) dimension of the spacer 320. The slots 332,334 preferably have inner surfaces that transition to the outer surface of the central body 304, so that when a spacer 320 is urged through the slots 332,334, the spacer 320 abuts the central body 304, thereby allowing a portion of a load to be transferred to the central body 304. In other embodiments, one or more slots can be disposed through the first wing 330 and can be shaped as desired, such that the one or more slots having the same or different geometries.



FIG. 2B is a perspective view of the spacer 320 having a geometry adapted to be received over the frame 302 described above. The spacer 320 includes a top portion 322 and a bottom portion 324. (It should be noted that some components of the implant are referred to herein as “top” and “bottom” components; however, positional modifiers are attached merely to distinguish between similar components and are not meant to limit use of the invention.) The top portion 322 and the bottom portion 324 have outer surfaces that support a respective adjacent spinous process 2,4 and inner surfaces that abut the central body 304. As shown, a portion of the inner surfaces of the top portion 322 and the bottom portion 324 are grooved so as to approximately conform with a shape of the central body 304, thereby spreading a load across the outer surface of the central body 304. The outer surfaces are arced, and generally shaped to resemble the outer periphery of the slots 332,334 of the first wing 330. In other embodiments, for example where the central body is trapezoidal, or otherwise shaped, the top portion 322, bottom portion 324, and corresponding slots 332,334 can be similarly shaped to accommodate the central body 304. Alternatively, the central body 304 can have an irregular or non-symmetrical shape to prevent incorrect mating of the spacer 320 with the frame 302. One of ordinary skill in the art will appreciate the myriad variations in which the structures can be shaped.


As can be seen, the top portion 322 and the bottom portion 324 include respective lead-in tissue expanders 321,323 (also referred to herein as distraction guides). The distraction guides 321,323 for the top portion 322 and the bottom portion 324 can taper at the proximal end of the spacer 320, thereby allowing the distraction guide 306 to distract one or both of the adjacent spinous processes 2,4 and/or interspinous ligament 6.


As can be seen, the top portion 322 and the bottom portion 324, taken together in cross-section perpendicular to a longitudinal axis 325, can have a split teardrop shape, similar to a cross-section of the spacer 120 of FIG. 1A. In this way, the shape of the spacer 320 can roughly conform to a wedge-shaped space, or a portion of the space, between adjacent spinous processes within which the implant 300 is to be positioned. The same shape or variations of this shape can be used to accommodate different motion segments and/or different patients, as described above. In other embodiments the spacer 320 can have alternative shapes such as circular, elliptical, wedge, oval, ovoid, football, and rectangular with rounded corners, and other shapes. The shape of the spacer 320 can be selected for a particular patient so that the physician can position the implant 300 as close as possible to the anterior portion of the surface of the spinous process. The shape selected for the spacer 320 can affect the contact surface area of the implant 300 and the spinous processes that are to be subject to distraction. Increasing the contact surface area between the implant 300 and the spinous processes can distribute a load force between the spinous frame and the implant 300.


The top portion 322 and the bottom portion 324 extend from a base 326 and are fixed in relative position by the base 326. As can be seen, the bottom portion 324 extends farther than the top portion 322. As will be described in further detail below, the top portion 322 is truncated in length along the longitudinal axis 325 relative to the bottom portion 324 to avoid contacting the second wing 360 which in the embodiment shown in FIG. 2A spirals to a termination point at the upper surface of the central body 304. An additional advantage with the truncated top portion 322 is that the spinous processes are distracted more gradually, first with the bottom portion 324 and then with the top portion 322 as the spacer 320 is inserted into the frame 302. The base 326 can have a length along the longitudinal axis 325 as desired, and preferably having a length sufficient to support the top portion 322 and the bottom portion 324 in an at least semi-rigid position relative to one another. The base 326 can include a cavity 329 for receiving one or both of an insertion tool and a fastener (not shown). The cavity 329 can correspond to a threaded cavity 309 disposed in the central body 304 so that, for example, the frame 302 and the spacer 320 can be fixedly attached, with by way of example only a screw, once the spacer 320 is seated.



FIG. 2C is a perspective view of the implant 300 wherein the spacer 320 is seated within the frame 302 and arranged over the central body 304. As can be seen, the bottom portion 324 of the spacer 320 extends further than the top portion 322, and is unobstructed by the second wing 360, which spirals partially above the bottom portion 324. The first wing 330 and the second wing 360 have major dimensions approximately along the axis of the spine that are larger than the major dimension of the spacer 320, thereby blocking or limiting movement of the implant 300 along the longitudinal axis 325.



FIGS. 3A through 3E are partial cross-sectional posterior views illustrating the implant 300 being positioned between adjacent spinous processes. FIG. 3A illustrates the distraction guide of the frame 302 positioned adjacent to the interspinous ligament 6 of the targeted motion segment. The frame 302 can be urged against the interspinous ligament 6 to pierce and/or distract the interspinous ligament 6. The frame 302 can further be urged into the interspinous ligament 6 along the longitudinal axis 325 until the second wing 360 contacts the interspinous ligament 6. Referring to FIG. 3B, the frame 302 can then be rotated and urged toward the interspinous ligament 6 so that the second wing 360 passes through the interspinous ligament 6, which is thereby positioned between a portion of the second wing 360 and the first wing 330 along the longitudinal axis 325. The interspinous ligament 6 and the adjacent spinous processes 2,4 are substantially disposed within a groove 361 between the surfaces of the second wing 360 that overlap along the longitudinal axis 325. Referring to FIG. 3C, the frame 302 can be further rotated and urged into the interspinous ligament 6 until the entire second wing 360 is substantially arranged so that the interspinous ligament 6 is disposed between the first wing 330 and the second wing 360. The frame 302 can be further rotated so that the slots 332,334 are arranged to receive the spacer 320 such that a load applied to the spacer 320 is sufficiently distributed across the surface of the spacer 320 (i.e., the spacer 320 approximately conforms to a space between the contact surfaces of adjacent spinous processes 2,4 of the targeted motion segment).


