Intravenous catheter insertion device and method of use

Abstract
A catheter insertion device includes a housing, a needle, a guide wire, and a catheter disposed coaxially over the needle. The needle has a proximal end in the housing and a distal end extending from a distal end of the housing in an insertion position. The guide wire has a distal portion disposed in a lumen of the needle in a withdrawn position. The guide wire may include a safety tip having a non-coiled configuration in the withdrawn position and a coiled configuration in an advanced position. The catheter insertion device may include a sliding member attached to the guide wire, wherein movement of the sliding member translates the guide wire from the withdrawn position to the advanced position.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to devices and methods for insertion and placement of an intravenous catheter into a vein or artery of a patient. The devices and methods of the invention facilitate safe placement of the catheter into the patient's vein or artery, which is of particular importance in the case of small, tortuous, collapsed, fragile, and/or difficult to locate vessels. The devices and methods also provide protection against accidental punctures and/or contamination by the needle after placement of the intravenous catheter.


2. Background Art

The following patents and publications describe prior intravenous catheter insertion devices and/or safety devices for syringes and needles: EP Patent No. 0 515 710 B1 to Haining, titled, “Intravenous catheter and insertion device”; U.S. Pat. No. 5,019,049 to Haining, titled, “Intravenous catheter and insertion device”; U.S. Pat. No. 5,176,650 to Haining, titled, “Intravenous catheter and insertion device”; EP Patent No. 0 567 321 B1 to Chang, titled, “Intravenous catheter with needle guard”; EP Patent No. 0 652 020 B1 to Mahurkar, titled, “Retractable hypodermic needle assembly”; EP Patent No. 0 910 988 B1 to Mahurkar, titled, “Blood sample collection assembly”; U.S. Pat. No. 5,891,105 to Mahurkar, titled, “Hypodermic needle assembly”; U.S. Pat. No. 3,572,334 to DeWitt, titled, “Intravenous catheter placement unit”; EP Publication No. 0 750 916 to van Heugten, titled, “Protective needle cover containment”; EP Patent No. 0 942 761 B1 to Botich, titled, “Medical device with retractable needle”; EP Patent No. 1 075 850 B1 to Botich, titled, “Apparatus for intravenous catheter insertion”; U.S. Pat. No. 5,800,395 to Botich et al, titled, “Medical device with retractable needle”; U.S. Pat. No. 6,436,070 to Botich et al, titled, “Catheter insertion device with retractable needle”; U.S. Patent Publication No. 2003/060760 to Botich et al, titled, “Catheter insertion device with retractable needle”; WO 2000/012160 to Botich et al, titled, “Fluid infusion device with retractable needle”; WO 1996/032981 to Botich et al, titled, “Safety stylet for intravenous catheter insertion”; WO 1998/024494 to Botich et al, titled, “Medical device with retractable needle”; EP Patent No. 1 457 229 B1 to Shue, titled, “Intravenous catheter inserting device”; U.S. Patent Publication No. 2004/106903 to Shue, titled, “Intravenous catheter inserting device”; U.S. Pat. No. 3,592,192 to Harautuneian, titled, “Intravenous catheter apparatus with catheter telescoped on outside of puncturing cannula”; U.S. Pat. No. 3,610,240 to Harautuneian, titled, “Intravenous catheter apparatus with catheter telescoped inside puncturing cannula”; U.S. Pat. No. 4,037,600 to Poncy et al, titled, “Catheter placement system”; U.S. Pat. No. 4,292,970 to Hession, titled, “Apparatus for intravenous catheter starter”; U.S. Pat. No. 4,834,718 to McDonald, titled, “Safety needle apparatus”; U.S. Pat. No. 4,944,725 to McDonald, titled, “Safety needle apparatus”; U.S. Pat. No. 4,909,793 to Vining et al, titled, “Intravenous catheter apparatus with retractable stylet”; U.S. Pat. No. 4,944,728 to Carrell et al, titled, “Intravenous catheter placement device”; U.S. Pat. No. 4,966,589 to Kaufman, titled, “Intravenous catheter placement device”; U.S. Pat. No. 5,007,901 to Shields, titled, “Intravenous catheter insertion device”; U.S. Pat. No. 5,562,629 to Haughton et al, titled, “Catheter placement system utilizing a handle, a sharp, and a releasable retainer mechanism providing retraction of the sharp upon disengagement of the catheter from the handle”; U.S. Pat. No. 5,562,634 to Flumene et al, titled, “Intravenous catheter with automatically retracting needle-guide”; U.S. Pat. No. 5,573,510 to Isaacson titled, “Safety intravenous catheter assembly with automatically retractable needle”; U.S. Pat. No. 6,056,726 to Isaacson, titled, “Self-contained safety intravenous catheter insertion device”; WO 1995/023003 to Isaacson, titled, “Self-contained safety intravenous catheter insertion device”; U.S. Pat. No. 5,891,098 to Huang, titled, “Safety intravenous catheter”; U.S. Pat. No. 5,941,854 to Bhitiyakul, titled, “Intravenous catheter”; U.S. Pat. No. 5,997,507 to Dysarz titled, “Biased spring hard needle retractable IV catheter”; U.S. Pat. No. 6,193,690 to Dysarz titled, “Inclined plane latching device for an IV catheter”; U.S. Pat. No. 6,221,047 to Greene et al, titled, “Safety intravenous catheter assembly and method for use with a needle”; U.S. Pat. No. 6,689,102 to Greene et al, titled, “Safety intravenous catheter assembly”; U.S. Pat. No. 6,695,814 to Greene et al, titled, “Safety intravenous catheter assembly and method for use with a needle”; U.S. Patent Publication No. 2001/014786 to Greene et al, titled, “Safety intravenous catheter assembly and method for use with a needle”; U.S. Patent Publication No. 2002/165497 to Greene et al, titled, “Safety intravenous catheter assembly”; WO 2000/006226 to Greene et al, titled, “Safety intravenous catheter assembly and method for use with a needle”; U.S. Pat. No. 6,322,537 to Chang, titled, “Safety intravenous catheter”; U.S. Pat. No. 6,620,136 to Pressly, Sr. et al, titled, “Retractable IV catheter placement device”; WO 2000/047256 to Pressly, Sr. et al, titled, “Retractable IV catheter placement device”; U.S. Pat. No. 6,730,062 to Hoffman et al, titled, “Safety catheter with non-removable retractable needle”; U.S. Patent Publication No. 2003/073956 to Hoffman et al, titled, “Safety catheter with non-removable retractable needle”; U.S. Patent Publication No. 2004/267204 to Brustowicz, titled, “On-demand needle retaining and locking mechanism for use in intravenous catheter assemblies”; WO 2003/043686 to Garcia Andreo, titled, “Flow regulating/autovalve intravenous catheter”; WO 1992/022344 to Sircom, titled, “Needle guard for intravenous catheter placement”; WO 1995/019193 to Ogle, titled, “Retractable venipuncture catheter needle and receptacle”; WO 1997/005912 to Rohrbough et al, titled, “Retractable venipuncture catheter needle and receptacle”; and WO 1997/021458 to Hwang, titled, “Intravenous catheter with flexible extender and protector against needle tip.”


BRIEF SUMMARY OF THE INVENTION

In one embodiment of the present invention, there is provided a catheter insertion device having a housing having an interior space; an access needle that is slideable with respect to the interior space; a guide wire supported by and moveable relative to the access needle; a handle attached to the guide wire that is moveable relative to the housing to move the guide wire relative to the interior space; and a restraining element attached to the handle to limit the motion of the guide wire relative to the access needle.


In one aspect, the restraining element attached to the handle limits the proximal motion of the guide wire relative to the access needle. In another aspect, wherein the access needle comprises a bleed back indicator within the portion of the access needle extending beyond the housing. In another aspect, the access needle comprises a bleed back indicator visible in the distal end of a catheter when the access needle is positioned within a catheter. In a further aspect, the bleed back indicator comprises an opening in the sidewall of the distal end of the access needle.


In another embodiment, the catheter insertion device also includes a biasing element and a release button adapted and configured to automatically withdraw one or both of the guide wire and the access needle. In a further aspect, the biasing element and the release button are adapted and configured to simultaneously withdraw the guide wire and the access needle into the interior space. In another aspect, biasing element and the release button are adapted and configured to sequentially withdraw the guide wire and the access needle. In one embodiment, the catheter insertion device also includes a restraining element within the interior space that limits distal movement of the access needle or guide wire within the interior space. In one alternative, the restraining element limits distal movement of the access needle or guide wire after the access needle or guide wire have been withdrawn into the interior space after use to insert a catheter. In another alternative, the restraining element limits distal movement of the access needle or guide wire such that the access needle and guide wire remain completely withdrawn into the interior space.


In one embodiment of the catheter insertion device, the interior space is sized and configured to contain all of the guide wire and the access needle after insertion of a catheter. In another aspect, the guide wire has a first portion with a first diameter, a reducing section and a second portion with a second diameter that is less than the first diameter. In still a further aspect, the first diameter and the second diameter are less than the interior diameter of the access needle. In still another aspect, the distal end of the second portion comprises one or more of a full radius distal tip, a spherical ball of the same material as the guide wire, a spherical ball of a different material than the guide wire or a distal end having a diameter about the same as the first diameter. In one alternative, the guide wire comprises a braided structure. In yet another alternative, the catheter insertion device includes a guide channel within the housing to confine the movement of the handle and a holding channel adjacent to the guide channel wherein the holding channel is adapted to prevent movement of the handle once the handle is in the holding channel. In one aspect, the restraining element prevents proximal guide wire movement and the holding channel prevents distal guide wire movement. In another aspect there is a pulley secured within the interior space configured to facilitate movement of the guide wire into the interior space.


In another embodiment, there is provided a catheter insertion device having a housing having an interior space; an access needle having a distal end, a proximal end and an interior wall defining a lumen that extends from the distal end to the proximal end; an access needle that is slideable relative to the interior space; an opening in the sidewall of the access needle in communication with the access needle lumen; and a guide wire supported by the access needle. In another aspect, the catheter insertion device also includes a restraining element attached to the guide wire and configured to prevent the guide wire from moving into the opening. In one aspect, there is also a restraining element attached to the guide wire wherein when the guide wire is positioned within the access needle distal to the opening the restraining element limits proximal movement of the guide wire towards the opening. In another alternative, the access needle lumen has a cross section shape that maintains the orientation of the guide wire relative to the access needle lumen. In one aspect, the access needle lumen has a non-circular cross section shape. In another aspect, the access needle lumen has an elliptical cross section shape. In another aspect, there is also a feature formed within the access needle sidewall to maintain the orientation of the guide wire relative to the access needle lumen. In one alternative, the feature is a groove. In one aspect, the opening in the sidewall of the access needle is positioned proximal to the distal end of the access needle.


In another alternative, the opening in the sidewall of the access needle is positioned distal to the distal end of the housing. In another alternative, the access needle constrains the guide wire into a non-coiled configuration within the access needle. In another alternative, the guide wire is coiled within the access needle. In one aspect, the guide wire is coiled to form at least one half of a rotation within the access needle lumen. In another aspect, the guide wire is coiled to form one or more rotations within the access needle lumen. In still another aspect, the guide wire is within the access needle. In another aspect, the guide wire is alongside the access needle. In one embodiment, there is also a guide wire channel supported by the access needle.


In another embodiment of the catheter insertion device of the invention, there is provided a housing having an interior space and a longitudinal axis; a feature on the distal end of the housing that when coupled to a catheter offsets the housing longitudinal axis from the longitudinal axis of the catheter; and an access needle passing through the feature and attached to a needle carrier wherein the needle carrier is slideable with respect to the interior space and the access needle is slideable relative to the feature. In one alternative, when the feature on the distal end of the housing is coupled to the catheter the housing longitudinal axis is offset from the longitudinal axis of the catheter to form an angle of less than 180 degrees. In one alternative, when the feature on the distal end of the housing is coupled to the catheter the housing longitudinal axis is offset from the longitudinal axis of the catheter to form an angle of less than 60 degrees. In another alternative, when the feature on the distal end of the housing is coupled to the catheter the housing longitudinal axis is offset from the longitudinal axis of the catheter to form an angle of less than 45 degrees. In another alternative, there is also a guide wire supported by and moveable relative to the access needle. In another alternative, there is also a handle attached to the guide wire that is moveable relative to the housing to move the guide wire relative to the interior space. In another alternative, there is also a restraining element attached to the handle to limit the motion of the guide wire relative to the access needle. In one aspect, when the access needle and the guide wire are withdrawn into the interior space the guide wire and the access needle are withdrawn substantially parallel to the longitudinal axis of the housing. In another aspect, the guide wire is disposed within the access needle. In another aspect, the guide wire is alongside the access needle.


In another embodiment of the catheter insertion device of the invention, there is a housing having an interior space; an access needle that is slideable with respect to the interior space; a guide wire supported by and moveable relative to the access needle; and a handle attached to the guide wire wherein the movement of the handle is limited so that at least a portion of the guide wire always remains in the interior space. In another alternative, there is also a biasing element adapted and configured to move the needle carrier proximally within the interior space when released. In one aspect, the biasing element is adapted and configured to move the guide wire proximally within the interior space when released. In one aspect, the biasing element is adapted and configured that, when released, moves the needle so that the needle is completely within the interior space. In another aspect, the biasing element is adapted and configured to move the guide wire so that the entire length of the guide wire is completely within the interior space. In another alternative, there is also a restraining element within the interior space that limits distal movement of the access needle or guide wire within the interior space once the access needle or guide wire has moved proximal to the restraining device. In one aspect, one end of the guide wire is secured to the housing. In one aspect, one end of the guide wire is constrained within the interior space when the guide wire is extended beyond the distal end of the access needle. In one aspect, the guide wire is disposed within the access needle. In another aspect, the guide wire is disposed alongside the access needle.


In another embodiment of the catheter insertion device of the invention, there is provided a housing having an interior space; an access needle that is slideable with respect to the interior space; a guide wire channel attached to the access needle; a guide wire supported by and moveable relative to the guide wire channel; and a handle attached to the guide wire wherein the movement of the handle moves the guide wire relative to the support channel. In one aspect, the movement of the handle is limited so that at least a portion of the guide wire always remains in the interior space. In another aspect, there is also provided a biasing element and a release button adapted and configured to automatically withdraw one or both of the guide wire and the access needle. In another aspect, there is also provided a restraining element within the interior space that limits distal movement of the access needle or guide wire within the interior space. In one aspect, the distal end of the guide wire channel is adjacent the distal end of the access needle. In another aspect, the guide wire channel is on the top of the access needle. In another aspect, the guide wire channel is on the bottom of the access needle. In another aspect, the guide wire passes out the distal end of the guide wire channel without passing through the access needle lumen. In still another aspect, the guide wire passes out the distal end of the guide wire channel and through a portion of the access needle lumen. In another aspect, the guide wire channel is attached to the access needle within the access needle lumen.


In other embodiments of the invention, there are provided several methods of introducing a catheter into a vessel including inserting a guide wire substantially contained within a housing into a vessel; advancing a catheter over the guide wire and into the vessel; and withdrawing the guide wire out of the vessel and completely into the housing. In one alternative, the step of advancing the guide wire along a needle inserted into the vessel is performed before performing the inserting step. In one alternative, the step of advancing the guide wire along a needle inserted into the vessel is performed before performing the inserting step. In another alternative, the step of coiling the guide wire within the vessel is performed after the inserting step.


In one aspect, the withdrawing step is accomplished manually. In another aspect, the withdrawing step is accomplished automatically. In another alternative, the withdrawing step is accomplished by releasing a biasing member to withdraw the guide wire completely into the housing. In another alternative, releasing a biasing member also withdraws a needle supporting the guide wire completely into the housing. In another alternative, the withdrawing step is initiated by pushing a button. In another alternative, inserting a needle attached to the housing into the vessel is performed before the step of inserting a guide wire step. In another alternative, the method also includes using a flashback indicator near the distal tip of the needle to determine that the needle has entered the vessel after the inserting a needle step. In another alternative, the method also includes moving a handle attached to the guide wire proximally before the inserting step.


Although the invention is described in relation to insertion of an intravenous catheter, the apparatus and methods described herein could readily be adapted for insertion of any catheter or similar device into a vein, artery or other internal body structure.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 shows an exploded view of an intravenous catheter insertion device according to the present invention.



FIG. 2 shows an assembly drawing of the intravenous catheter insertion device in an undeployed state, ready for use.



FIG. 3 shows a phantom view of the intravenous catheter insertion device with the safety guide wire advanced.



FIGS. 4A and 4B are detail drawings of a safety guide wire for use with the intravenous catheter insertion device.



FIGS. 5A, 5B and 5C are detail drawings of another safety guide wire for use with the intravenous catheter insertion device.



FIG. 6 shows another embodiment of an intravenous catheter insertion device according to the present invention.



FIGS. 7-9 illustrate a method of intravenous catheter insertion according to the present invention.



FIGS. 10A and 10B illustrate cross section views of one embodiment of a catheter insertion device.



FIG. 10C is a section view of catheter hub with an angled base and FIG. 10D illustrates a section view of a conventional catheter.



FIGS. 10E and 10F are top down views of an access needle having one bleed back indicator (FIG. 10E) or two bleed back indicators (FIG. 10F).



FIG. 10G is a top down view of a catheter insertion device inserted into a catheter;



FIGS. 11A-14B illustrate a catheter insertion device in use to insert a catheter into a vessel and automatically withdrawn the access needle and guide wire into a housing;



FIG. 15 is a section view of an alternative catheter insertion device with a restraint to prevent unintended distal movement within the housing interior;



FIGS. 16A and 16B illustrate perspective and end views, respectively, of an access needle adapted to maintain the orientation of a guide wire;



FIGS. 17A and 17B illustrate perspective and end views, respectively, of an access needle adapted to maintain the orientation of a guide wire;



FIGS. 18A-18H illustrate section and perspective views of the use of a catheter insertion device having a guide channel and restraining features;



FIGS. 19A and 19B are side and section views respectively of the catheter of FIG. 10C;



FIG. 20 is a side view of a catheter insertion device with a housing offset angle;



FIG. 21 is a section view of a catheter insertion device with an offset longitudinal axis;



FIGS. 22, 23 and 24 illustrate guide wire alternatives;



FIGS. 25A and 25B illustrate side and end views, respectively, of a coiled portion of a guide wire;



FIG. 26A illustrates a section view of a catheter insertion device with the guide wire extended;



FIG. 26B illustrates section view of catheter insertion device of FIG. 26B where a pulley has been used to withdraw the guide wire completely into the housing;



FIGS. 27A-27E illustrate section views of the access needle of a catheter insertion device with an attached guide wire channel. FIG. 27B1 is similar to FIG. 27B except that the guide wire is drawn back into the guide wire channel.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows an exploded view of one embodiment of an intravenous catheter insertion device 20 according to the present invention. FIG. 2 shows an assembly drawing of the intravenous catheter insertion device 20 in an undeployed state, ready for use. FIG. 3 shows a phantom view of the intravenous catheter insertion device 20 with the safety guide wire advanced.


The intravenous catheter insertion device 20 includes an outer housing 1. In the example shown, the outer housing 1 is in the form of an elongated hollow cylinder. Other shapes, including an ergonomic handle shape, are possible. The outer housing 1 may be formed from any material suited for use in medical applications. In one embodiment, the outer housing 1 is preferably molded from a rigid, transparent medical grade plastic. Alternatively, the outer housing 1 may be machined from an extruded plastic tube.


There is an elongated slot 14 in the outer housing 1 approximately parallel with the axis of the outer housing 1. The slot 14 is sized to accommodate the dowel pin 10 or provide a connection point to the slider 4 to move the slider along the interior of the outer housing 1. The distal end of the slot 14 widens into a triangular cutout 15, as seen in FIGS. 2 and 3. Other shapes of the cut out 15 are possible.


A front plug 2 is sized to fit onto the distal end of the outer housing 1. The front plug 2 is preferably molded, or alternatively machined, from a rigid, transparent medical grade plastic. The front plug 2 is glued, pinned, welded or otherwise fastened to the distal end of the outer housing 1. The distal end of the front plug 2 includes a luer slip fitting 16 or the like. There is a shoulder or flange 17 to mate with the distal end of the outer housing 1. The proximal end of the front plug 2 has an interlocking member 18 that interlocks with a mating interlocking member 19 on the needle carrier 6. In the example shown, the interlocking member 18 is a tab that interlocks with a corresponding spiral pawl or quarter-turn thread interlocking member 19 on the needle carrier 6. Other geometries for the interlocking members 18, 19 are possible.


In the exemplary embodiment of FIGS. 1-3, the geometry of the slot 14 and the triangular cutout 15 are chosen to operate cooperatively with the rotating interlocking members 18, 19. The slot 14 allows the actuator handle 9 to move in a longitudinal direction with respect to the outer housing 1 to advance the safety guide wire 11 distally, while at the same time restricting lateral motion to avoid premature withdrawal of the access needle 8 and the safety guide wire 11. The widening of the slot 14 at the distal end into a triangular cutout 15 allows the actuator handle 9 to be selectively rotated laterally to disengage the rotating interlocking members 18, 19 and release the biasing member 12 to withdrawal of the access needle 8 and the safety guide wire 11 after the safety guide wire 11 has been fully advanced. If a different geometry or different release mechanism is used in place of the rotating interlocking members 18, 19, the geometry of the slot 14 and the triangular cutout 15 may have to be modified to accommodate the release mechanism.


The needle carrier 6 is shaped and sized to fit inside the outer housing 1. In the embodiment shown in FIGS. 1-3, the needle carrier 6 has a cylindrical shape that is sized to have a sliding fit within the cylindrical outer housing 1. Other shapes are possible and generally the needle carrier 6 will be shaped to be compatible with the interior geometry of the outer housing 1. The needle carrier 6 is preferably molded, or alternatively machined, from any material suited for use in a medical environment. In one embodiment, the needle carrier 6 is formed from a rigid, transparent medical grade plastic. A tubular access needle 8 with a sharpened beveled distal end is attached to a needle carrier nose 5, which is in turn attached to the needle carrier 6. The access needle 8 is preferably made from stainless steel hypodermic tubing. A small cavity or blood flashback chamber that communicates with the lumen of the access needle 8 is positioned within the needle carrier 6, between the needle carrier nose 5 and the needle carrier 6. As mentioned above, the distal end of the needle carrier 6 has an interlocking member 19 that is configured to interlock with a mating interlocking member 18 on the proximal end of the front plug 2. In one exemplary embodiment, the interlocking members 18, 19 are adapted to lock and unlock by rotation of the needle carrier 6 with respect to the front plug 2. The interlocking members 18, 19 may also lock and unlock using a bayonet-type fitting. In the example shown, the interlocking member is a spiral pawl interlocking member 19 that interlocks with a corresponding tab interlocking member 18 on the front plug 2. In one embodiment, the interlocking members lock and/or unlock using less than one revolution of the needle carrier 6. In another embodiment, the interlocking members lock and/or unlock using less than one half a revolution of the needle carrier 6. In still another alternative embodiment, the interlocking members lock and/or unlock using less than one quarter revolution of the needle carrier 6. Other geometries for the interlocking members are possible.


A biasing member 12 is configured to fit between the needle carrier 6 and the front plug 2 to urge them apart. The force of the biasing member 12 is resisted by the interlocking members 18, 19 when the needle carrier 6 and the front plug 2 are locked together. In one embodiment, the biasing member 12 is a spring. Note that in FIG. 1 the biasing member or compression spring 12 is shown in a compressed condition as it would be in the assembled intravenous catheter insertion device 20 in an undeployed condition.


In an alternate embodiment, the interlocking members 18, 19 may be replaced by two members that are bonded together with a breakable bond or a single member with a breakable link. The member or members would be configured to constrain the biasing member 12 until it is desired to withdraw the access needle 8 and safety guide wire 11, at which time; the actuator would break the bond or link to release the biasing member 12. This configuration would make the device 20 more resistant to remanufacturing or reuse.


A tubular intravenous catheter 13, such as an ANGIOCATH, fits coaxially around the access needle 8. Preferably, the intravenous catheter 13 has a close fit with the access needle 8 and a tapered distal end to minimize any step between the access needle 8 and the intravenous catheter 13 as they are inserted through the wall of a vein. There is a luer fitting 27 or the like on the proximal end of the intravenous catheter 13 that fits onto the luer slip fitting 16 on the distal end of the front plug 2 with a slight interference fit to hold the intravenous catheter 13 in place. Alternative configurations of the device may use a luer lock or other locking mechanism to attach the intravenous catheter 13 to the front plug 2.


A slider 4 is generally cylindrical in shape and sized for a sliding fit inside the cylindrical outer housing 1. Other shapes for the slider 4 are possible depending on the interior geometry of the outer housing 1. The slider 4 is preferably molded, or alternatively machined, from any suitable medical grade material. For example, the slider may be formed from a rigid medical grade plastic. A handle 9 or actuating member attaches to the slider 4 with a dowel pin 10 or other attachment member that extends through the slot 14 in the outer housing 1. The slider 4 fits into the outer housing 1 proximal to the needle carrier 6. A pin 25 extends from the distal surface of the slider 4 and is configured to reversibly engage with a hole, step, boss or similar mating feature 26 on the proximal end of the needle carrier 6. When pin 25 is coupled to the mating feature 26 during the appropriate step of the intravenous catheter insertion and placement procedure, rotation of the slider 4 is transferred to the needle carrier 6 to facilitate engagement and or disengagement of the interlocking members 18, 19. Pin 25 and feature 26 are merely illustrative. Pin 25 may be replaced with a female feature while a mating male feature may be placed on the proximal face of the needle carrier 6. Additionally, the mating features 25, 26 are aligned relative to the elongated slot and the sliding movement of the slider 4 so that distal movement of the slider 4 will engage the mating features 25, 26. Optionally, the device 20 may be configured so that the connection between the slider 4 and needle carrier 6 happens irreversibly when the device 20 is actuated.


As best seen in FIG. 3, a safety guide wire 11 is attached, directly or indirectly, to the slider 4 so that it can be advanced and retracted with the handle 9 attached to the slider 4. In a preferred embodiment, the safety guide wire 11 is constructed of super elastic Nickel-Titanium alloy (Nitinol) wire. Because this type of wire is extremely flexible, it is advantageous to have the safety guide wire 11 enclosed along most of its length to avoid bowing or buckling while advancing the safety guide wire 11. For this reason, the example shown includes a support tubing 7 that is attached to the proximal end of the needle carrier 6. The safety guide wire 11 extends through the internal lumen of a sheath tubing 3 and the proximal end of the safety guide wire 11 is attached at the proximal end of the sheath tubing 3. The distal end of the sheath tubing 3 is in turn attached to the slider 4, indirectly attaching the safety guide wire 11 to the slider 4. The support tubing 7 has a sliding fit inside the sheath tubing 3 so that the two parts telescope together as the slider 4 is advanced in the distal direction. The telescoping action of the support tubing 7 and the sheath tubing 3 provides a variable-length support for the proximal portion of the safety guide wire 11 to prevent bowing or buckling of the safety guide wire 11 as it is advanced. The support tubing 7 and the sheath tubing 3 are preferably made from stainless steel hypodermic tubing, however any suitable medical grade plastic material may also be used. In other embodiments, such as those using a larger diameter or stiffer guide wire, the telescoping support tubes may not be necessary and the proximal end of the safety guide wire 11 may be attached directly to the slider 4.



FIGS. 4A and 4B are detail drawings of a safety guide wire 11 for use with the intravenous catheter insertion device 20. The safety guide wire 11 is preferably constructed of super elastic Nickel-Titanium alloy wire approximately 0.004-0.012 inches in diameter and most preferably approximately 0.008 inches in diameter. As shown in FIG. 4B, the distal end of the safety guide wire 11 is preformed into a tightly wound spiral with an outer diameter smaller than the internal diameter of the target vessel into which it will be inserted. The spiral tip acts as a safety bumper on the guide wire to avoid puncturing or damaging the inside of target vessels. The coiled guide wire tip is particularly useful in protecting fragile or delicate veins. Due to the extreme flexibility of the Nickel-Titanium alloy wire, the spiral distal curve can straighten out when the safety guide wire 11 is withdrawn into the access needle 8 and completely recover into the spiral configuration without plastic deformation when the safety guide wire 11 is advanced out of the access needle 8. In the example shown, the distal end of the safety guide wire 11 has a first, small diameter coil of approximately 0.167 inches in diameter for approximately 0.75 revolutions and a second, larger diameter coil of approximately 0.175 inches in diameter for approximately 1 revolution. The first and second coils are preferably approximately coplanar with one another and preferably approximately coplanar with the straight proximal portion of the guide wire 11 also. Other configurations of the safety guide wire 11 may include: multi-planar, single coil, full radius on the end, and/or a balled end with diameter less than the diameter of the needle.



FIGS. 5A, 5B and 5C are detail drawings of another safety guide wire 11 for use with the intravenous catheter insertion device 20. In this embodiment, a distal portion of an approximately 0.008 inch diameter Nickel-Titanium alloy wire has been tapered by grinding, stretching, etc., to a diameter of approximately 0.004 inches to make it more flexible and to allow it to be formed into a smaller diameter spiral for use in smaller diameter veins. The spiral curve of the guide wire tip will preferably have an outer diameter smaller than the inner diameter of the target vessel. In the example shown, the spiral curve has a first, small diameter coil of approximately 0.034 inches in diameter for approximately 0.75 revolutions and a second, larger diameter coil of approximately 0.059 inches in diameter for approximately 1 revolution. The first and second coils are preferably approximately coplanar with one another and preferably approximately coplanar with the straight proximal portion of the guide wire 11 also.


Other sizes and geometries of safety guide wire 11 are also possible.


To assemble the intravenous catheter insertion device 20 shown in FIGS. 1-3, the access needle 8 is bonded flush with the proximal face of the needle carrier nose 5, which is in turn bonded into the needle carrier 6. The support tubing 3 is placed into the distal hole in the needle carrier 6, and bonded flush with the proximal face of the blood flashback chamber. The formed safety guide wire 11 is advanced through the lumen of the access needle 8 and support tubing 7 until the coiled section of the safety guide wire 11 meets the access needle 8 bevel. The sheath tubing 3 is slid through the slider 4, and bonded when flush with the distal face. The assembly of the sheath tubing 3 and slider 4 are advanced over the safety guide wire 11. When the safety guide wire 11 is flush with the proximal end of the sheath tubing 3, the two are bonded. The spring 12 is compressed on the needle carrier nose 5, advanced into the front plug 2 and the interlocking members 18, 19 of the front plug 2 and needle carrier 6 are engaged. This assembly of components is placed into the outer housing 1 and advanced until the front plug 2 is flush with the outer housing 1, and then the front plug 2 is rotated for proper alignment. The front plug 2 is then bonded to the outer housing 1. The dowel pin 10 and handle 9 are pressed together with the slider 4. The handle 9 is slid proximally to withdraw the safety guide wire 11 into the access needle 8, thereby straightening out the spiral distal curve. An intravenous catheter 13 is then mounted coaxially around the access needle 8. Optionally, the intravenous catheter 13 insertion device may be provided with a needle cover or other protective packaging. The assembled intravenous catheter insertion device 20, including the intravenous catheter 13, is then packaged, labeled and sterilized.