Referring to FIGS. 3D and 3E, once the frame 304 is arranged as desired, the top portion 322 and the bottom portion 324 can be positioned within the corresponding slots 332,334 and urged over the central body 304 so that the top portion 322 and bottom portion 324 further distract the interspinous ligament 6 and/or the adjacent spinous processes 2,4. The spacer 320 can be urged in the direction of insertion until the base 326 is seated against the first wing 330. In a preferred embodiment, the top portion 322 and the bottom portion 324 can be arranged so that the top portion 322 and bottom portion 324 are approximately in contact or near-contact with the second wing 360, so that the spacer 320 fully supports a load applied by the adjacent spinous processes 2,4, without slippage.



FIG. 4A is an end view of the implant 300 positioned between the adjacent spinous processes 2,4 of the targeted motion segment. As can be seen, the base 326 is arranged at a slight angle relative to the axis of the spine. As can be seen, the upper spinous process 2 includes a lower contact surface that arcs slightly downward, and the lower spinous process 4 includes an upper contact surface that also arcs slightly downward. Arranging the implant 300 as shown can increase the overall contact surface between the adjacent spinous processes 2,4 and the spacer 320 over, for example, inserting the implant 300 so that the base 326 is aligned perpendicular to the axis of the spine. Increasing overall contact surface can reduce the stress applied from the motion segment to the spacer 320, and from the spacer to the adjacent spinous processes 2,4.


As can further be seen, the base 326 can include a cavity 329 that in an embodiment is a bore having a diameter larger than a diameter of a corresponding cavity 309 of the first wing 330. Such a feature can be receive an insertion tool (not shown) for assisting in implantation, or such a feature can receive a fastener (not shown), such as a screw or bolt to secure the spacer 320 to the frame 302. A bore 329 having a larger diameter than the cavity 309 of the frame 302 can allow a head of the fastener to be received so that the head does not extend beyond a distal face of the base 326. In other embodiments, the base 326 can include one or more additional cavities for receiving lock pins, or other features of an insertion tool (not shown), for example as described in U.S. Pat. No. 6,712,819, entitled “Mating Insertion Instruments for Spinal Implants and Methods of Use,” issued Mar. 30, 2004 to Zucherman, et al.



FIG. 4B is a front view of the implant 300 positioned between the adjacent spinous processes 2,4 of the targeted motion segment. As can be seen, the second wing 360 is helical in shape and can limit or block motion in a direction opposite insertion by contacting the upper spinous process 2. Further, a portion of the second wing 360 can contact the lower spinous process 4. Although the second wing 360 as shown includes a helical shape somewhat similar to that of a conch shell, in other embodiments the second wing 360 can have a shape that varies from the shape shown. For example, the distal end of the second wing 360 can overlap the proximal end of the second wing 360 more or less than as shown. Alternatively, the second wing 360 can be formed in two or more broken sections, rather than an unbroken spiral. Still further, the second wing 360 can include slots for receiving a proximal piece of the upper and lower portions 322,324 of the spacer 320. Myriad different variations of the shape shown in FIGS. 3A-4B will be readily apparent to one of skill in the art upon understanding the structure shown. Implants in accordance with the present invention are not intended to be limited to those described and shown herein, but rather apply to all such implants that utilize a wing having a major dimension larger than a major dimension of a space between spinous processes, wherein the wing can be appropriately positioned by rotating the implant while urging the implant in a direction of insertion.


Referring now to FIGS. 5A through 5C, an alternative embodiment of an implant 400 in accordance with an embodiment of the present invention is shown. FIG. 5A is a perspective view of the frame 402 including a central body 404 having a distraction guide 406 at a proximal end, and an alignment protrusion 408 at a distal end. As can be seen, the second wing 460 is similar to the second wing 460 described above. The alignment protrusion 408 extends from the central body 404 to align a spacer 420 as the spacer 420 is arranged over the central body 404, and to prevent the spacer 420 from subsequently rotating relative to the frame 402 once implanted. Thus, the alignment protrusion 408 corresponds to a notch 427 within the spacer 420 within which the central body 404 is partially disposed.



FIG. 5B is a perspective view of the spacer 420. The spacer 420 includes a bore 428 disposed at least partially through the spacer 420, and including a notch 427 along the length of the bore 428 to receive the alignment protrusion 408 of the frame 402. The proximal end of the spacer 420 can be tapered to form a distraction guide 426 to distract the interspinous ligament 6 and/or the adjacent spinous processes 2,4 of the motion segment. Similarly to the rotatable spacer 220 of FIG. 1B, and the implant 300 of FIGS. 2A-2C, the implant 400 can be further rotated or adjusted to distribute a load once the spacer 420 is positioned over the frame 404 and between the spinous processes 2,4.


As above, the spacer 420 can have a cross-section perpendicular to the longitudinal axis 425 that is teardrop-shaped, similar to a cross-section of the spacer 120,320 of FIGS. 1A and 2A. In this way, the shape of the spacer 420 can roughly conform to a wedge-shaped space, or a portion of the space, between adjacent spinous processes 2,4 within which the implant 400 is to be positioned. The same shape or variations of this shape can be used to accommodate different motion segments and/or different patients, as described above. In other embodiments the spacer 420 can have alternative shapes such as circular, elliptical, wedge, oval, ovoid, football, and rectangular with rounded corners, and other shapes. The shape of the spacer 420 can be selected for a particular patient so that the physician can position the implant 400 as close as possible to the anterior portion of the surface of the spinous process 2,4. The shape selected for the spacer 420 can affect the contact surface area of the implant 400 and the spinous processes 2,4 that are to be subject to distraction. Increasing the contact surface area between the implant 400 and the spinous processes 2,4 can distribute a load force between the spinous frame and the implant 400.