The preceding assembly description is provided to illustrate one example of a process for manufacturing an embodiment of the intravenous catheter insertion device 20 and also so that the interrelationship of the various components will be understood. Modifications and variations of this description are expected depending upon specific selected assembly or manufacturing techniques. For example, components that are bonded may be redesigned to be formed from a single integrated piece and the like. The manufacturing process can be modified and adapted for assembling other embodiments of the intravenous catheter insertion device 20.



FIG. 6 shows an interior view of another embodiment of an intravenous catheter insertion device 20 according to the present invention. This embodiment is similar in many respects to the intravenous catheter insertion device 20 of FIGS. 1-3. The intravenous catheter insertion device 20 includes an outer housing 1, front plug 2, which may optionally be molded integrally with the outer housing 1, a needle 8 attached to a needle carrier 6, a safety guide wire 11, spring 12 and intravenous catheter 13. However, the functions of the handle 9 and the slider 4 have been replaced by a thumbwheel 21 that engages a pair of friction wheels 22, 23, which are in contact with the safety guide wire 11. Likewise, the functions of the sheath tubing 3 and the support tubing 7 have been replaced by a guide wire spool 24. These features allow the intravenous catheter insertion device 20 to be constructed in a more compact configuration. In use, the safety guide wire 11 is advanced by turning the thumbwheel 21. A lateral movement of the thumbwheel 21 disengages the needle carrier 6 from the front plug 2, allowing the biasing member 12 to expand, thereby retracting the needle 8 and the safety guide wire 11 into the outer housing 1. Alternatively, a separate button, lever or other actuation member can be provided to actuate the withdrawal of the needle 8 and the safety guide wire 11. The guide wire spool 24 may optionally include a rotary spring or similar mechanism (not shown) to assist in the retraction of the safety guide wire 11 into the outer housing 1.


In one embodiment, the length of the guide wire 11 on the spool 24 is more than twice the length of the housing 1. In another aspect, the length of the guide wire on spool 24 is sufficient to provide guide wire access to a central vein. In one embodiment, the guide wire spool contains a guide wire having a length between 10 to 60 centimeters. The guide wire spool 24 may also be configured to include a clutch, cam or other releasable engagement element to disengage the spool 24 during advancement of the guide wire 11 in order to reduce the force needed to rotate thumbwheel 21 or wheels 22, 23. After advancement is completed, the releasable engagement element would then engage the retraction mechanism associated with the spool 24. Once guide wire withdrawal is desired, the withdrawal mechanism is actuated. The use of the guide wire spool 24 allows for the use of a guide wire insertion length that is much longer than the length of the housing containing the guide wire spool



FIGS. 7-9 illustrate a method of inserting an intravenous catheter using an intravenous catheter insertion device 20, such as those described in FIGS. 1-3 or FIG. 6. The intravenous catheter insertion device 20 is a single-use, non-reusable device supplied to the physician or medical practitioner sterile in a ready-to-use, undeployed condition as shown in FIG. 2. In use, the physician uses the outer housing 1 as a handle to manipulate the intravenous catheter insertion device 20. With the device in the undeployed condition, the access needle 8 is used to puncture a vein, as shown in FIG. 7. When venous blood is observed in the blood flashback chamber, the distal tip of the access needle 8 is the lumen of the vein. The physician can then advance the handle 9 in the distal direction to extend the safety guide wire 11 out of the access needle 8 into the lumen of the vein. The distal portion of the safety guide wire 11 assumes its spiral configuration to act as a safety bumper to prevent accidental puncture of the far wall of the vein or other damage to the vein. With the safety guide wire 11 thus deployed, the physician can safely continue advancing the intravenous catheter insertion device 20 until the distal tip of the intravenous catheter 13 is in the lumen of the vein. Once the intravenous catheter 13 is inserted far enough into the vein, the physician rotates the handle 9 that rotates the slider 4, which in turn rotates the needle carrier 6 and disengages the interlocking member 18 of the needle carrier 6 from the mating interlocking member 19 on the front plug 2. (In the exemplary embodiment described above, the handle moves in a counterclockwise direction as allowed by the triangular cutout 15 at the distal end of the slot 14 in the outer housing 1. Additional structural features of the actuator mechanism are shown in more detail in FIGS. 1-3.) When the handle 9 is released, the biasing element (here a compression spring 12) urges the needle carrier 6 and the slider 4 in the proximal direction, thus simultaneously withdrawing the access needle 8 and the safety guide wire 11 into the outer housing 1, leaving only the intravenous catheter 13 in the lumen of the vein. FIG. 8 shows the access needle 8 and the safety guide wire 11 withdrawing into the outer housing 1. The shape of the triangular cutout 15 allows the handle 9 to make a smooth transition into the elongated slot 14 as it moves proximally under the influence of the biasing element 12. Finally, the intravenous catheter 13 is disengaged from the luer slip 16 fitting on the distal end of the front plug 2, as shown in FIG. 9, and a source of intravenous fluid, a syringe or other device is attached to the luer fitting 27 of the intravenous catheter 13.


While it is desirable for the intravenous catheter insertion device 20 to withdraw the access needle 8 and the safety guide wire 11 simultaneously, the actuator mechanism could also be modified to withdraw the access needle 8 and the safety guide wire 11 sequentially. For example, the actuator mechanism could withdraw the access needle 8 first and then, after a slight delay, withdraw the safety guide wire 11.


Alternatively, the actuator mechanism could be modified to require two separate motions of one actuator member or selective movements of two separate actuator members to withdraw the access needle 8 and the safety guide wire 11 selectively.


In an alternative embodiment of the intravenous catheter insertion device 20, the compression spring 12 may be omitted from the actuator mechanism, thus allowing the access needle 8 and the safety guide wire 11 to be withdrawn manually using the handle 9. Once the intravenous catheter 13 has been inserted into the patient's vein, the handle 9 is rotated laterally to disengage the needle carrier 6 from the front plug 2, then the handle 9 is moved proximally along the slot 14 to withdraw the access needle 8 and the safety guide wire 11 into the outer housing 1.


The components of another embodiment of a catheter insertion device 20 are illustrated in FIGS. 10A and 10B. FIG. 10A illustrates a housing 1 having an interior space 34. The housing 1 is illustrated as a generally cylindrical container with sufficient strength to hold the various components of the catheter insertion device 20. Attachment feature 40 is also visible within interior space 34. As is illustrated in the figures that follow, attachment feature 40 may be used to secure the restraining element 36 to the handle 1 or within the interior space 34. An access needle 8 is positioned on and exits the interior space 34 at the distal end of housing 1. The access needle has a distal end 45 and a lumen 46. The access needle 8 is slideable with respect to the interior space 34. A release bar 32 is used to hold the needle 8 within the housing 1. In this illustrative embodiment, the biasing member 12 is compressed between the housing 1 and the needle support 29. A release button 30 is used to tilt the release bar 32 allowing the biasing member 12 to expand and move the access needle 8 proximally within the interior space.


The catheter insertion devices described herein include a biasing element adapted and configured that, when released, move the insertion needle from a position where at least a portion of the needle is outside of the housing 1 to a position within the interior space 34. Additionally, the same or a different biasing element is adapted and configured, when released, to move the guide wire 11 from a position outside of the housing to a position within the housing 1. In the configurations illustrated in many of the embodiments described herein distal movement of the needle 8 or guide wire 11 denotes insertion into a target vessel and proximal movement denotes withdrawal from a target vessel. Biasing elements are described using this convention for purposes of discussion. Other movements may be used for advancement into or withdrawal from and the descriptions of biasing element movement and configuration would be adjusted accordingly. In one aspect, a biasing element is adapted and configured that, when released from a constrained condition, moves the needle 8 so that the needle 8 is completely within the interior space 34. In another embodiment, a biasing element is adapted and configured to, when released from a constrained configuration, move the guide wire 11 so that the entire length of the guide wire 11 is completely within the interior space 34. In the embodiment illustrated in FIG. 11A, the biasing member 12 is a spring.



FIG. 10B illustrates the guide wire 11 and associated components. In the illustrated embodiment, the proximal end of the guide wire 11 is attached to a guide wire support 38. The distal end of the guide wire will, in use, extend along the access needle and beyond the distal end of the housing 1. Prior to use, one end of the guide wire 11 is always attached to the handle 1 or within the interior space 34 or both. After use, the guide wire 11 is completely within the handle 1 or within the interior space 34. The handle 9 is directly or indirectly attached to the guide wire. The handle 9 is moveable relative to the housing 1 to move the guide wire 11 relative to the interior space 34.


The guide wire support 38 and the guide wire 11 may be joined using any suitable technique. The guide wire support 38 is used to provide mechanical strength to the guide wire 11 since the guide wire 11 is a small diameter, flexible line, coil, filament or wire as described herein and well known in the medical arts. The guide wire support 38 may have a shape different that the illustrated embodiment and still meet the functional requirement of supporting one end of the guide wire 11. A handle 9 is attached, directly or indirectly to the guide wire 11 so that movement of the handle 9 produces movement of the guide wire 11 relative to the interior space 34 or the housing 1. In the illustrated embodiment, the handle 9 is attached to the guide wire 11 using the guide wire support 38. FIG. 10B also illustrates a restraining element 36. The restraining element 36 is used to prevent movement of the guide wire 11. In one aspect, the restraining element 36 attached to the handle 9 to limit the motion of the guide wire 11 relative to the access needle 8. In the illustrated embodiment, one end of the restraining element 36 is attached to the guide wire support 38. The other end or some other portion of the restraining element 36 is attached to the handle 1. In one embodiment, the restraining element extends between the guide wire support 38 or the handle 9 and the handle 1 or the interior space 34. The restraining element 36 may be attached to an attachment feature 40 or by any suitable means to the handle 1 or within interior space 34.



FIGS. 10C and 10D illustrate side views of catheter hub embodiments. FIG. 10D is a conventional catheter hub assembly 13. FIG. 10C is a catheter hub 13A with an angled base 61 to allow easier catheter entry into a vessel as will be further described below with regard to FIGS. 19A and 19B.



FIGS. 10E and 10F illustrate various apertures 43 in the access needle 8 to provide early indication of vessel puncture. FIG. 10E illustrates a single indicator opening 43 while FIG. 11F illustrates an embodiment with two indicators 43. The indicators 43 could have any suitable size and shape to provide indication that blood is present in the needle lumen 46. The illustrated shapes are rectangular in FIG. 10E and oval in FIG. 10F. Circular shapes could also be used.



FIG. 10G illustrates a top down view of a needle 6, guide wire 11 and the distal end of the handle 1 attached to a catheter hub 13. The length of needle 8 is selected to extend beyond the distal end of the catheter as shown. The needle distal end 45 extends far enough beyond the end of the catheter to allow for vessel puncture. The guide wire 11 is supported by and moveable relative to the access needle 8. The guide wire 11 is shown extended from the needle distal end 45.


The guide wire 11 coils into the plane of the page in this illustrated embodiment. The guide wire coil may be formed in the needle lumen 46 and advanced from the needle 8 in a coiled configuration or the guide wire 11 may be constrained into a straight configuration within the access needle lumen 46. Once extended out of the access needle lumen 46, the guide wire 11 assumes a previously defined coiled structure. In other embodiments, the guide wire 11 does not coil but instead remains straight during use. Various coil types are shown and described in FIGS. 1, 4A, 4B, 5B, 5A, 16A-17B, 22, 23 and 24.


The access needle 8 includes a bleed back indicator 42 visible in the distal end of a catheter 13 when the access needle 8 is positioned within a catheter 13. The bleed back indicator 43 in the illustrated embodiment includes an opening 43 in the sidewall of the distal end of the needle 8. The bleed back port 42 is visible through the catheter assembly 13 to provide a nearly immediate indication of vessel puncture. The bleed back indicator 42 is within a portion of the access needle 8 that extends beyond the housing 1. As illustrated, the bleed back indicator 42 is an opening 43 that is formed in the needle 8 in a portion of the needle that is distal to the distal end of the housing 1.



FIG. 10G also illustrates the relationship between the guide wire and the bleed back opening. One consideration in operating guide wire assisted access devices is inadvertent motion of the handle 9. If the handle 9 is advanced proximally, for example, the guide wire tip may pop out of the needle lumen 46 though the flash back channel 43. In this instance, the guide wire 11 would need to be re-threaded into the access needle lumen 46. FIGS. 11A and 11B illustrate one technique to prevent this undesired proximal movement using the restraining element 36. The restraining element 36 is used to restrict the movement of the guide wire 11. As best seen in FIG. 11A, the restraining element 36 is attached to the handle 9 and limits the proximal motion of the guide wire 11 relative to the access needle 8. The restraining element 36 is pulled tight and restricts further proximal movement of the handle 9. As shown, in the most proximal position prior to activation of the release button 30, the guide wire 11 remains within the access needle 8. In one embodiment, the restraining element 36 is a strip of Kevlar fabric cut to fit within the interior space 36. The restraining element 36 may be any of a wide variety of materials that will limit or prohibit the movement of the guide wire. The restraining element 36 could also be a flexible element that provides increasing resistance as the handle is moved to provide the user with a tactile feedback that the further movement of the handle in that direction is undesired.


Similar to FIGS. 7-9 above, FIGS. 11A-14B will be used to describe a illustrative catheter insertion sequence. The insertion of the catheter 13 and the operation of an embodiment of a catheter insertion device 20 will be described using a sequence of figures having a section view of the interior of the housing 1 and an illustration of the device being used to access a vessel.



FIG. 11A illustrates the housing 1 in position ready to use the needle to puncture a vessel. Note that the proximal movement of handle 9 is limited by the restraining device 36 so that the guide wire 11 remains in position within the interior space 34 and the needle lumen 46. FIG. 11B illustrates the device 20 inserted within a catheter 13 prior to vessel stick. FIG. 11C illustrates the needle 8 piercing through the vessel walls (vw) and into the vessel. Blood (B) appears in the bleed back indicator 42. Bleed back indicator 42 provides an early indication of vessel puncture. The guide wire 11 is maintained within the access needle lumen 46 between distal end of needle 45 and the bleed back opening 43.



FIG. 12A illustrates the interior component position after guide wire advance. As shown, handle 9 has been moved distally relative to the housing 1. This movement advanced the guide wire 11 beyond the needle distal end 45 and reduced the tension in restraining element 36. FIG. 12B illustrates the guide wire 11 assuming a coiled shape after exiting the needle 8. Continued movement of the handle 9 advanced the guide wire 11 further into the vessel (v).



FIG. 13A illustrates the catheter 13 advanced beyond the needle distal end 45 and along the guide wire 11. Once the catheter is inserted into the vessel v, the guide wire 11 and access needle 8 can be withdrawn. Withdrawal of the guide wire 11 and needle 8 can occur in a wide variety of ways. Withdrawal may be simultaneous or sequential. If sequential, either the guide wire or the needle may be withdrawn first. Withdrawal may be performed by manual operation of a knob, handle, slider or other component attached directly or indirectly to either the guide wire 11, the needle 8 or to both the guide wire 11 and the needle 8. Withdrawal may also be performed using an automatic mechanism configured to withdraw on or both of the guide wire 11 and the needle 8. Automatic withdrawal of one element may be combined with manual withdrawal of the other element. Irrespective of withdrawal technique or sequence performed, a complete withdrawal sequence ends with both the needle and the guide wire proximal to the distal end of the housing 1 and/or within the interior space 34. In one aspect, at the conclusion of the withdrawal operation both the guide wire 11 and the needle 8 are completely within the interior space 38 so that sharp and blood exposed components are stowed within the housing 1. (see e.g., FIGS. 14A, 1513C, 18G, and 31).


An automatic withdrawal sequence will be described beginning with FIG. 12A. The release button 30 is depressed so that the release bar 32 is lifted clear of the proximal end of needle support 29. The biasing member 12 is now unconstrained in the proximal direction and will expand that way. As the biasing member 12 moves proximally it will also move the needle support 29 proximally and along with it the needle 8. Proximal movement of the needle support 29 will also move the guide wire support 38 and handle 9 proximally along with the guide wire 11. FIG. 13B illustrates the proximal movement of the guide wire 11 shown near the distal end of the catheter 13 instead of further down the vessel as shown in FIG. 13A. FIG. 13C illustrates continued proximal movement indicated by the arrow. Here both the guide wire 11 and the needle 8 have been withdrawn from the catheter 13 and are now proximal to the distal end of housing 1. FIG. 13D is a section view of the housing 1 at the conclusion of the withdrawal sequence. At the conclusion of the withdrawal operation, the catheter 13 is inserted into the vessel v but the housing 1 is still attached to the catheter 13 as shown. The needle 8 and guide wire 11 are both proximal to the distal end of the housing 1 and within the interior space 34. Additionally, FIG. 13D illustrates both the guide wire 11 and the needle 8 completely within the housing 1 and interior space 34.



FIG. 14A illustrates the housing 1 disconnected from the catheter assembly 13. At this point, the housing 1 is ready for disposal and the catheter 13 is within the vessel as shown in FIG. 14B. As shown in FIGS. 14A and 15, the needle distal end 45 is withdrawn a distance d from the housing distal end 35. The needle 8 and the guide wire 11 are completely within the housing interior 34. The distance d may be adjusted based on a number of design factors such as the housing length, needle length, size of and energy stored in the biasing element, and the length of travel needed for withdrawal. The distance d may be from 1 mm to about 20 mm or may be just proximal to the housing distal end 35 as illustrated in FIG. 18G.


Returning to FIG. 14A, once the needle 8 and guide wire 11 are withdrawn into the housing 11, the blood exposed and sharp components of the device 20 typically the needle 8 and the guide wire 11, are within the handle interior space 34. This additional feature to provide additional security to ensure that the needle and the guide wire remain in the housing or within the interior space. In one aspect of the invention, a restraining element is positioned within the interior space 34 to limit distal movement of one or both of the access needle 8 or guide wire 11. The restraining device is positioned within the interior space based on the length of travel needed during a withdrawal sequence. The restraining element is, in some embodiments, positioned within the interior space 36 near the end of travel for the needle and/or guide wire. The end of travel for the needle and guide wire may vary with application. When positioned properly, the distal movement of the guide wire 11, the needle 8 or any component connected to the guide wire or the needle will be restricted so that neither the guide wire nor the needle will extend from the distal end of the housing 1. Alternatively, when positioned properly, the distal movement of the guide wire 11, the needle 8 or any component connected to the guide wire or the needle will be restricted so that the guide wire and the needle will remain within the interior space 34. The interior space 34 could be a cavity within the housing 1 or it could the hollow space within housing 1.


In one embodiment, the restraining device restricts both proximal and distal movement. In another embodiment, the restraining device allows proximal movement but restricts distal movement. FIG. 15 illustrates one embodiment of a restraining device 64 within the interior space 34. The restraining device 64 has a truncated cone shape with the base opened towards the distal end of the housing 1. The restraining device is made of a flexible material with sufficient access to allow the one way proximal movement of the guide wire 11, needle 8 and the associated sub-components. In the illustrated embodiment, the restraining device is adapted and configured to seize on the proximal end of the needle support 29. The restraining device 29 could be configured to engage with, capture, confine or restrict any component in order to maintain the desired position of the guide wire and the needle. The restraining device 64 could also be a narrowing within the interior space 34 that produces a friction fit between the interior walls of the housing and the guide wire and/or needle components. In addition, the guide wire and needle components could be configured to engage and lock upon initiation of proximal movement of either the needle or the guide wire. In one embodiment, proximal movement locks the guide wire and the needle together such that they move as a single unit proximally within the housing 1. The restraining device 64 is then adapted and configured to engage with a feature on one of the guide wire or the needle or on the single guide wire/needle unit.


In another embodiment, the restraining device 64 includes one or more pins angled towards the proximal end of the interior space 34. Virtually any shape that will allow one way (here, proximal) passage of the needle/guide wire and prevent the opposite movement (here, distally) could be used. While illustrated as confining the movement of the needle guide, this is only for purposes of discussion. The retraining device could be adapted and configured to engage within any component of the needle or guide wire assemblies so long as the engagement allows withdrawal into the housing interior and prevents advancement out of the housing interior. Other restraining features and configurations include, for example, one or more rings, wedges, or any other friction lock configuration.


The guide wire 11 may have any of a number of different configurations including curved, coiled and straight configurations as shown and described in FIGS. 3, 4A, 4B, 5A-5C, 8, 22, 23 and 24 or in any other configuration conventional to field of guide wires for medical applications. In the illustrative embodiments of FIGS. 16A-17B, the guide wire 11 is coiled within the access needle lumen 46. FIGS. 16A-17B illustrate end views (FIGS. 16A and 17A) and isometric views (FIGS. 16B and 17B) of the distal portion of an embodiment of an access needle 8 used in a catheter insertion device 20. The illustrated access needles 8a and 8b have a distal end 45 and an interior wall defining a lumen 46 that extends from the distal end to a proximal end. As described above with access needle 8, the access needles 8a and 8b are slideable relative to the interior space 46 and extend beyond the distal end of the housing 1. An opening 43 in the sidewall of the access needles 8a, 8b is in communication with the access needle lumen 46. The opening 43 in the sidewall of the access needle is positioned proximal to the access needle distal end 45. A guide wire 11 is supported by the access needle.


The lumen of the access needles 8a, 8b have a cross section shape that maintains the orientation of the guide wire 11 relative to the access needle lumen 46. The access needles 8a, 8b illustrate access needle lumens having a non-circular cross section shapes. In one aspect, the shape of the access needle lumen is used to maintain the orientation of the guide wire to help prevent the guide wire from inadvertently exiting the access needle lumen through the bleed back indicator or opening 43. In the illustrative configurations of the FIGS. 16A-17B, if the guide wire 11 is withdrawn proximally into the area of the bleed back opening 43 then either a feature (FIGS. 16A and 16B) or the interior shape in the needle (FIGS. 17A and 17B) maintains the guide wire 11 in an orientation that will prevent the guide wire 11 from exiting the access needle lumen 46 via the opening 43. The orientation maintaining features illustrated in FIGS. 16A-17B may be used alone or in combination with each other. In another variation, an orientation maintaining feature may be used in combination with or in lieu of the restraining device 36 described and illustrated in FIGS. 10B and 11A.


In some embodiments, a feature formed within the access needle sidewall maintains the orientation of the guide wire 11 relative to the access needle lumen 46. The feature could be any formed on or in the sidewall or a separate component joined to the sidewall. FIGS. 16A and 16B illustrate a feature 52 formed within the access needle sidewall to maintain the orientation of the guide wire 11 relative to the access needle lumen. In the illustrated embodiment feature 52 is a groove formed along the sidewall. The depth of the groove is sufficient to confine the guide wire 11 and maintain its orientation within the needle lumen 46.


In the embodiment illustrated in FIGS. 17A and 17B, the cross section shape of the access needle lumen 46 is used to confine the guide wire 11 in the needle lumen 46 to prevent the guide wire 11 from exiting the lumen 46 through the bleed back opening 43. FIGS. 17A, 17B illustrate an access needle lumen 46 having an elliptical cross section shape. Other cross section shapes may be used to confine the guide wire 11 within the access needle lumen 46.


In one embodiment, the access needle lumen 46 confines the coiled guide wire 11 to form at least one half of a rotation within the access needle lumen 46. In an alternative embodiment, the access needle lumen confines the coiled guide wire 11 to form one or more rotations within the access needle lumen 46.


Another challenge related to the use of guide wire aided vessel access devices is the premature distal advancement of the guide wire during or prior to needle puncture. FIGS. 18A-18H illustrate an embodiment of a catheter insertion device 20 having a main channel 14 and a guide channel 70. The main channel 14 within the housing 1 confines the movement of the handle 9 along the housing 1. The guide channel 70 is adjacent to and accessible from the main channel 14. The guide channel 70 is adapted to prevent or restrict movement of the handle 9 once the handle 9 is in the guide channel 70.


The insertion device illustrated is used in an insertion sequence similar to the sequence described and illustrated above in FIGS. 7-9, and FIGS. 11A-14B. The components and operation of the catheter device 20 in FIGS. 18A-18H are similar to the embodiments described above and the same reference numbers are used on similar elements. The guide channel is an example of an additional feature to restrict or prevent distal movement of the guide wire 11. The housing 1 has a guide channel 70 in addition to the main channel 14. The guide channel 70 is best seen in the isometric view of FIG. 18B.



FIGS. 18A and 18B illustrate side and isometric views respectively of an embodiment of a catheter insertion device 20 with handle 9 in a proximal position in the main channel 14. This embodiment of the catheter insertion device 20 includes a housing 1 having an interior space 34. An access needle 8 is slideable with respect to the interior space 34 and extends from the distal end of the housing 1. A guide wire 11 is supported by and moveable relative to the access needle 8. A handle 9 is attached to the guide wire. The movement of the handle is limited so that at least a portion of the guide wire 11 always remains in the interior space 34. In the illustrated embodiment, the handle 9 is attached to the guide wire 11 using the guide wire support 38. The handle 9 and the guide wire support 38 could be a single component. As illustrated in the beginning of the sequence (FIG. 18A) and the end of the sequence (FIG. 18G) the movement of the handle 9 is confined so that the guide wire proximal portion 11A always remains in the interior space 34.


As shown in FIG. 18A, proximal movement of the handle 9 is restricted or stopped by the restraining device 36. As best seen in FIG. 18B, even though the handle 9 and the guide wire 11 are with drawn proximally, the guide wire 11 remains within the needle lumen 46 distal to opening 43 and proximal to distal end 45. In the embodiment illustrated in FIGS. 18A-18D the restraining element 36 prevents proximal guide wire movement and the holding channel 70, when used, prevents distal guide wire movement. One end of the guide wire 11 is secured to the housing 1 using attachment point 40. As shown in FIGS. 18A and 18B the guide wire 11 is disposed within the access needle 8.


Guide channel 70 may also include a friction or interference fit or otherwise restrict the handle 9 once the handle 9 is moved into the guide channel. For example, the guide channel may have a uniform width with a lock, tab or other feature in the distal end of the channel 70 to releasably secure the handle 9 within the channel 70. Alternatively, movement of the handle relative to the guide channel 70 may be used to lock and unlock the handle 9 from the guide channel 70. For example, the handle 9 may move into a J-shaped guide channel to lock and out of the j-shaped channel to return to the channel 14. In another alternative embodiment, the width of the guide channel 70 decreases distally to cause a friction with a distally advanced handle 9.



FIGS. 18C and 18D illustrate the handle 9 advanced distally into the guide channel 70. As compared to FIGS. 18A, 18B, the distal movement of the handle 9 produced corresponding distal movement of the guide wire 11. As best seen in FIG. 18D, the guide wire 11 is still within the access needle 8 and proximal to the distal end 45, the guide channel 70 is so designed that when the handle 9 is moved into the channel 70, the guide wire 11 remains within the needle 8. For those embodiments where the needle 8 includes an opening 43, the channel 70 confines the guide wire 11 movement between the opening 43 and the distal end of the needle 45.



FIGS. 18E and 18F illustrate guide wire advancement as described and illustrate above in FIGS. 8, 12A, and 13. FIGS. 18E and 18F also illustrate a catheter insertion device embodiment where one end of the guide wire 11 is constrained within the interior space 34 when the guide wire 11 is extended beyond the access needle distal end 45.



FIGS. 18G and 18H illustrate the position of the components at the conclusion of a withdrawal sequence as described and illustrated above with reference to FIGS. 9, 13A, 13B, 13C, 13D, 14 and 15. FIG. 18G illustrates the withdrawal of the needle distal end 45 to a position just proximal to the housing distal end 35. This final position is in contrast to FIGS. 14A and 15 where the needle distal end 45 is withdrawn a distance d from the housing distal end 35. The spatial relationship of the components used in this configuration may be altered so that the needle distal end may be withdrawn a distance d. In each of the embodiments described herein, the guide wire is withdrawn to the same position or proximal to the needle distal end 45, or at least proximal to the housing distal end 35 or a distance d as described.



FIGS. 18A-18D illustrate the restrictions on handle 9 movement provided by restraint device 36 and the guide channel 70. The catheter insertion device 20 may also be provided to a user in a “ready for use” configuration illustrated in FIGS. 18C and 18D. In this configuration, inadvertent distal guide wire 11 advancement is mitigated by the placement of the handle 9 in the guide channel 70. In order to advance the guide wire 11 distally or beyond the needle distal end 45, the handle 9 and guide wire 11 are moved proximally as needed to free the handle 9 from the guide channel 70. This proximal movement is limited by the restraining device 36 as shown in FIG. 18A to maintain the guide wire 11 in the needle 8. Thereafter, the handle 9 and guide wire 11 is advanced distally as described herein for catheter insertion followed by a needle/guide wire withdrawal sequence.


Another challenge facing vessel puncture or entry generally is providing an orientation of the catheter for patient comfort after insertion. One potential orientation issue is best illustrated in FIG. 14B. FIG. 14B illustrates a conventional catheter hub assembly 13 where the catheter lumen is bent down to accommodate the flat base and generally rectangular arrangement of the hub. In contrast, FIGS. 19A and 19B illustrate an angled catheter lumen. The catheter lumen angle Θ is selected to optimize the approach angle of the needle 8 for entering the vessel v. As shown in FIG. 19A, the housing 1 is aligned with the catheter lumen. As a result, the needle 8 is also aligned to the catheter lumen angle Θ. FIG. 19 is a section view of the catheter hub 13A illustrating catheter lumen angle Θ formed between the base 61 and the catheter lumen. In one embodiment, the catheter lumen angle Θ ranges from about 0 degrees to about 90 degrees. In another embodiment, the catheter lumen angle Θ ranges from about 0 degrees to less than about 25 degrees. The catheter 13A is used differently that the catheter hub 13. As shown in FIGS. 7 and 11C the housing and catheter unsupported above the vessel where the catheter base is not in contact with the skin. In contrast, when catheter 13A is used, base 61 is in contact the with skin and, when properly placed on the skin, the catheter lumen angle Θ may be used to guide the needle distal end 45 through the skin and into the vessel v. An angled catheter hub may increase patient comfort and reduce the possibility of catheters being inadvertently pulled out. These advantages result from the hub and lumen will be in better contact with the skin because catheter lumen is angled for insertion into the vessel.