The spacer 420 of FIG. 5B extends from a first wing 430 integrally formed or connected with the spacer 420. As can be seen, a proximal end of the spacer 420 varies in length, extending farther near the bottom section of the spacer 420 to correspond roughly with the helical shape of the second wing 460, thereby avoiding contacting the second wing 460 which in the embodiment shown in FIG. 5A spirals to a termination point at the upper surface of the central body 404. As above, once the frame 404 is arranged as desired, the spacer 420 can be positioned over the central body 404 and urged over the central body 404 so that the spacer 420 further distracts the interspinous ligament and/or the adjacent spinous processes. The spacer 320 can be urged in the direction of insertion until the central body 404 is seated within the bore 428. In a preferred embodiment, the shape of the proximal end of the spacer 420 is shaped such that when seated, the proximal end is approximately in contact or near-contact with the second wing 460, so that the spacer 420 fully supports a load applied by the adjacent spinous processes, without slippage.


The first wing 430 can have a depth along the longitudinal axis 425 as desired, and a width such that the first wing 430 can contact one or both of the adjacent spinous processes 2,4, thereby limiting or blocking moving of the implant 400 in the direction of insertion along the longitudinal axis 425. As shown, the first wing 430 has a rounded shape, having substantially the same minor and major dimension. Unlike the embodiment of the implant 300 of FIGS. 2A-2C, the first wing 430 need not rotate to properly arrange the second wing 460, therefore the first wing 430 need not have a round shape, where it is desired that the second wing 460 have some other shape. For example, the first wing 430 can include a shape similar to that shown in FIG. 1B. The first wing 430 can include a cavity 429 for receiving one or both of an insertion tool (not shown). Further, the central body 404 can optionally include a cavity 409 so that, for example, the frame 402, the spacer 420, and the first wing 430 can be fixedly attached once the spacer 420 is seated.



FIG. 5C is a perspective view of the implant 400 wherein the spacer 420 is positioned to be seated on the frame 402 and arranged over the central body 404. The first wing 430 and the second wing 460 have major dimensions approximately along the axis of the spine that are larger than the major dimension of the spacer 420, thereby blocking or limiting movement of the implant 400 along the longitudinal axis 425. FIG. 6 is a posterior view of an implant 400 as described in FIGS. 5A-5C disposed between the adjacent spinous processes.


In some embodiments of systems including implants 300,400 similar to those shown in FIGS. 2A-5C, multiple different spacers 320,420 can be selectively associated with a single frame 302,402 so that a physician can choose an appropriately sized and shaped spacer 320,420 to accommodate a patient's anatomy. In embodiments including a central body 304 extending from a first wing 330, the distance between the outer peripheries of the two slots 332,334 can correspond to a maximum spacer size (e.g., 14 mm). In embodiments including a central body 404 having an alignment protrusion 408, a series of spacer 420 can have varying dimensions and/or shapes, and can have similarly sized cavities 428 to receive the central body 404. As can be readily understood from this description, a system in accordance with embodiments of the present invention can include a frame 302,402 and a plurality of spacers 320,420 having varying sizes and/or shapes.


As mentioned above, implants, and systems and methods for positioning such implants between spinous processes in accordance with the present invention are not meant to be limited to embodiments as described above and otherwise herein, but rather are meant to include all such implants that utilize a wing having a major dimension larger than a major dimension of a space between spinous processes, wherein the wing can be appropriately positioned by rotating the implant while urging the implant in a direction of insertion. Myriad different variations may be readily apparent to one of ordinary skill in the art. For example, as shown in FIGS. 7A through 7C, in still another embodiment of an implant 500 in accordance with the present invention, the frame 502 can include an inner central body 504 disposed within an outer central body 505, with a proximal portion of a second wing 560 being connected with, or extending from the inner central body 504, and the distal portion of the second wing 560 being connected with, or extending from the outer central body 505. Once the frame 502 is arranged as desired, such that the interspinous ligament is disposed between a first wing 330 and the second wing 560, the inner central body 504 can be shifted to a position more fully received in the outer central body 505 so that the second wing 560 collapses, reducing the space occupied by the second wing 560.


In such embodiments as shown in FIGS. 7A through 7C, the second wing 560 can be made from a more ductile material so that the second wing 560 can be readily collapsed. Alternatively, the second wing 560 can be made from a shape memory material, for example such as Nitinol, so that once the frame is positioned the second wing 560 collapses, urging the inner central body 504 to shift within the outer central body 505. Additionally the second wing 560 can be made in two parts, one part fastened to the inner central body 504, and one part fastened to the outer central body 505. When the inner central body 504 is more fully received into the outer central body 505, the portion of the second wing 560 secure to the inner central body 504 becomes nested in the portion of the second wing 560 connected to the outer central body 505.


As shown in FIG. 8, in a still further embodiment an implant 600 in accordance with the present invention can include a distraction guide 606 that tapers more gradually, so that the adjacent spinous processes and/or related tissues are distracted as the lead-in screw 660 is rotated and urged toward a direction of insertion, as described above.


In still further embodiments, the spacer need not be fixed, but rather can be rotatably disposed over the central body. For example, the spacer can include an alignment notch, as described above with reference to FIG. 1B, so that when the central body is rotated, thereby threading the adjacent spinous processes and related structures within the groove of the thread-shaped wing and positioning the thread-shaped wing on an opposite side of the adjacent spinous processes, the spacer can be held in a fixed position. By fixing the spacer in position, the spacer can be arranged as desired between the adjacent spinous processes. Once the implant is positioned between adjacent spinous processes, the rotatable spacer can be released to conform within the space between spinous processes. These and other variations are within the scope of the invention as contemplated.