FIG. 20 illustrates an embodiment of a catheter insertion device having a housing 1 with an interior space 34 and a longitudinal axis. The feature 80 is positioned on or formed from the housing distal end 35. When the feature 80 is coupled to a catheter 13, the housing longitudinal axis is offset from the longitudinal axis of the catheter 13. The offset is indicated by the housing offset angle β. As illustrated, the housing offset angle β is about 10 degrees to about 15 degrees. In other embodiments, the housing offset angle β ranges from about 5 degrees to less than about 50 degrees. The access needle 8 passes through the feature 80 and is and attached to a needle carrier or other component within the housing 1. The needle and/or needle carrier is slideable with respect to the interior space 34 and the access needle 8 is slideable relative to the feature 80. In one embodiment, when the feature 80 is coupled to the catheter 13 the housing longitudinal axis is offset from the longitudinal axis of the catheter to form a housing offset angle β of less than 180 degrees. In another aspect, when the feature 80 is coupled to the catheter 13 the housing longitudinal axis is offset from the longitudinal axis of the catheter to form a housing offset angle β of less than 60 degrees. In another aspect, when the feature 80 is coupled to the catheter 13 the housing longitudinal axis is offset from the longitudinal axis of the catheter to form a housing offset angle β of less than 45 degrees. As a result of the offset angle β, the withdrawal sequence will produce needle and guide wire movement that it initially at an angle to the longitudinal axis of the housing and corresponding to the offset angle β. After passing through the feature 80, the withdrawal movement would change into a movement that is parallel and in some embodiments coextensive with the longitudinal axis of the housing 1. As such, once the guide wire and/or needle are withdrawn past the feature 80, the access needle and the guide wire are withdrawn into the interior space 34 substantially parallel to the longitudinal axis of the housing 1.


Another technique to adjust the angle of entry into the vessel and ease the use of the catheter insertion device involves altering the point where the needle exits the housing. It is believed that by moving the needle exit from the central portion of the housing as illustrated in the previous embodiments and conventional to safety syringes generally, a different access angle is formed between the housing 1 and the target vessel.



FIG. 21 illustrates an embodiment of a catheter insertion device having a housing 1 with an interior space 34 and a longitudinal axis. The interior space 34 is sized and configured to contain all of the guide wire 11 and the access needle 8 after catheter insertion is complete. An access needle 8 is slideable with respect to the interior space 34. The needle axis is offset from the housing longitudinal axis. The offset needle is closer to one wall of the housing and exits the housing from a non-central portion of the housing distal end. Here, the needle axis extends parallel and below the housing longitudinal axis.


The biasing element 12 is coextensive with the housing axis. The release bar 32 is adapted to engage the needle support 21 where positioned towards one wall of the housing. Otherwise, the components operate as described above to needle and guide wire insertion and withdrawal.


In the illustrated embodiment, the longitudinal axis of the housing extends through the axis of the biasing element 12. The guide wire 11 is coextensive with the needle 8. The needle axis is parallel to but offset from the housing longitudinal axis. The biasing element 12 is above the needle 8 in contrast to previous embodiments where the needle and the biasing element were coextensive. Here the needle and guide wire may be moved closed to one wall of the housing. As a result, the needle exits the housing closer to one wall thereby allowing the housing to be held closer to the skin than in previous embodiments where the needle exited the housing in about the middle of the housing. In another aspect, the restraining element 36 and attachment point 40 may be moved above the needle to aid in moving the needle closer to one wall of the housing.


Various guide wire configurations are available as illustrated and described in, for example, FIGS. 1, 3, 4A, 4B, 5A, 5B, 5C, 8, 10B, 10G, and 16A-17B. Additional guide wire designs may also be used with the catheter insertion devices described herein. As illustrated and described herein, the guide wire 11 could be used in a coiled, uncoiled or curved configuration. In addition, the distal end of the second portion comprises one or more of a full radius distal tip, a spherical ball of the same material as the guide wire, a spherical ball of a different material than the guide wire or a distal end having a diameter about the same as the first diameter.



FIG. 22 is a section view of a guide wire 11 having a first portion with a first diameter, a reducing section 84 and a second portion with a second diameter that is less than the first diameter. The guide wire distal end 85 is formed into a rounded tip 87 or a ball tip 87 is attached to distal end 85. The first diameter and the second diameter are less than the interior diameter of the access needle 8. In one embodiment, the first diameter is formed from 0.008 inch diameter wire and the second diameter is formed from 0.004 inch diameter wire having a full radius distal end 85. The transition or taper 84 is a linear change from the first diameter to the second diameter as illustrated. In one embodiment, the tip 87 is a spherical ball having a diameter between 0.005 and 0.012 inches formed with or a separate component attached to distal end 85. The spherical ball 87 may be formed from any metal, alloy, plastic, nitinol or other material suited for use in the body.



FIG. 23 is a section view of a guide wire 11 having a first portion with a first diameter, a reducing section 84 and a second portion with a second diameter that is less than the first diameter. The guide wire distal end 85 is formed into a rounded end. The first diameter and the second diameter are less than the interior diameter of the access needle 8. In one embodiment, the first diameter is formed from 0.008 inch diameter wire and the second diameter is formed from 0.004 inch diameter wire having a full radius distal end 85. The transition or taper 84 is a linear change from the first diameter to the second diameter as illustrated. In an alternative embodiment, the transition segment 84 is removed and the guide wire has a single diameter from proximal to distal end. In one specific embodiment, the wire used for the guide wire has a diameter of 0.006 inches.



FIG. 24 illustrates a guide wire 11 formed in a braided structure 89.


In one exemplary embodiment, the braided structure 89 is formed from nitinol wore having a 0.002 inch diameter.



FIGS. 25A and 25B illustrate one embodiment of a guide wire 11 having a coiled portion 91. FIG. 25A is a side view of the guide wire 11 having a first diameter region, a taper or transition region 84 and a second diameter region formed into a coiled portion 91. The coil portion 91 may be described in terms of coil width (cw) and coil span (sc). Coil width (cw) is best seen in FIG. 25A. Coil span (cs) is best seen in FIG. 25B. In one embodiment, the distal tip 85 moves through an angular displacement of at least 180 degrees when moving from a straight configuration (FIG. 23) to a coiled configuration (FIG. 25A). In another embodiment, the distal tip 85 moves through an angular displacement of no more than 270 degrees when moving from a straight configuration (FIG. 23) to a coiled configuration (FIG. 25A). In another embodiment, the coiled portion 91 includes at least one completely formed coil. In another embodiment, the coil width is from about 0.04 to about 0.05 inches. In another embodiment, the coil span is less than 0.015 inches.



FIGS. 26A and 26B illustrate section views of a catheter insertion device embodiment similar in many aspects to the device illustrated and described above in FIGS. 10A, 10B and 11A. FIG. 6 utilizes a spring loaded drum 24 to provide a mechanism to ensure complete withdrawal of the guide wire 11 into the housing 1 when the length of guide wire 11 used exceeds the length of the housing. Along the same lines as FIG. 6, FIGS. 26A and 26B illustrate a catheter insertion device that also provides a mechanism to withdraw a length of guide wire 11 longer than the length of the housing 1.



FIGS. 26A and 26B illustrate an embodiment of a catheter insertion device with a pulley 98 secured within the interior space 34. The pulley 98 is configured to facilitate movement of the guide wire 11 into the interior space 34. FIG. 26A illustrates another catheter insertion device embodiment where one end of guide wire is constrained in the interior space when the guide wire is advanced beyond the needle distal end 45.


The housing interior 34 is dimensioned to store more guide wire but in a manner that accounts for the fact that the guide wire to be retrieved is longer than the housing 1 and at the conclusion of the withdrawal operation sequence, all of the guide wire 11 is within the housing 1. The guide wire 11 passes around the pulley 98 and is attached to the housing at attachment 40a. The biasing member 12a replaces the biasing element 12. The biasing member 12a is extended as the guide wire 11 is advanced distally as shown in FIG. 26A. When released, the pulley 98 moves proximally within the housing 1 as shown in FIG. 26B. The proximal movement of the pulley is the motive force for a withdrawal sequence used to withdraw the needle 8 and guide wire 11 as described above. The reference numbers used correspond to components described above that perform similar functions in this embodiment.



FIGS. 27A-27E illustrate several section views of the distal end of an access needle 8 configured for use with a guide wire channel 54. In these embodiments, the guide wire channel 54 is supported by the access needle 8. In one embodiment, the guide wire channel 54 is suitably dimensioned needle that is attached to the access needle 8 using any suitable joining or bonding technique. The guide wire channel diameter is less than half the size of the access needle diameter in some embodiments. In other embodiments the guide wire channel diameter ranges from 0.016 inches to about 0.028 inches. In other embodiments, the access needle is a standard size, commercially available needle and the guide wire channel is also a standard size, commercially available larger gauge needle. For example, if the access needle is a standard 17 gauge needle (0.058″ diameter) then the guide wire channel may be any larger gauge needle such as 18 gauge to 27 gauge. In other embodiments, the guide wire channel is a standard, gauge needle selected to accommodate the guide wire 11. For example, a 27-20 gauge needle (diameters ranging from 0.016-0.035 inches) may be used for a guide wire diameter of 0.008 inches depending upon desired amount of clearance. In other configurations the guide wire channel inner diameter is about twice the diameter of the guide wire in the channel 54.


In the embodiments that follow, the side of the needle having distal end 45 will denote the bottom of the needle and the side opposite that surface as the top of the needle. FIG. 27A illustrates an embodiment where the guide wire channel 54 is on top of the needle 8. The guide wire 11 remains in the guide wire channel 54. In this embodiment, the guide wire may be advanced proximally and distally without passing through or within the access needle lumen 46.



FIG. 27B illustrates an embodiment where the guide wire channel 54 is on the bottom of the needle 8. The guide wire 11 remains in the guide wire channel 54. In this embodiment, the guide wire may be advanced proximally and distally without passing through or within the access needle lumen 46. FIG. 27B1 illustrates an alternative embodiment where the guide channel 54 is a needle with a distal tip 57 positioned adjacent the access needle distal tip 45.



FIG. 27C illustrates an embodiment where the guide wire channel 54 is on the top of the needle 8 inside the needle lumen 45. In this embodiment, the length of guide wire channel 54 is less than the length of the access needle lumen. The access needle includes a port 58 in the needle sidewall distal to the end of the guide wire channel and proximal to the distal end of the needle. The guide wire passes out the end of the guide wire channel through the port 58 and into the vessel. The guide wire 11 remains in the guide wire channel 54 for most of the length of the access needle lumen.



FIG. 27D illustrates an embodiment where the guide wire channel 54 is on the top of the needle 8. In this embodiment, the length of guide wire channel 54 is less than the length of the access needle lumen. The access needle includes a port 58 in the needle sidewall at the end of the guide wire channel and proximal to the distal end of the needle. The guide wire passes out the end of the guide wire channel through the port 58 and into the access needle lumen 46. The guide wire 11 remains in the guide wire channel 54 for most of the length of the access needle lumen.



FIG. 27E illustrates an embodiment where the guide wire channel 54 is on the top of the needle 8 inside the needle lumen 45. In contrast to FIG. 27C, the access needle does not include a port 58 in the needle sidewall. As with FIG. 27C, the length of guide wire channel 54 is less than the length of the access needle lumen. However, instead of exiting the needle lumen, the distal to the end of the guide wire channel opens into the needle lumen proximal to the distal end of the access needle. The guide wire passes out the end of the guide wire channel passes through the distal end of the needle lumen and hence into the vessel v. As with the previous embodiments, the guide wire 11 remains in the guide wire channel 54 for most of the length of the access needle lumen but does not exit the guide channel and enter the vessel directly as with the embodiments of FIGS. 27A, 27B and 27B1.


While described as using a single button to automatically withdraw both the guide wire and the needle with a single action, one of the guide wire or the needle may be withdrawn from the vessel manually. In another alternative, both the guide wire and the needle are withdrawn manually. In one aspect of this embodiment, the biasing element 12 illustrated in FIG. 10A may be removed and the needle support 29 attached to a second handle. In this embodiment, needle withdrawal is accomplished by moving the second slider attached to the needle proximally until the needle is within the housing interior 34. In addition, the device may be adapted so that the handle 9 may be used to manually withdrawn the guide wire separately or in sequence with the needle withdrawal.


The above described catheter insertion devices may be used to perform a number of different methods of introducing a catheter into a vessel. One exemplary basic method includes three steps. First, insert a guide wire substantially contained within a housing into a vessel. Next, advance a catheter over the guide wire and into the vessel. Finally, withdrawing the guide wire out of the vessel and completely into the housing.


The basic method may include other steps. In one alternative, the guide wire is advanced along and within a needle inserted into the vessel before performing the inserting step. In another alternative, the guide wire is advanced along and outside a needle inserted into the vessel before performing the inserting step. In yet another alternative, the guide wire is advanced within a guide wire channel before entering the vessel. In yet another aspect, the guide wire is coiled within the vessel after the inserting step, while in the access needle or after exiting a guide wire channel.


Other alternative or modified method steps may also be performed. In one aspect, the withdrawing step is accomplished manually and in another embodiment withdrawal occurs automatically. In one alternative, the withdrawing step is accomplished by releasing a biasing member to withdraw the guide wire completely into the housing. In another aspect, releasing a biasing member also withdraws a needle supporting the guide wire completely into the housing. In one alternative, the withdrawing step or a withdrawal sequence is initiated by pushing a button. In an additional aspect, a step of inserting a needle attached to the housing into the vessel is performed before the step of inserting a guide wire step. One additional optional step includes using a flashback indicator near the distal tip of the needle to determine that the needle has entered the vessel after the inserting a needle step. In another aspect, the method may include the step of moving a handle attached to the guide wire proximally before the inserting step.


Each of the patent application, patents and references mentioned in this application are incorporated herein by reference in it's entirely. Additionally, each of U.S. Pat. Nos. 4,747,831; 4,509,945; 4,900,307; and 5,749,371 are incorporated herein by reference in its entirety.


While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention, it will be apparent to one of ordinary skill in the art that many modifications, improvements and sub-combinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof. For example, all dimensions and materials included in the specification or drawings are intended only as examples of presently preferred embodiments and are not intended to limit the scope of the invention.

Claims
  • 1. A method for inserting a catheter into a body, comprising: grasping a catheter insertion device, comprising: a housing;a needle having a proximal end in the housing and a distal end extending from a distal end of the housing in an insertion position;a guide wire having a distal portion disposed in a lumen of the needle in a withdrawn position, the guide wire including a safety tip having a non-coiled configuration in the withdrawn position and a coiled configuration in an advanced position, the coiled configuration comprising a preformed spiral including a plurality of revolutions, the plurality of revolutions including adjacent revolutions in different planes;a sliding member attached to the guide wire; anda catheter disposed coaxially over the needle;inserting the distal end of the needle and the catheter into a blood vessel;moving the sliding member distally to transition the guide wire from the withdrawn position to the advanced position;pushing the catheter over the needle and the guide wire; andwithdrawing the needle and the guide wire from the catheter.
  • 2. The method according to claim 1, wherein the needle comprises a side wall opening, and wherein withdrawing the needle and the guide wire comprises withdrawing the safety tip of the guide wire from the needle such that the safety tip is distal of the side wall opening in the withdrawn position.
  • 3. The method according to claim 1, wherein the guide wire has a first portion having a first diameter and a second portion having a second diameter less than the first diameter, and wherein the safety tip is formed in the second portion.
  • 4. The method according to claim 1, wherein the plurality of revolutions comprises a first spiral revolution and a second spiral revolution, the first spiral revolution having a smaller diameter than the second spiral revolution.
  • 5. The method according to claim 4, wherein the first spiral revolution is approximately coplanar with the second spiral revolution.
  • 6. The method according to claim 1, wherein the guide wire is formed from a superelastic Nickel-Titanium alloy.
  • 7. The method according to claim 1, wherein the catheter includes a tapered distal end disposed proximally of a tip of the needle in the insertion position.
  • 8. The method according to claim 1, further comprising a support tube disposed over a proximal portion of the guide wire.
  • 9. The method according to claim 8, wherein a proximal end of the guide wire is attached to the support tube.
  • 10. The method according to claim 1, wherein the catheter insertion device further comprises a pulley in the housing, the pulley coupled to the guide wire.
  • 11. The method according to claim 10, wherein the guide wire has a proximal end attached to the housing and a proximal portion looped around the pulley.
  • 12. The method according to claim 11, wherein the pulley is coupled to a biasing member, wherein the biasing member is extended during the moving step, and wherein the biasing member is contracted during the withdrawing step.
  • 13. The method according to claim 1, wherein the lumen of the needle is a primary lumen of the needle, and wherein the primary lumen of the needle is used as a guide wire channel.
  • 14. The method according to claim 1, wherein the lumen of the needle is a separate guide wire channel on a bevel side of the needle.
  • 15. The method according to claim 1, wherein the lumen of the needle is a separate guide wire channel, the guidewire channel including a distal port in the distal end of the needle.
  • 16. The method according to claim 1, wherein the lumen of the needle is a separate guide wire channel that ends proximal of the distal end of the needle so that the guide wire channel is in fluid communication with a primary lumen of the needle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/866,738, filed Sep. 25, 2015, now U.S. Pat. No. 10,912,930, which is a continuation of U.S. patent application Ser. No. 14/250,093, filed Apr. 10, 2014, now U.S. Pat. No. 10,806,906, which is a continuation of U.S. patent application Ser. No. 12/307,519, filed Dec. 3, 2009, now U.S. Pat. No. 8,728,035, which is a U.S. national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2007/068393, filed May 7, 2007, which is a continuation-in-part of U.S. patent application Ser. No. 11/577,491, filed Apr. 18, 2007, now U.S. Pat. No. 9,162,037, which is a U.S. national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2006/026671, filed Jul. 6, 2006, which claims the benefit of U.S. Provisional Patent Application No. 60/697,333, filed Jul. 6, 2005. Each of these patent applications and all patents and patent applications referred to in this application are incorporated herein by reference in their entireties.

US Referenced Citations (1128)
Number Name Date Kind
2211975 Hendrickson Aug 1940 A
2259488 Raiche Oct 1941 A
2330400 Winder Sep 1943 A
D138589 Brandenburg Aug 1944 S
3185151 Czorny May 1965 A
3297030 Czorny et al. Jan 1967 A
3416567 von Dardel et al. Dec 1968 A
3469579 Hubert Sep 1969 A
3500828 Podhora Mar 1970 A
3552384 Pierie et al. Jan 1971 A
3572334 Petterson Mar 1971 A
3585996 Reynolds et al. Jun 1971 A
3589361 Loper et al. Jun 1971 A
3592192 Harautuneian Jul 1971 A
3595230 Suyeoka et al. Jul 1971 A
3610240 Harautuneian Oct 1971 A
3682173 Center Aug 1972 A
3766916 Moorehead et al. Oct 1973 A
3884242 Bazell et al. May 1975 A
3921631 Thompson Nov 1975 A
3995628 Gula et al. Dec 1976 A
4027668 Dunn Jun 1977 A
4037600 Poncy et al. Jul 1977 A
4079738 Dunn et al. Mar 1978 A
4106506 Koehn et al. Aug 1978 A
4177809 Moorehead Dec 1979 A
4292970 Hession, Jr. Oct 1981 A
4317445 Robinson Mar 1982 A
4345602 Yoshimura et al. Aug 1982 A
4354491 Marbry Oct 1982 A
4368730 Sharrock Jan 1983 A
4387879 Tauschinski Jun 1983 A
4417886 Frankhouser et al. Nov 1983 A
4449693 Gereg May 1984 A
4456017 Miles Jun 1984 A
4464171 Garwin Aug 1984 A
4509534 Tassin, Jr. Apr 1985 A
4509945 Kramann et al. Apr 1985 A
4511359 Vaillancourt Apr 1985 A
4512766 Vailancourt Apr 1985 A
4525157 Vaillancourt Jun 1985 A
4581019 Curelaru et al. Apr 1986 A
4585440 Tchervenkov et al. Apr 1986 A
D287877 Holewinski et al. Jan 1987 S
4728322 Walker et al. Mar 1988 A
4738659 Sleiman Apr 1988 A
4747831 Kulli May 1988 A
4767407 Foran Aug 1988 A
4772264 Cragg Sep 1988 A
4772267 Brown Sep 1988 A
4781703 Walker et al. Nov 1988 A
4792531 Kakihana Dec 1988 A
4798193 Giesy et al. Jan 1989 A
4813934 Engelson et al. Mar 1989 A
4826070 Kakihana May 1989 A
4828547 Sahi et al. May 1989 A
4834708 Pillari May 1989 A
4834718 McDonald May 1989 A
4840613 Balbierz Jun 1989 A
4840622 Hardy Jun 1989 A
4842591 Luther Jun 1989 A
4846812 Walker et al. Jul 1989 A
4850961 Wanderer et al. Jul 1989 A
4860757 Lynch et al. Aug 1989 A
4869259 Elkins Sep 1989 A
D304079 McFarlane Oct 1989 S
4871358 Gold Oct 1989 A
4874377 Newgard et al. Oct 1989 A
4883461 Sawyer Nov 1989 A
4883699 Aniuk et al. Nov 1989 A
4894052 Crawford Jan 1990 A
4895346 Steigerwald Jan 1990 A
4900307 Kulli Feb 1990 A
4906956 Kakihana Mar 1990 A
4908021 McFarlane Mar 1990 A
4909793 Vining et al. Mar 1990 A
4911691 Aniuk et al. Mar 1990 A
4913704 Kurimoto Apr 1990 A
4917102 Miller et al. Apr 1990 A
4917668 Haindl Apr 1990 A
4917671 Chang Apr 1990 A
4929235 Merry et al. May 1990 A
4935010 Cox et al. Jun 1990 A
4944725 McDonald Jul 1990 A
4944728 Carrell et al. Jul 1990 A
4955863 Walker et al. Sep 1990 A
4961729 Vaillancourt Oct 1990 A
4966586 Vaillancourt Oct 1990 A
4966589 Kaufman Oct 1990 A
4994042 Vadher Feb 1991 A
4994047 Walker et al. Feb 1991 A
4995866 Amplatz et al. Feb 1991 A
5007901 Shields Apr 1991 A
5009642 Sahi Apr 1991 A
5019048 Margolin May 1991 A
5019049 Haining May 1991 A
D318733 Wyzgala Jul 1991 S
5034347 Kakihana Jul 1991 A
5047013 Rossdeutscher Sep 1991 A
D321250 Jepson et al. Oct 1991 S
5053014 Van Heugten Oct 1991 A
5054501 Chuttani et al. Oct 1991 A
5061254 Karakelle et al. Oct 1991 A
5064416 Newgard et al. Nov 1991 A
5078694 Wallace Jan 1992 A
5078696 Nedbaluk Jan 1992 A
5078702 Pomeranz Jan 1992 A
5084023 Lemieux Jan 1992 A
5085645 Purdy et al. Feb 1992 A
5088984 Fields Feb 1992 A
5093692 Su et al. Mar 1992 A
5098392 Fleischhacker et al. Mar 1992 A
5098395 Fields Mar 1992 A
5098396 Taylor et al. Mar 1992 A
5098405 Peterson et al. Mar 1992 A
5108375 Harrison et al. Apr 1992 A
5108376 Bonaldo Apr 1992 A
5112312 Luther May 1992 A
5116323 Kreuzer et al. May 1992 A
5120317 Luther Jun 1992 A
5125906 Fleck Jun 1992 A
5135487 Morrill et al. Aug 1992 A
5137515 Hogan Aug 1992 A
5149326 Woodgrift et al. Sep 1992 A
5154703 Bonaldo Oct 1992 A
5156590 Vilmar Oct 1992 A
5156596 Balbierz et al. Oct 1992 A
5158544 Weinstein Oct 1992 A
5167637 Okada et al. Dec 1992 A
5176650 Haining Jan 1993 A
5186168 Spofford et al. Feb 1993 A
5186712 Kelso et al. Feb 1993 A
5188607 Wu Feb 1993 A
5190528 Fonger et al. Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5195974 Hardy Mar 1993 A
5195980 Catlin Mar 1993 A
5195985 Hall Mar 1993 A
5205830 Dassa et al. Apr 1993 A
5215527 Beck et al. Jun 1993 A
5215528 Purdy et al. Jun 1993 A
5217435 Kring Jun 1993 A
5219335 Willard et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5222944 Harris Jun 1993 A
5225369 Su et al. Jul 1993 A
5226899 Lee et al. Jul 1993 A
D338955 Gresl et al. Aug 1993 S
5234410 Graham et al. Aug 1993 A
5242411 Yamamoto et al. Sep 1993 A
5246426 Lewis et al. Sep 1993 A
5246430 MacFarlane Sep 1993 A
5254107 Soltesz Oct 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5267982 Sylvanowicz Dec 1993 A
5269771 Thomas et al. Dec 1993 A
D345419 Horrigan et al. Mar 1994 S
5290310 Makower et al. Mar 1994 A
5297546 Spofford et al. Mar 1994 A
5312359 Wallace May 1994 A
5312361 Zadini et al. May 1994 A
5312363 Ryan et al. May 1994 A
5320608 Gerrone Jun 1994 A
5322517 Sircom et al. Jun 1994 A
5330435 Vaillancourt Jul 1994 A
5334159 Turkel Aug 1994 A
5338311 Mahurkar Aug 1994 A
5352205 Dales et al. Oct 1994 A
5358796 Nakamura et al. Oct 1994 A
5366441 Crawford Nov 1994 A
5368661 Nakamura et al. Nov 1994 A
D353668 Banks et al. Dec 1994 S
5376082 Phelps Dec 1994 A
5376094 Kline Dec 1994 A
5380290 Makower et al. Jan 1995 A
5380292 Wilson Jan 1995 A
5395341 Slater Mar 1995 A
5397311 Walker et al. Mar 1995 A
5405323 Rogers et al. Apr 1995 A
5415177 Zadini et al. May 1995 A
5415645 Friend et al. May 1995 A
5419766 Chang et al. May 1995 A
5419777 Hofling May 1995 A
5423760 Yoon Jun 1995 A
5425718 Tay et al. Jun 1995 A
5431506 Masunaga Jul 1995 A
5439449 Mapes et al. Aug 1995 A
5445625 Voda Aug 1995 A
5454785 Smith Oct 1995 A
5454790 Dubrul Oct 1995 A
5456258 Kondo et al. Oct 1995 A
5456668 Ogle, II Oct 1995 A
5458658 Sircom Oct 1995 A
5466230 Davila Nov 1995 A
5480389 McWha et al. Jan 1996 A
5482395 Gasparini Jan 1996 A
5484419 Fleck Jan 1996 A
5487734 Thorne et al. Jan 1996 A
5489273 Whitney et al. Feb 1996 A
5496281 Krebs Mar 1996 A
5501671 Rosen et al. Mar 1996 A
5501675 Erskine Mar 1996 A
5507300 Mukai et al. Apr 1996 A
5512052 Jesch Apr 1996 A
5514108 Stevens May 1996 A
5520655 Davila et al. May 1996 A
5520657 Sellers et al. May 1996 A
D371195 Krebs Jun 1996 S
5522807 Luther Jun 1996 A
5527290 Zadini et al. Jun 1996 A
5527291 Zadini et al. Jun 1996 A
5531701 Luther Jul 1996 A
5531713 Mastronardi et al. Jul 1996 A
5533988 Dickerson et al. Jul 1996 A
5535785 Merge et al. Jul 1996 A
5542933 Marks Aug 1996 A
5554136 Luther Sep 1996 A
5562629 Haughton et al. Oct 1996 A
5562630 Nichols Oct 1996 A
5562631 Bogert Oct 1996 A
5562633 Wozencroft Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5569202 Kovalic et al. Oct 1996 A
5569217 Luther Oct 1996 A
5571073 Castillo Nov 1996 A
5573510 Isaacson Nov 1996 A
5575777 Cover et al. Nov 1996 A
5591194 Berthiaume Jan 1997 A
5599291 Balbierz et al. Feb 1997 A
5599327 Sugahara et al. Feb 1997 A
5609583 Hakki et al. Mar 1997 A
5613663 Schmidt et al. Mar 1997 A
5613954 Nelson et al. Mar 1997 A
5630802 Moellmann et al. May 1997 A
5630823 Schmitz-Rode et al. May 1997 A
5634475 Wolvek Jun 1997 A
5634913 Stinger Jun 1997 A
5637091 Hakky et al. Jun 1997 A
5645076 Yoon Jul 1997 A
5651772 Arnett Jul 1997 A
D383538 Erskine et al. Sep 1997 S
5662622 Gore et al. Sep 1997 A
5674241 Bley et al. Oct 1997 A
5676658 Erskine Oct 1997 A
5683368 Schmidt Nov 1997 A
5683370 Luther et al. Nov 1997 A
5685855 Erskine Nov 1997 A
5685858 Kawand Nov 1997 A
5685860 Chang et al. Nov 1997 A
5688249 Chang et al. Nov 1997 A
5693025 Stevens Dec 1997 A
5695474 Daugherty Dec 1997 A
5697914 Brimhall Dec 1997 A
5700250 Erskine Dec 1997 A
5702367 Cover et al. Dec 1997 A
5702369 Mercereau Dec 1997 A
5704914 Stocking et al. Jan 1998 A
5722425 Bostrom Mar 1998 A
5725503 Arnett Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5730733 Mortier et al. Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5738144 Rogers Apr 1998 A
5738660 Luther Apr 1998 A
5743882 Luther Apr 1998 A
5743888 Wilkes et al. Apr 1998 A
5749371 Zadini et al. May 1998 A
5749857 Cuppy May 1998 A
5749861 Guala et al. May 1998 A
5750741 Crocker et al. May 1998 A
5755693 Walker et al. May 1998 A
5755709 Cuppy May 1998 A
5762630 Bley et al. Jun 1998 A
5762636 Rupp et al. Jun 1998 A
5765682 Bley et al. Jun 1998 A
5779679 Shaw Jul 1998 A
5779680 Yoon Jul 1998 A
5779681 Bonn Jul 1998 A
5782807 Falvai et al. Jul 1998 A
D397434 Pike Aug 1998 S
5792124 Horrigan et al. Aug 1998 A
5800395 Botich et al. Sep 1998 A
5807339 Bostrom et al. Sep 1998 A
5807342 Musgrave et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810780 Brimhall et al. Sep 1998 A
5810835 Ryan et al. Sep 1998 A
5813411 Van Bladel et al. Sep 1998 A
5817058 Shaw Oct 1998 A
5817069 Arnett Oct 1998 A
5824001 Erskine Oct 1998 A
5827202 Miraki et al. Oct 1998 A
5827221 Phelps Oct 1998 A
5827227 DeLago Oct 1998 A
5830190 Howell Nov 1998 A
5830224 Cohn et al. Nov 1998 A
5839470 Hiejima et al. Nov 1998 A
5843002 Pecor et al. Dec 1998 A
5843038 Bailey Dec 1998 A
5846259 Berthiaume Dec 1998 A
5851196 Arnett Dec 1998 A
5853393 Bogert Dec 1998 A
5855615 Bley et al. Jan 1999 A
5858002 Jesch Jan 1999 A
5865806 Howell Feb 1999 A
5873864 Luther et al. Feb 1999 A
5879332 Schwemberger et al. Mar 1999 A
5879337 Kuracina et al. Mar 1999 A
5885217 Gisselberg et al. Mar 1999 A
5885251 Luther Mar 1999 A
5891098 Huang Apr 1999 A
5891105 Mahurkar Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5902274 Yamamoto et al. May 1999 A
5902832 Van Bladel et al. May 1999 A
5911705 Howell Jun 1999 A
5911710 Barry et al. Jun 1999 A
5913848 Luther et al. Jun 1999 A
5916208 Luther et al. Jun 1999 A
5928199 Nakagami Jul 1999 A
D413382 Maissami Aug 1999 S
5935110 Brimhall Aug 1999 A
5941854 Bhitiyakul Aug 1999 A
5944690 Falwell et al. Aug 1999 A
5947930 Schwemberger et al. Sep 1999 A
5951520 Burzynski et al. Sep 1999 A
5954698 Pike Sep 1999 A
5957893 Luther et al. Sep 1999 A
5964744 Balbierz et al. Oct 1999 A
5967490 Pike Oct 1999 A
5984895 Padilla et al. Nov 1999 A
5984903 Nadal Nov 1999 A
5989220 Shaw et al. Nov 1999 A
5989271 Bonnette et al. Nov 1999 A
5997507 Dysarz Dec 1999 A
5997510 Schwemberger Dec 1999 A
6001080 Kuracina et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6004294 Brimhall et al. Dec 1999 A
6004295 Langer et al. Dec 1999 A
6011988 Lynch et al. Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6022319 Willard et al. Feb 2000 A
6024727 Thorne et al. Feb 2000 A
6024729 Dehdashtian et al. Feb 2000 A
6045734 Luther et al. Apr 2000 A
6056726 Isaacson May 2000 A
6059484 Greive May 2000 A