Materials for use in Implants of the Present Invention


In some embodiments, the implant, and components of the implant (i.e., the spacer, the frame) can be fabricated from medical grade metals such as titanium, stainless steel, cobalt chrome, and alloys thereof, or other suitable implant material having similar high strength and biocompatible properties. Additionally, the implant can be at least partially fabricated from a shape memory metal, for example Nitinol, which is a combination of titanium and nickel. Such materials are typically radiopaque, and appear during x-ray imaging, and other types of imaging. Implants in accordance with the present invention, and/or portions thereof can also be fabricated from somewhat flexible and/or deflectable material. In these embodiments, the implant and/or portions thereof can be fabricated in whole or in part from medical grade biocompatible polymers, copolymers, blends, and composites of polymers. A copolymer is a polymer derived from more than one species of monomer. A polymer composite is a heterogeneous combination of two or more materials, wherein the constituents are not miscible, and therefore exhibit an interface between one another. A polymer blend is a macroscopically homogeneous mixture of two or more different species of polymer. Many polymers, copolymers, blends, and composites of polymers are radiolucent and do not appear during x-ray or other types of imaging. Implants comprising such materials can provide a physician with a less obstructed view of the spine under imaging, than with an implant comprising radiopaque materials entirely. However, the implant need not comprise any radiolucent materials.


One group of biocompatible polymers is the polyaryletherketone group which has several members including polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). PEEK is proven as a durable material for implants, and meets the criterion of biocompatibility. Medical grade PEEK is available from Victrex Corporation of Lancashire, Great Britain under the product name PEEK-OPTIMA. Medical grade PEKK is available from Oxford Performance Materials under the name OXPEKK, and also from CoorsTek under the name BioPEKK. These medical grade materials are also available as reinforced polymer resins, such reinforced resins displaying even greater material strength. In an embodiment, the implant can be fabricated from PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex. Other sources of this material include Gharda located in Panoli, India. PEEK 450G has the following approximate properties:
















Property
Value




















Density
1.3
g/cc



Rockwell M
99




Rockwell R
126




Tensile Strength
97
MPa



Modulus of Elasticity
3.5
GPa



Flexural Modulus
4.1
GPa











PEEK 450G has appropriate physical and mechanical properties and is suitable for carrying and spreading a physical load between the adjacent spinous processes. The implant and/or portions thereof can be formed by extrusion, injection, compression molding and/or machining techniques.


It should be noted that the material selected can also be filled. Fillers can be added to a polymer, copolymer, polymer blend, or polymer composite to reinforce a polymeric material. Fillers are added to modify properties such as mechanical, optical, and thermal properties. For example, carbon fibers can be added to reinforce polymers mechanically to enhance strength for certain uses, such as for load bearing devices. In some embodiments, other grades of PEEK are available and contemplated for use in implants in accordance with the present invention, such as 30% glass-filled or 30% carbon-filled grades, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass-filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to unfilled PEEK. The resulting product is known to be ideal for improved strength, stiffness, or stability. Carbon-filled PEEK is known to have enhanced compressive strength and stiffness, and a lower expansion rate relative to unfilled PEEK. Carbon-filled PEEK also offers wear resistance and load carrying capability.


As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable, have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. As mentioned, the implant can be comprised of polyetherketoneketone (PEKK). Other material that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), polyetheretherketoneketone (PEEKK), and generally a polyaryletheretherketone. Further, other polyketones can be used as well as other thermoplastics. Reference to appropriate polymers that can be used in the implant can be made to the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials;” and, PCT Publication WO 02/00270 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials.” Other materials such as Bionate®, polycarbonate urethane, available from the Polymer Technology Group, Berkeley, Calif., may also be appropriate because of the good oxidative stability, biocompatibility, mechanical strength and abrasion resistance. Other thermoplastic materials and other high molecular weight polymers can be used.


Methods for Implanting Interspinous Implants


A minimally invasive surgical method for implanting an implant 300 in the cervical spine is disclosed and taught herein. In this method, as shown in FIG. 9, preferably a guide wire 680 is inserted through a placement network 690 into the neck of the implant recipient. The guide wire 680 is used to locate where the implant 300 is to be placed relative to the cervical spine, including the spinous processes. Once the guide wire 680 is positioned with the aid of imaging techniques, an incision is made on the side of the neck so that an implant 300 in accordance with an embodiment of the present invention, can be positioned in the neck thorough an incision and along a line that is about perpendicular to the guide wire 680 and directed at the end of the guide wire 680. A frame 302 of the implant 300 is inserted into the neck of the patient. The frame 302 includes a distraction guide 306 extending from the proximal end of a central body 304 and a first wing 330 extending from the distal end of the central body 304. The frame 302 further includes a helical-shaped second wing 360 extending distally from the distraction guide 306 some distance along the central body 304. Preferably during insertion, the distraction guide 306 pierces or separates the tissue without severing the tissue. The frame 302 can be arranged so that the second wing 360 extending from the central body 304 is in contact or near contact with the interspinous ligament. The frame 302 is then rotated in a direction so that the spiraling extension of the second wing 360 “grows” and the frame 302 is urged forward such that the adjacent spinous processes fit within a groove between spiraled surfaces of the second wing 360. The frame 302 is continuously rotated until the second wing 360 has passed the adjacent spinous processes 2,4.


The frame 302 can be further rotated until slots 332,334 of the first wing 330 are arranged as desired between the adjacent spinous processes 2,4 of the targeted motion segment. Once the frame 302 is satisfactorily positioned, a spacer 320 can be mated with the frame 302 so that an upper portion 322 and a lower portion 324 of the spacer 320 is received through the respective slot 332,334 of the first wing 330 (or simply received over the central body 304 for example where the first wing 330 extends from the spacer 320 rather than extending form the central body 304). The spacer 320 can be inserted along a line that is generally colinear with the line over which the frame 302 is inserted. The anatomy of the neck is such that it is most convenient and minimally invasive to enter the neck from the side with respect to the frame 302 and the spacer 320.