6066100 Willard et al. May 2000 A
6074378 Mouri et al. Jun 2000 A
6077244 Botich et al. Jun 2000 A
6080137 Pike Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6096004 Meglan et al. Aug 2000 A
6096005 Botich et al. Aug 2000 A
6109264 Sauer Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6120494 Jonkman Sep 2000 A
6126633 Kaji et al. Oct 2000 A
6126641 Shields Oct 2000 A
6139532 Howell et al. Oct 2000 A
6139557 Passafaro et al. Oct 2000 A
6159179 Simonson Dec 2000 A
6171234 White et al. Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6176842 Tachibana et al. Jan 2001 B1
6193690 Dysarz Feb 2001 B1
6197001 Wilson et al. Mar 2001 B1
6197007 Thorne et al. Mar 2001 B1
6197041 Shichman et al. Mar 2001 B1
6203527 Zadini et al. Mar 2001 B1
6213978 Voyten Apr 2001 B1
6217558 Zadini et al. Apr 2001 B1
6221047 Greene et al. Apr 2001 B1
6221048 Phelps Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6224569 Brimhall May 2001 B1
6228060 Howell May 2001 B1
6228062 Howell et al. May 2001 B1
6228073 Noone et al. May 2001 B1
6245045 Stratienko Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6268399 Hultine et al. Jul 2001 B1
6270480 Dorr et al. Aug 2001 B1
6273871 Davis et al. Aug 2001 B1
6280419 Vojtasek Aug 2001 B1
6287278 Woehr et al. Sep 2001 B1
6309379 Willard et al. Oct 2001 B1
6319244 Suresh et al. Nov 2001 B2
6322537 Chang Nov 2001 B1
D452003 Niermann Dec 2001 S
6325781 Takagi et al. Dec 2001 B1
6325797 Stewart et al. Dec 2001 B1
6336914 Gillespie, III Jan 2002 B1
6352520 Miyazaki Mar 2002 B1
6368337 Kieturakis et al. Apr 2002 B1
6379333 Brimhall et al. Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
D457955 Bilitz May 2002 S
6406442 McFann et al. Jun 2002 B1
D460179 Isoda et al. Jul 2002 S
6422989 Hektner Jul 2002 B1
6436070 Botich et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443929 Kuracina et al. Sep 2002 B1
6451052 Burmeister et al. Sep 2002 B1
6461362 Halseth et al. Oct 2002 B1
6475217 Platt Nov 2002 B1
6478779 Hu Nov 2002 B1
6485473 Lynn Nov 2002 B1
6485497 Wensel et al. Nov 2002 B2
6497681 Brenner Dec 2002 B1
6506181 Meng et al. Jan 2003 B2
6514236 Stratienko Feb 2003 B1
6524276 Halseth et al. Feb 2003 B1
D471980 Caizza Mar 2003 S
6527759 Tachibana et al. Mar 2003 B1
6530913 Giba et al. Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540725 Ponzi Apr 2003 B1
6540732 Botich et al. Apr 2003 B1
6544239 Kinsey et al. Apr 2003 B2
6547762 Botich et al. Apr 2003 B1
6558355 Metzger et al. May 2003 B1
6582402 Erskine Jun 2003 B1
6582440 Brumbach Jun 2003 B1
6585703 Kassel et al. Jul 2003 B1
6589262 Honebrink et al. Jul 2003 B1
6595955 Ferguson et al. Jul 2003 B2
6595959 Stratienko Jul 2003 B1
6599296 Gillick et al. Jul 2003 B1
6607511 Halseth et al. Aug 2003 B2
6616630 Woehr et al. Sep 2003 B1
6620136 Pressly, Sr. et al. Sep 2003 B1
6623449 Paskar Sep 2003 B2
6623456 Holdaway et al. Sep 2003 B1
6626868 Prestidge et al. Sep 2003 B1
6626869 Bint Sep 2003 B1
6629959 Kuracina et al. Oct 2003 B2
6632201 Mathias et al. Oct 2003 B1
6638252 Moulton et al. Oct 2003 B2
6641564 Kraus Nov 2003 B1
6645178 Junker et al. Nov 2003 B1
6652486 Bialecki et al. Nov 2003 B2
6652490 Howell Nov 2003 B2
6663577 Jen et al. Dec 2003 B2
6663592 Rhad et al. Dec 2003 B2
6666865 Platt Dec 2003 B2
6679900 Kieturakis et al. Jan 2004 B2
6689102 Greene Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695814 Greene et al. Feb 2004 B2
6695856 Kieturakis et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699221 Vaillancourt Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6712790 Prestidge et al. Mar 2004 B1
6712797 Southern, Jr. Mar 2004 B1
6716197 Svendsen Apr 2004 B2
6730062 Hoffman et al. May 2004 B2
6740063 Lynn May 2004 B2
6740096 Teague et al. May 2004 B2
6745080 Koblish Jun 2004 B2
6749588 Howell et al. Jun 2004 B1
6764468 East Jul 2004 B1
D494270 Reschke Aug 2004 S
6776788 Klint et al. Aug 2004 B1
6796962 Ferguson et al. Sep 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6832715 Eungard et al. Dec 2004 B2
6835190 Nguyen Dec 2004 B2
6837867 Kortelling Jan 2005 B2
6860871 Kuracina et al. Mar 2005 B2
6872193 Shaw et al. Mar 2005 B2
6887220 Hogendijk May 2005 B2
6902546 Ferguson Jun 2005 B2
6905483 Newby et al. Jun 2005 B2
6913595 Mastorakis Jul 2005 B2
6916311 Vojtasek Jul 2005 B2
6921386 Shue et al. Jul 2005 B2
6921391 Barker et al. Jul 2005 B1
6929624 Del Castillo Aug 2005 B1
6939325 Haining Sep 2005 B2
6942652 Pressly, Sr. et al. Sep 2005 B1
6953448 Moulton et al. Oct 2005 B2
6958054 Fitzgerald Oct 2005 B2
6958055 Donnan et al. Oct 2005 B2
6960191 Howlett et al. Nov 2005 B2
6972002 Thorne Dec 2005 B2
6974438 Shekalim Dec 2005 B2
6994693 Tal Feb 2006 B2
7001396 Glazier et al. Feb 2006 B2
7004927 Ferguson et al. Feb 2006 B2
7008404 Nakajima Mar 2006 B2
7018372 Casey et al. Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7025746 Tal Apr 2006 B2
7029467 Currier et al. Apr 2006 B2
7033335 Haarala et al. Apr 2006 B2
7044935 Shue et al. May 2006 B2
7060055 Wilkinson et al. Jun 2006 B2
7090656 Botich et al. Aug 2006 B1
7094243 Mulholland et al. Aug 2006 B2
7097633 Botich et al. Aug 2006 B2
7125396 Leinsing et al. Oct 2006 B2
7125397 Woehr et al. Oct 2006 B2
7141040 Lichtenberg Nov 2006 B2
7153276 Barker et al. Dec 2006 B2
7163520 Bernard et al. Jan 2007 B2
7169159 Green et al. Jan 2007 B2
7179244 Smith et al. Feb 2007 B2
7186239 Woehr Mar 2007 B2
7191900 Opie et al. Mar 2007 B2
7192433 Osypka et al. Mar 2007 B2
7204813 Shue et al. Apr 2007 B2
7214211 Woehr et al. May 2007 B2
7255685 Pressly, Sr. et al. Aug 2007 B2
7264613 Woehr et al. Sep 2007 B2
7291130 McGurk Nov 2007 B2
7303547 Pressly, Sr. et al. Dec 2007 B2
7303548 Rhad et al. Dec 2007 B2
7314462 O'Reagan et al. Jan 2008 B2
7331966 Soma et al. Feb 2008 B2
7344516 Erskine Mar 2008 B2
7354422 Riesenberger et al. Apr 2008 B2
7374554 Menzi et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7396346 Nakajima Jul 2008 B2
7413562 Ferguson et al. Aug 2008 B2
7422572 Popov et al. Sep 2008 B2
7458954 Ferguson et al. Dec 2008 B2
7465294 Vladimirsky Dec 2008 B1
7468057 Ponzi Dec 2008 B2
7470254 Basta et al. Dec 2008 B2
7491176 Mann Feb 2009 B2
7494010 Opie et al. Feb 2009 B2
7500965 Menzi et al. Mar 2009 B2
7507222 Cindrich et al. Mar 2009 B2
7513887 Halseth et al. Apr 2009 B2
7513888 Sircom et al. Apr 2009 B2
7524306 Botich et al. Apr 2009 B2
7530965 Villa et al. May 2009 B2
7534227 Kulli May 2009 B2
7534231 Kuracina et al. May 2009 B2
7544170 Williams et al. Jun 2009 B2
7556617 Voorhees, Jr. et al. Jul 2009 B2
7566323 Chang Jul 2009 B2
D601243 Bierman et al. Sep 2009 S
7597681 Sutton et al. Oct 2009 B2
7608057 Woehr et al. Oct 2009 B2
D604839 Crawford et al. Nov 2009 S
7611485 Ferguson Nov 2009 B2
7611487 Woehr et al. Nov 2009 B2
7611499 Woehr et al. Nov 2009 B2
7618395 Ferguson Nov 2009 B2
7625360 Woehr et al. Dec 2009 B2
7628769 Grandt et al. Dec 2009 B2
7632243 Bialecki et al. Dec 2009 B2
7645263 Angel et al. Jan 2010 B2
7654988 Moulton et al. Feb 2010 B2
7658725 Bialecki et al. Feb 2010 B2
D612043 Young et al. Mar 2010 S
7678080 Shue et al. Mar 2010 B2
7682358 Gullickson et al. Mar 2010 B2
7691088 Howell Apr 2010 B2
7691090 Belley et al. Apr 2010 B2
7691093 Brimhall Apr 2010 B2
7695458 Belley et al. Apr 2010 B2
7699807 Faust et al. Apr 2010 B2
D615197 Koh et al. May 2010 S
7708721 Khaw May 2010 B2
7713243 Hillman May 2010 B2
7717875 Knudson et al. May 2010 B2
7722567 Tal May 2010 B2
7722569 Soderholm et al. May 2010 B2
D617893 Bierman et al. Jun 2010 S
7731687 Menzi et al. Jun 2010 B2
7731691 Cote et al. Jun 2010 B2
7736332 Carlyon et al. Jun 2010 B2
7736337 Diep et al. Jun 2010 B2
7736339 Woehr et al. Jun 2010 B2
7736342 Abriles et al. Jun 2010 B2
7740615 Shaw et al. Jun 2010 B2
7744574 Pederson et al. Jun 2010 B2
7753877 Bialecki et al. Jul 2010 B2
7753887 Botich et al. Jul 2010 B2
7762984 Kumoyama et al. Jul 2010 B2
7762993 Perez Jul 2010 B2
7766879 Tan et al. Aug 2010 B2
7776052 Greenberg et al. Aug 2010 B2
7785296 Muskatello et al. Aug 2010 B2
7794424 Paskar Sep 2010 B2
7798994 Brimhall Sep 2010 B2
7803142 Longson et al. Sep 2010 B2
7828773 Swisher et al. Nov 2010 B2
7828774 Harding et al. Nov 2010 B2
7833201 Carlyon et al. Nov 2010 B2
7850644 Gonzalez et al. Dec 2010 B2
7857770 Raulerson et al. Dec 2010 B2
D634843 Kim et al. Mar 2011 S
7896862 Long et al. Mar 2011 B2
7905857 Swisher Mar 2011 B2
7914488 Dickerson Mar 2011 B2
7914492 Heuser Mar 2011 B2
7922696 Tal et al. Apr 2011 B2
7922698 Riesenberger et al. Apr 2011 B2
7927314 Kuracina et al. Apr 2011 B2
7935080 Howell et al. May 2011 B2
7959613 Rhad et al. Jun 2011 B2
7972313 Woehr et al. Jul 2011 B2
7972324 Quint Jul 2011 B2
D643531 van der Weiden Aug 2011 S
8029470 Whiting et al. Oct 2011 B2
8029472 Leinsing et al. Oct 2011 B2
8048031 Shaw et al. Nov 2011 B2
8048039 Carlyon et al. Nov 2011 B2
8057404 Fujiwara et al. Nov 2011 B2
8062261 Adams Nov 2011 B2
8075529 Nakajima et al. Dec 2011 B2
8079979 Moorehead Dec 2011 B2
D653329 Lee-Sepsick Jan 2012 S
8100858 Woehr et al. Jan 2012 B2
8105286 Anderson et al. Jan 2012 B2
8105315 Johnson et al. Jan 2012 B2
8123727 Luther et al. Feb 2012 B2
8152758 Chan et al. Apr 2012 B2
8162881 Lilley, Jr. et al. Apr 2012 B2
8167851 Sen May 2012 B2
8177753 Vitullo et al. May 2012 B2
RE43473 Newby et al. Jun 2012 E
8192402 Anderson et al. Jun 2012 B2
8202251 Bierman et al. Jun 2012 B2
8202253 Wexler Jun 2012 B1
8206343 Racz Jun 2012 B2
8211070 Woehr et al. Jul 2012 B2
8221387 Shelso et al. Jul 2012 B2
8226612 Nakajima Jul 2012 B2
8235945 Baid Aug 2012 B2
8251923 Carrez et al. Aug 2012 B2
8251950 Albert et al. Aug 2012 B2
D667111 Robinson Sep 2012 S
8257322 Koehler et al. Sep 2012 B2
8273054 St. Germain et al. Sep 2012 B2
8286657 Belley et al. Oct 2012 B2
8298186 Popov Oct 2012 B2
8303543 Abulhaj Nov 2012 B2
8308685 Botich et al. Nov 2012 B2
8308691 Woehr et al. Nov 2012 B2
D672456 Lee-Sepsick Dec 2012 S
8323249 White et al. Dec 2012 B2
8328762 Woehr et al. Dec 2012 B2
8328837 Binmoeller Dec 2012 B2
8333735 Woehr et al. Dec 2012 B2
8337424 Palmer et al. Dec 2012 B2
8337463 Woehr et al. Dec 2012 B2
8337471 Baid Dec 2012 B2
D675318 Luk et al. Jan 2013 S
8361020 Stout Jan 2013 B2
8361038 McKinnon et al. Jan 2013 B2
8376994 Woehr et al. Feb 2013 B2
8377006 Tal et al. Feb 2013 B2
8382721 Woehr et al. Feb 2013 B2
8388583 Stout et al. Mar 2013 B2
8403886 Bialecki et al. Mar 2013 B2
8412300 Sonderegger Apr 2013 B2
8414539 Kuracina et al. Apr 2013 B1
8419688 Woehr et al. Apr 2013 B2
8444605 Kuracina et al. May 2013 B2
8454536 Raulerson et al. Jun 2013 B2
8460247 Woehr et al. Jun 2013 B2
8469928 Stout et al. Jun 2013 B2
8496628 Erskine Jul 2013 B2
D687548 Hayashi Aug 2013 S
8506533 Carlyon et al. Aug 2013 B2