Further, a minimally invasive surgical method for implanting an implant 300 in the lumbar spine is disclosed and taught herein. In this method, as shown in the flowchart of FIG. 10, preferably a unilateral incision can be made using a posterior-anterior approach. The unilateral incision can be made, for example, at a location some distance to the right of an axis along the spinous process 2,4 (Step 102). The incision can be enlarged, and a distraction tool can be positioned within the incision so that the proximal end of the distraction tool can access an exposed side of the interspinous ligament 6. The distraction tool can be urged through the interspinous ligament 6 and distracted, thereby distracting the interspinous ligament 6 so as to receive the implant 300 (Step 104). Once the interspinous ligament 6 is sufficiently distracted, the distraction tool can be disengaged and removed from the incision.


Once the distraction tool has been removed from the incision, the frame 302 can be positioned at the dilated opening, and the distraction guide 306 of the frame 302 can be urged through the dilated opening (Step 106). As above, the frame 302 can be arranged so that the second wing 360 extending from the central body 304 is in near contact with the interspinous ligament 6. The frame 302 is then rotated in direction so that the spiraling extension of the second wing 360 “grows”, and the frame 302 urged forward such that the adjacent spinous processes 2,4 fit within a groove between surface of the second wing 360 (Step 108). The frame 302 is continuously rotated until the second wing 360 has passed the adjacent spinous processes 2,4.


The frame 300 can be further rotated until the slots 332,334 are arranged as desired between the adjacent spinous processes of the targeted motion segment. The frame 302 is free to rotate so that the load can be distributed more evenly over the surface of the spinous processes. Once the frame 302 is satisfactorily positioned, a spacer 320 can be inserted with slots 322,324 of a first wing 330 extending from the distal end of the central body 304 (or simply received over the central body for example where the first wing extends from the spacer). The spacer 320 can be inserted along a line that is generally colinear with the line over which the frame 302 is inserted (Step 110). The remaining tools can be removed from the incision, and the incision can be closed. Preferably during insertion, the distraction end pierces or separates the tissue without severing the tissue (Step 112).


The foregoing description of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to practitioners skilled in this art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims
  • 1. A spinal implant adapted to be inserted into an interspinous space between adjacent spinous processes, comprising: a proximal section, a central section, and a distal section disposed sequentially along a longitudinal axis, the central section includes a top section and a bottom section;the distal section having a thread-like structure spiraling about a portion of the distal section such that the top section of the central portion is non-threaded a distance shorter than the bottom section of the central portion, the thread-like structure defining an outermost portion thereof relative to the longitudinal axis, such that the outermost portion is configured to engage the spinous process to limit movement of the implant;the distal section terminating in a distal tip disposed distally of the thread-like structure and defining a distal-most portion of the implant;the distal tip tapering inward in a distal direction;the central section sized and configured to engage the adjacent spinous processes when the implant is disposed through the interspinous space between the adjacent spinous processes; andthe proximal section having a wing that extends farther outward relative to the longitudinal axis than all portions of the central section.
  • 2. The implant of claim 1 wherein the distal tip is rounded.
  • 3. The implant of claim 1 wherein the distal section includes a first portion movable between an expanded configuration and a collapsed configuration; the first portion disposed proximally of the distal tip.
  • 4. The implant of claim 1 wherein the implant comprises Nitinol and a biocompatible polymer.
  • 5. The implant of claim 4 wherein the biocompatible polymer is PEEK.
  • 6. The implant of claim 1 wherein the thread-like structure extends a constant distance from the longitudinal axis.
  • 7. The implant of claim 1 wherein the thread-like structure is helical.
  • 8. The implant of claim 1 wherein the implant includes a longitudinally extending cavity.
  • 9. The implant of claim 1 wherein the implant comprises a main body that includes the wing and a spacer slidably mated to the main body through the wing.
  • 10. The implant of claim 9, wherein the spacer includes a top portion and a bottom portion being longer than the top portion such that the bottom portion of the spacer fits into the non-threaded bottom section of the central portion and the top portion fits into the non-threaded top section of the central portion.
  • 11. The implant of claim 1 wherein the thread-like structure is adapted to guide the implant between the spinous processes so that the implant is selectively disposed through the interspinous space.
  • 12. A spinal implant adapted to be inserted into an interspinous space between adjacent spinous processes, comprising: a proximal section, a central section, and a distal section disposed sequentially along a longitudinal axis, the central section includes a top section and a bottom section;the distal section having an external helical groove spiraling about a portion of the distal section such that the top section of the central portion includes a flat surface shorter than a flat surface of the bottom section of the central portion;the distal section terminating in a distal tip disposed distally of the groove and defining a distal-most portion of the implant;the distal tip tapering inward in a distal direction;the proximal section having a flange that extends farther outward relative to the longitudinal axis than all portions of the central section; wherein the flange is sized and configured to limit distal displacement of the implant when the implant is disposed through the interspinous space between the adjacent spinous processes;wherein the distal section includes a first portion movable between an expanded configuration and a collapsed configuration;the first portion disposed proximally of the distal tip;wherein the first portion, in the expanded configuration, is sized and configured to limit proximal displacement of the implant when the implant is disposed through the interspinous space between the adjacent spinous processes; andwherein the distal section, when the first portion is in the expanded configuration, extends farther outward from the longitudinal axis than all portions of the central section.
  • 13. The implant of claim 12 wherein the distal tip is rounded.
  • 14. The implant of claim 12 wherein the groove has a constant depth.
  • 15. The implant of claim 12 wherein the implant includes a longitudinally extending cavity.
  • 16. The implant of claim 12 wherein the implant comprises a main body that includes the flange and a spacer slidably mated to the main body through the flange.
  • 17. The implant of claim 16, wherein the spacer includes a top portion and a bottom portion being longer than the top portion of the spacer such that the bottom portion of the spacer fits into the flat surface of the bottom section of the central section and the top portion fits into the flat surface of the top section of the central section.
  • 18. The implant of claim 12 wherein a portion of the distal section disposed proximal to the distal tip, and comprising the groove, is adapted to guide the implant between the spinous processes so that the implant is selectively disposed through the interspinous space.
  • 19. A spinal implant adapted to be inserted into an interspinous space between adjacent spinous processes, comprising: a proximal section, a central section, a main body and a distal section disposed sequentially along a longitudinal axis;the distal section having a thread-like structure defining an outermost portion thereof relative to the longitudinal axis;the distal section terminating in a distal tip disposed distally of the thread-like structure and defining a distal-most portion of the implant;the distal tip tapering inward in a distal direction; the central section sized and configured to engage the adjacent spinous processes when the implant is disposed through the interspinous space between the adjacent spinous processes;the proximal section having a wing that extends farther outward relative to the longitudinal axis than all portions of the central section; anda spacer slidably mated to the main body through the wing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior application Ser. No. 11/378,892, filed Mar. 17, 2006, and claims the benefit of U.S. Provisional Patent Application No. 60/663,922 entitled “Interspinous Process Implant Having A Thread-Shaped Wing And Method Of Implantation,” filed Mar. 21, 2005, both of which are incorporated herein by reference. This U.S. Patent Application incorporates by reference all of the following co-pending applications and issued patents: U.S. Pat. No. 7,695,513 entitled “Distractible Interspinous Process Implant and Method of Implantation,” issued Apr. 13, 2010; U.S. Pat. No. 6,419,676, entitled “Spine Distraction Implant and Method,” issued Jul. 16, 2002 to Zucherman, et al.; U.S. Pat. No. 6,451,019, entitled “Supplemental Spine Fixation Device and Method,” issued Sep. 17, 2002 to Zucherman, et al.; U.S. Pat. No. 6,582,433, entitled “Spine Fixation Device and Method,” issued Jun. 24, 2003 to Yun; U.S. Pat. No. 6,652,527, entitled “Supplemental Spine Fixation Device and Method,” issued Nov. 25, 2003 to Zucherman, et al; U.S. Pat. No. 6,695,842, entitled “Interspinous Process Distraction System and Method with Positionable Wing and Method,” issued Feb. 24, 2004 to Zucherman, et al; U.S. Pat. No. 6,699,246, entitled “Spine Distraction Implant,” issued Mar. 2, 2004 to Zucherman, et al; and U.S. Pat. No. 6,712,819, entitled “Mating Insertion Instruments for Spinal Implants and Methods of Use,” issued Mar. 30, 2004 to Zucherman, et al.

US Referenced Citations (401)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759670 Linder et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5035712 Hoffman Jul 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove et al. Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458638 Kuslich et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5540689 Sanders et al. Jul 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5683463 Godefroy et al. Nov 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702391 Lin Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5743914 Skiba Apr 1998 A
5746762 Bass May 1998 A
5749916 Richelsoph May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5810815 Morales Sep 1998 A
5827285 Bramlet Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6093207 Pisharodi Jul 2000 A
6102922 Jakobsson et al. Aug 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6527803 Crozet et al. Mar 2003 B1
6554833 Levy et al. Apr 2003 B2
6572653 Simonson Jun 2003 B1
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733531 Trieu May 2004 B1
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7641673 Le Couedic et al. Jan 2010 B2
7658752 Labrom et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7771456 Hartman et al. Aug 2010 B2
7862615 Carli et al. Jan 2011 B2
7901430 Matsuura et al. Mar 2011 B2
7927354 Edidin et al. Apr 2011 B2
20010016743 Zucherman et al. Aug 2001 A1
20010049527 Cragg Dec 2001 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030176925 Paponneau Sep 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040064094 Freyman Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040106995 LeCoudeic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040158248 Ginn Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040172029 Lerch Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050010298 Zucherman et al. Jan 2005 A1
20050033434 Berry Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050075634 Zucherman et al. Apr 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060047282 Gordon Mar 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060265074 Krishna et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070049935 Edidin et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225810 Colleran et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233084 Betz et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080243250 Seifert et al. Oct 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281359 Abdou Nov 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090099610 Johnson et al. Apr 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090264927 Ginsberg et al. Oct 2009 A1
20090270918 Attia et al. Oct 2009 A1
20090292316 Hess Nov 2009 A1
20090326538 Sennett et al. Dec 2009 A1
20100036419 Patel et al. Feb 2010 A1
20100121379 Edmond May 2010 A1
20100191241 McCormack et al. Jul 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
20100211101 Blackwell et al. Aug 2010 A1
20110054531 Lamborne et al. Mar 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110166600 Lamborne et al. Jul 2011 A1
Foreign Referenced Citations (62)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
202006018978 Feb 2007 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
WO 03057055 Jul 2003 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
WO 2004084743 Oct 2004 WO
WO 2004084768 Oct 2004 WO
WO 2004110300 Dec 2004 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
WO 2007052975 May 2007 WO
WO 2009083276 Jul 2009 WO
WO 2009083583 Jul 2009 WO
WO 2009098536 Aug 2009 WO
Non-Patent Literature Citations (61)
Entry
“Wallis Operative Technique: Surgical Procedure for Treatment of Degenerative Disc Disease (DDD) of Lumbar Spine,” date unknown, pp. 1-24, Spine Next, an Abbott Laboratories company, Bordeaux, France.
Anasetti et al., “Spine Stability After Implantation of an Interspinous Device: An In Vitro and Finite Element Biomechanical Study,” J. Neurosurg. Spine, Nov. 2010, vol. 13, pp. 568-575.
Bellini et al., “Biomechanics of the Lumbar Spine After Dynamic Stabilization,” J. Spinal Discord Tech., 2006, vol. 00, No. 00, pp. 1-7.
Benzel et al., “Posterior Cervical Interspinous Compression Wiring and Fusion for Mid to Low Cervical Spinal Injuries,” J. Neurosurg., Jun. 1989, pp. 893-899, vol. 70.
Bini et al., “Minimally Invasive Treatment of Moderate Lumbar Spinal Stenosis with the Superion® Interspinous Spacer,” The Open Orthopaedics Journal, May 27, 2011, pp. 361-367, vol. 5.
Buric et al., “DIAM Device for Low Back Pain in Degenerative Disc Disease 24 Months Follow-up,” Advances in Minimally Invasive Surgery and Therapy for Spine and Nerves, Alexandre et al., eds., 2011, pp. 177-182, Spinger-Verlat/Wien.
Caserta et al., “Elastic Stabilization Alone or Combined with Rigid Fusion in Spinal Surgery: a Biomechanical Study and Clinical Experience Based on 82 Cases,” Eur. Spine J., Oct. 2002, pp. S192- S197, vol. 11, Suppl. 2.
Christie et al., “Dynamic Interspinous Process Technology,” SPINE, 2005, pp. S73-S78, vol. 30, No. 16S.
Cousin Biotech, Dispositif Intervertébral Amortissant, Jun. 1998, pp. 1-4.
Dickman et al., “The Interspinous Method of Posterior Atlantoaxial Arthrodesis,” J. Neurosurg., Feb. 1991, pp. 190-198, vol. 74.
Dubois et al., “Dynamic Neutralization: A New Concept for Restabilization of the Spine,” Lumbar Segmental Insability, Szpalski et al., eds., 1999, pp. 233-240, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania.
Ebara et al., “Inoperative Measurement of Lumbar Spinal Instability,” Spine, 1992, pp. S44-S50, vol. 17, No. 3S.
Fassio et al., “Treatment of Degenerative Lumbar Spinal Instability L4-L5 by Interspinous Ligamentoplasty,” Rachis, Dec. 1991, pp. 465-474, vol. 3, No. 6.
Fassio, “Mise au Point Sur la Ligamentoplastie Inter-Epineuse Lombaire Dans les Instabilites,” Mafîtrise Orthopédique, Jul. 1993, pp. 18, No. 25.
Garner et al., “Development and Preclinical Testing of a New Tension-Band Device for the Spine: the Loop System,” Eur. Spine J., Aug. 7, 2002, pp. S186-S191, vol. 11, Suppl. 2.
Guang et al., “Interspinous Process Segmental Instrumentation with Bone-Button-Wire for Correction of Scoliosis,” Chinese Medical J., 1990, pp. 721-725, vol. 103.
Guizzardi et al., “The Use of DIAM (Interspinous Stress-Breaker Device) in the Prevention of Chronic Low Back Pain in Young Patients Operated on for Large Dimension Lumbar Disc Herniation,” 12th Eur. Cong. Neurosurg., Sep. 7-12, 2003, pp. 835-839, Port.
Hambly et al., “Tension Band Wiring-Bone Grafting for Spondylolysis and Spondylolisthesis,” SPINE, 1989, pp. 455-460, vol. 14, No. 4.
Kiwerski, “Rehabilitation of Patients with Thoracic Spine Injury Treated by Spring Alloplasty,” Int. J. Rehab. Research, 1983, pp. 469-474, vol. 6, No. 4.
Kramer et al., “Intervetertebral Disk Diseases: Causes, Diagnosis, Treatment and Prophylaxis,” pp. 244-249, Medical, 1990.
Laudet et al., “Comportement Bio-Mécanique D'Un Ressort Inter-Apophysaire Vertébral Postérieur Analyse Expérimentale Due Comportement Discal En Compression Et En Flexion/Extension,” Rachis, 1993, vol. 5, No. 2.
Mah et al., “Threaded K-Wire Spinous Process Fixation of the Axis for Modified Gallie Fusion in Children and Adolescents,” J. Pediatric Othopaedics, 1989, pp. 675-679, vol. 9.
Mariottini et al., “Preliminary Results of a Soft Novel Lumbar Intervertebral Prothesis (DIAM) in the Degenerative Spinal Pathology,” Acta Neurochir., Adv. Peripheral Nerve Surg. and Minimal Invas. Spinal Surg., 2005, pp. 129-131, vol. 92, Suppl.
McDonnell et al., “Posterior Atlantoaxial Fusion: Indications and Techniques,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 92-106, Ch. 9, Thieme, New York.
Minns et al., “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” SPINE, 1997, pp. 1819-1825, vol. 22, No. 16.
Müller, “Restauration Dynamique de la Stabilité Rachidienne,” Tiré de la Sulzer Technical Review, Jan. 1999, Sulzer Management Ltd, Winterthur, Switzerland.
Pennal et al., “Stenosis of the Lumbar Spinal Canal,” Clinical Neurosurgery: Proceedings of the Congress of Neurological Surgeons, St. Louis, Missouri, 1970, Tindall et al., eds., 1971, Ch. 6, pp. 86-105, vol. 18.
Petrini et al., “Analisi Di Un'Esperienza Clinica Con Un Impianto Posteriore Ammortizzante,” S.O.T.I.M.I. Società di Ortopedia e Traumatologia dell'Italia Meridionale e Insulare 90° Congresso, Jun. 21-23, 2001, Paestum.
Petrini et al., “Stabilizzazione Elastica,” Patologia Degenerative del Rachide Lombare, Oct. 5-6, 2001, Rimini.
Phillips et al., “Biomechanics of Posterior Dynamic Stabiling Device (DIAM) After Facetectomy and Disectomy,” the Spine Journal, 2006, vol. 6, pp. 714-722.
Porter, “Spinal Stenosis and Neurogenic Claudication,” SPINE, Sep. 1, 1996, pp. 2046-2052, vol. 21, No. 17.
Pupin et al., “Clinical Experience with a Posterior Shock-Absorbing Implant in Lumbar Spine,” World Spine 1: First Interdisciplinary World Congress on Spinal Surgery and Related Disciplines, Aug. 27-Sep. 1, 2000, Berlin, Germany.
Rengachary et al., “Cervical Spine Stabilization with Flexible, Multistrand Cable System,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 79-81, Ch. 7, Thieme, New York.
Richards et al., “The Treatment Mechanism of an Interspinous Process Implant for Lumbar Neurogenic Intermittent Claudication,” SPINE, 2005, pp. 744-749, vol. 30, No. 7.
Schiavone et al., “The Use of Disc Assistance Prosthesis (DIAM) in Degenerative Lumbar Pathology: Indications, Technique, Results,” Italian J. Spinal Disorders, 2003, pp. 213-220, vol. 3, No. 2.
Schlegel et al., “The Role of Distraction in Improving the Space Available in the Lumbar Stenotic Canal and Foramen,” SPINE, 1994, pp. 2041-2047, vol. 19, No. 18.
Senegas et al., “Le Recalibrage du Canal Lombaire, Alternative à la Laminectomie dans le Traitement des Sténoses du Canal Lombaire,” Revue de Chirurgie Orthopédique, 1988, pp. 15-22.
Senegas et al., “Stabilisation Lombaire Souple,” Instabilité Vertébrates Lombaires, Gastambide, ed., 1995, pp. 122-132, Expansion Scientifique Française, Paris, France.
Senegas, “La Ligamentoplastie Inter Vertébrate Lombaire, Alternative a L'Arthrodèse,” La Revue de Medécine Orthopédique, Jun. 1990, pp. 33-35, No. 20.
Senegas, “La Ligamentoplastie Intervertébrale, Alternative à L'arthrodèse dans le Traitement des Instabilités Dégénératives,” Acta Othopaedica Belgica, 1991, pp. 221-226, vol. 57, Suppl. I.
Senegas, “Mechanical Supplementation by Non-Rigid Fixation in Degenerative Intervertebral Lumbar Segments: the Wallis System,” Eur. Spine J., 2002, p. S164-S169, vol. 11, Suppl. 2.
Senegas, “Rencontre,” Maîtrise Orthopédique, May 1995, pp. 1-3, No. 44.
Serhan, “Spinal Implants: Past, Present, and Future,” 19th International IEEE/EMBS Conference, Oct. 30-Nov. 2, 1997, pp. 2636-2639, Chicago, Illinois.
Spadea et al., “Interspinous Fusion for the Treatment of Herniated Intervertebral Discs: Utilizing a Lumbar Spinous Process as a Bone Graft,” Annals of Surgery, 1952, pp. 982-986, vol. 136, No. 6.
Taylor et al., “Analyse d'une expérience clinique d'un implant postérieur amortissant,” Rachis Revue de Pathologie Vertébrale, Oct./Nov. 1999, vol. 11, No. 4-5, Gieda Inter Rachis.
Taylor et al., “Device for Intervertebral Assisted Motion: Technique and Intial Results,” 22 Neurosurg. Focus, Jan. 2007, vol. 22, No. 1, pp. 1-6.
Taylor et al., “Technical and Anatomical Considerations for the Placement of a Posterior Interspinous Stabilizer,” 2004, pp. 1-10, Medtronic Sofamor Danek USA, Inc., Memphis, Tennessee.
Taylor, “Biomechanical Requirements for the Posterior Control of the Centers of Rotation,” Swiss Spine Institute International Symposium: Progress in Spinal Fixation, Jun. 21-22, 2002, pp. 1-2, Swiss Spine Institute, Bern, Switzerland.
Taylor, “Non-Fusion Technologies of the Posterior Column: A New Posterior Shock Absorber,” International Symposium on Intervertebral Disc Replacement and Non-Fusion-Technology, May 3-5, 2001, Spine Arthroplasty.
Taylor, “Présentation à un an d'un dispositif amortissant d'assistance discale,” 5èmes journées Avances & Controverses en pathologie rachidienne, Oct. 1-2, 1998, Faculté Libre de Médecine de Lille.
Tsuji et al., “Ceramic Interspinous Block (CISB) Assisted Anterior Interbody Fusion,” J. Spinal Disorders, 1990, pp. 77-86, vol. 3, No. 1.
Vangilder, “Interspinous, Laminar, and Facet Posterior Cervical Bone Fusions,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 135-146, Ch. 13, Thieme, New York.
Voydeville et al., “Experimental Lumbar Instability and Artificial Ligament,” Eur. J. Orthop. Surg. Traumatol., Jul. 15, 2000, pp. 167-176, vol. 10.
Voydeville et al., “Lumbar Instability Treated by Intervertebral Ligamentoplasty with Smooth Wedges,” Orthopédie Traumatologie, 1992, pp. 259-264, vol. 2, No. 4.
Waldemar Link, “Spinal Surgery: Instrumentation and Implants for Spinal Surgery,” 1981, Link America Inc., New Jersey.
Wilke et al., “Biomedical Effect of Different Lumbar Interspinous Implants on Flexibilty and Intradiscal Pressure,” Eur Spine J., Vo. 17, published online Jun. 27, 2008, pp. 1049-1056.
Wiltse et al., “The Treatment of Spinal Stenosis,” Clinical Orthopaedics and Related Research, Urist, ed., Mar.-Apr. 1976, pp. 83-91, No. 115.
Wisneski et al., “Decompressive Surgery for Lumbar Spinal Stenosis,” Seminars in Spine Surgery, Wiesel, ed., Jun. 1994, pp. 116-123, vol. 6, No. 2.
Zdeblick et al., “Two-Point Fixation of the Lumbar Spine Differential Stability in Rotation,” SPINE, 1991, pp. S298-S301, vol. 16, No. 6, Supplement.
Zhao et al., “Efficacy of the Dynamic Interspinous Assisted Motion System in Clinical Treatment of Degenerative Lumbar Disease,” Chin. Med. J., 2010, vol. 123, No. 21, pp. 2974-2977.
Zucherman et al., “Clinical Efficacy of Spinal Instrumentation in Lumbar Degenerative Disc Disease,” Spine, Jul. 1992, pp. 834-837, vol. 17, No. 7.
Related Publications (1)
Number Date Country
20120083843 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
60663922 Mar 2005 US
Continuations (1)
Number Date Country
Parent 11378892 Mar 2006 US
Child 13313391 US