8509340 Michelitsch Aug 2013 B2
8517959 Kurosawa et al. Aug 2013 B2
8529515 Woehr et al. Sep 2013 B2
8535271 Fuchs et al. Sep 2013 B2
8540728 Woehr et al. Sep 2013 B2
8545454 Kuracina et al. Oct 2013 B2
8568372 Woehr et al. Oct 2013 B2
8574203 Stout et al. Nov 2013 B2
8579881 Agro et al. Nov 2013 B2
8585651 Asai Nov 2013 B2
8585660 Murphy Nov 2013 B2
8591467 Walker et al. Nov 2013 B2
8591468 Woehr et al. Nov 2013 B2
8597249 Woehr et al. Dec 2013 B2
8622931 Teague et al. Jan 2014 B2
8622958 Jones et al. Jan 2014 B2
8622972 Nystrom et al. Jan 2014 B2
D700318 Amoah et al. Feb 2014 S
8647301 Bialecki et al. Feb 2014 B2
8647313 Woehr et al. Feb 2014 B2
8647324 DeLegge et al. Feb 2014 B2
8652104 Goral et al. Feb 2014 B2
8657790 Tal et al. Feb 2014 B2
8672888 Tal Mar 2014 B2
8679063 Stout et al. Mar 2014 B2
8690833 Belson Apr 2014 B2
8715242 Helm, Jr. May 2014 B2
8721546 Belson May 2014 B2
8728030 Woehr May 2014 B2
8728035 Warring et al. May 2014 B2
8740859 McKinnon et al. Jun 2014 B2
8740964 Hartley Jun 2014 B2
8747387 Belley et al. Jun 2014 B2
8753317 Osborne et al. Jun 2014 B2
8764711 Kuracina et al. Jul 2014 B2
D710495 Wu et al. Aug 2014 S
8814833 Farrell et al. Aug 2014 B2
D713957 Woehr et al. Sep 2014 S
D714436 Lee-Sepsick Sep 2014 S
8827965 Woehr et al. Sep 2014 B2
8845584 Ferguson et al. Sep 2014 B2
D715931 Watanabe et al. Oct 2014 S
8864714 Harding et al. Oct 2014 B2
8900192 Anderson et al. Dec 2014 B2
8932257 Woehr Jan 2015 B2
8932258 Blanchard et al. Jan 2015 B2
8932259 Stout et al. Jan 2015 B2
8945011 Sheldon et al. Feb 2015 B2
8951230 Tanabe et al. Feb 2015 B2
8956327 Bierman et al. Feb 2015 B2
8974426 Corcoran et al. Mar 2015 B2
8979802 Woehr Mar 2015 B2
8986227 Belson Mar 2015 B2
D726908 Yu et al. Apr 2015 S
8998852 Blanchard et al. Apr 2015 B2
9005169 Gravesen et al. Apr 2015 B2
9011351 Hoshinouchi Apr 2015 B2
9011381 Yamada et al. Apr 2015 B2
D728781 Pierson et al. May 2015 S
9022979 Woehr May 2015 B2
9033927 Maan et al. May 2015 B2
D733289 Blanchard et al. Jun 2015 S
9044583 Vaillancourt Jun 2015 B2
D735321 Blanchard Jul 2015 S
9089671 Stout et al. Jul 2015 B2
9089674 Ginn et al. Jul 2015 B2
9095683 Hall et al. Aug 2015 B2
9101746 Stout et al. Aug 2015 B2
9108021 Hyer et al. Aug 2015 B2
9114231 Woehr et al. Aug 2015 B2
9114241 Stout et al. Aug 2015 B2
9126012 McKinnon et al. Sep 2015 B2
9138252 Bierman et al. Sep 2015 B2
9138545 Shaw et al. Sep 2015 B2
9138559 Odland et al. Sep 2015 B2
RE45776 Root et al. Oct 2015 E
D740410 Korkuch et al. Oct 2015 S
9149625 Woehr et al. Oct 2015 B2
9149626 Woehr et al. Oct 2015 B2
9155863 Isaacson et al. Oct 2015 B2
9162036 Caples et al. Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9180275 Helm Nov 2015 B2
D746445 Lazarus Dec 2015 S
9205231 Call et al. Dec 2015 B2
9216109 Badawi et al. Dec 2015 B2
9220531 Datta et al. Dec 2015 B2
9220871 Thorne et al. Dec 2015 B2
9220882 Belley et al. Dec 2015 B2
D748254 Freigang et al. Jan 2016 S
9227038 Woehr Jan 2016 B2
9242071 Morgan et al. Jan 2016 B2
9242072 Morgan et al. Jan 2016 B2
RE45896 Stout et al. Feb 2016 E
D748774 Caron Feb 2016 S
D748777 Uenishi et al. Feb 2016 S
D749214 Uenishi et al. Feb 2016 S
D749727 Wapler et al. Feb 2016 S
D751194 Yu et al. Mar 2016 S
D752737 Ohashi Mar 2016 S
9289237 Woehr et al. Mar 2016 B2
9308352 Teoh et al. Apr 2016 B2
9308354 Farrell et al. Apr 2016 B2
9320870 Woehr Apr 2016 B2
D755368 Efinger et al. May 2016 S
9352119 Burkholz et al. May 2016 B2
9352127 Yeh et al. May 2016 B2
9352129 Nardeo et al. May 2016 B2
9358364 Isaacson et al. Jun 2016 B2
9370641 Woehr et al. Jun 2016 B2
9381324 Fuchs et al. Jul 2016 B2
9399116 Goral et al. Jul 2016 B2
9408569 Andreae et al. Aug 2016 B2
9421345 Woehr et al. Aug 2016 B2
9427549 Woehr et al. Aug 2016 B2
D775330 Blennow et al. Dec 2016 S
9522254 Belson Dec 2016 B2
D776259 Eldredge Jan 2017 S
9545495 Goral et al. Jan 2017 B2
9554817 Goldfarb et al. Jan 2017 B2
D779059 Nino et al. Feb 2017 S
D779661 McKnight et al. Feb 2017 S
9579486 Burkholz et al. Feb 2017 B2
9586027 Tisci et al. Mar 2017 B2
9592367 Harding et al. Mar 2017 B2
9616201 Belson Apr 2017 B2
9623210 Woehr Apr 2017 B2
9675784 Belson Jun 2017 B2
9687633 Teoh Jun 2017 B2
D791311 Yantz Jul 2017 S
9707378 Leinsing et al. Jul 2017 B2
9717523 Feng et al. Aug 2017 B2
9717887 Tan Aug 2017 B2
9737252 Teoh et al. Aug 2017 B2
9750532 Toomey et al. Sep 2017 B2
9750928 Burkholz et al. Sep 2017 B2
9757540 Belson Sep 2017 B2
9764085 Teoh Sep 2017 B2
9764117 Bierman et al. Sep 2017 B2
9775972 Christensen et al. Oct 2017 B2
9782568 Belson Oct 2017 B2
9789279 Burkholz et al. Oct 2017 B2
9795766 Teoh Oct 2017 B2
9844646 Knutsson Dec 2017 B2
9861792 Hall et al. Jan 2018 B2
9872971 Blanchard Jan 2018 B2
D810282 Ratjen Feb 2018 S
D815737 Bergstrom et al. Apr 2018 S
9950139 Blanchard et al. Apr 2018 B2
9962525 Woehr May 2018 B2
10004878 Ishida Jun 2018 B2
10086171 Belson Oct 2018 B2
10232146 Braithwaite et al. Mar 2019 B2
10328239 Belson Jun 2019 B2
10357635 Korkuch et al. Jul 2019 B2
10384039 Ribelin et al. Aug 2019 B2
10426931 Blanchard et al. Oct 2019 B2
D870271 Kheradpir et al. Dec 2019 S
D870883 Harding et al. Dec 2019 S
10493262 Tran et al. Dec 2019 B2
10525236 Belson Jan 2020 B2
10688280 Blanchard et al. Jun 2020 B2
10688281 Blanchard et al. Jun 2020 B2
10722685 Blanchard et al. Jul 2020 B2
10806906 Warring et al. Oct 2020 B2
11389626 Tran et al. Jul 2022 B2
11400260 Huang et al. Aug 2022 B2
20010014786 Greene et al. Aug 2001 A1
20010020153 Howell Sep 2001 A1
20020052576 Massengale May 2002 A1
20020077595 Hundertmark et al. Jun 2002 A1
20020103446 McFann et al. Aug 2002 A1
20020107526 Greenberg et al. Aug 2002 A1
20020128604 Nakajima Sep 2002 A1
20020165497 Greene Nov 2002 A1
20020177812 Moulton et al. Nov 2002 A1
20030032922 Moorehead Feb 2003 A1
20030032936 Lederman Feb 2003 A1
20030060760 Botich et al. Mar 2003 A1
20030073956 Hoffman et al. Apr 2003 A1
20030120214 Howell Jun 2003 A1
20030153874 Tal Aug 2003 A1
20030187396 Ponzi Oct 2003 A1
20030204186 Geistert Oct 2003 A1
20040019329 Erskine Jan 2004 A1
20040034383 Belson Feb 2004 A1
20040044302 Bernard et al. Mar 2004 A1
20040044313 Nakajima Mar 2004 A1
20040092879 Kraus et al. May 2004 A1
20040106903 Shue et al. Jun 2004 A1
20040111059 Howlett et al. Jun 2004 A1
20040122373 Botich et al. Jun 2004 A1
20040176758 Yassinzadeh Sep 2004 A1
20040193118 Bergeron Sep 2004 A1
20040215146 Lampropoulos et al. Oct 2004 A1
20040236288 Howell et al. Nov 2004 A1
20040243061 McGurk Dec 2004 A1
20040267204 Brustowicz Dec 2004 A1
20050004524 Newby et al. Jan 2005 A1
20050004532 Woehr et al. Jan 2005 A1
20050010095 Stewart et al. Jan 2005 A1
20050020940 Opie et al. Jan 2005 A1
20050021002 Deckman et al. Jan 2005 A1
20050027256 Barker et al. Feb 2005 A1
20050033137 Oral et al. Feb 2005 A1
20050040061 Opie et al. Feb 2005 A1
20050075606 Botich et al. Apr 2005 A1
20050107769 Thommen May 2005 A1
20050119619 Haining Jun 2005 A1
20050131350 Shaw et al. Jun 2005 A1
20050165355 Fitzgerald Jul 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050245847 Schaeffer Nov 2005 A1
20050256505 Long et al. Nov 2005 A1
20050273057 Popov Dec 2005 A1
20060025721 Duffy et al. Feb 2006 A1
20060036219 Alvin Feb 2006 A1
20060079787 Whiting et al. Apr 2006 A1
20060084964 Knudson et al. Apr 2006 A1
20060155245 Woehr Jul 2006 A1
20060161115 Fangrow Jul 2006 A1
20060167405 King et al. Jul 2006 A1
20060200080 Abulhaj Sep 2006 A1
20060229563 O'Reagan et al. Oct 2006 A1
20060264834 Vaillancourt Nov 2006 A1
20070043422 Shmulewitz et al. Feb 2007 A1
20070060999 Randall et al. Mar 2007 A1
20070083162 O'Reagan et al. Apr 2007 A1
20070083188 Grandt et al. Apr 2007 A1
20070100284 Leinsing et al. May 2007 A1
20070123803 Fujiwara et al. May 2007 A1
20070142779 Duane et al. Jun 2007 A1
20070179446 Carrez et al. Aug 2007 A1
20070191777 King Aug 2007 A1
20070193903 Opie et al. Aug 2007 A1
20070225647 Luther et al. Sep 2007 A1
20070233007 Adams Oct 2007 A1
20070244438 Perez Oct 2007 A1
20070255221 Nakajima Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20080039796 Nakajima Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080082082 Carlyon et al. Apr 2008 A1
20080097330 King et al. Apr 2008 A1
20080108911 Palmer et al. May 2008 A1
20080108944 Woehr et al. May 2008 A1
20080108974 Yee Roth May 2008 A1
20080125709 Chang et al. May 2008 A1
20080131300 Junod et al. Jun 2008 A1
20080132846 Shue et al. Jun 2008 A1
20080147010 Nakajima et al. Jun 2008 A1
20080243165 Mauch et al. Oct 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080294111 Tal et al. Nov 2008 A1
20080300574 Belson et al. Dec 2008 A1
20090018567 Escudero et al. Jan 2009 A1
20090030380 Binmoeller Jan 2009 A1
20090036836 Nystrom et al. Feb 2009 A1
20090048566 Ferguson et al. Feb 2009 A1
20090131872 Popov May 2009 A1
20090157006 Nardeo et al. Jun 2009 A1
20090221961 Tal et al. Sep 2009 A1
20090292243 Harding et al. Nov 2009 A1
20090299291 Baid Dec 2009 A1
20100010441 Belson Jan 2010 A1
20100010447 Luther et al. Jan 2010 A1
20100016838 Butts et al. Jan 2010 A1
20100036331 Sen Feb 2010 A1
20100056910 Yanuma Mar 2010 A1
20100057183 Mangiardi et al. Mar 2010 A1
20100087787 Woehr et al. Apr 2010 A1
20100094116 Silverstein Apr 2010 A1
20100094310 Warring et al. Apr 2010 A1
20100137815 Kuracina et al. Jun 2010 A1
20100168674 Shaw et al. Jul 2010 A1
20100204654 Mulholland et al. Aug 2010 A1
20100204660 McKinnon et al. Aug 2010 A1
20100204675 Woehr et al. Aug 2010 A1
20100210934 Belson Aug 2010 A1
20100238705 Kim et al. Sep 2010 A1
20100246707 Michelitsch Sep 2010 A1
20100331732 Raulerson et al. Dec 2010 A1
20110004162 Tal Jan 2011 A1
20110009827 Bierman et al. Jan 2011 A1
20110015573 Maan et al. Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110125097 Shaw et al. May 2011 A1
20110137252 Oster et al. Jun 2011 A1
20110196315 Chappel Aug 2011 A1
20110207157 Gautier et al. Aug 2011 A1
20110218496 Bierman Sep 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110276002 Bierman Nov 2011 A1
20110282285 Blanchard et al. Nov 2011 A1
20110288482 Farrell et al. Nov 2011 A1
20110306933 Djordjevic et al. Dec 2011 A1
20110319838 Goral et al. Dec 2011 A1
20120053523 Harding Mar 2012 A1
20120071857 Goldfarb et al. Mar 2012 A1
20120078231 Hoshinouchi Mar 2012 A1
20120101440 Kamen et al. Apr 2012 A1
20120123332 Erskine May 2012 A1
20120123354 Woehr May 2012 A1
20120157854 Kurrus et al. Jun 2012 A1
20120179104 Woehr et al. Jul 2012 A1
20120184896 DeLegge et al. Jul 2012 A1
20120197200 Belson Aug 2012 A1
20120220942 Hall et al. Aug 2012 A1
20120220956 Kuracina et al. Aug 2012 A1
20120259293 Bialecki et al. Oct 2012 A1
20120271232 Katsurada et al. Oct 2012 A1
20120296282 Koehler et al. Nov 2012 A1
20120316500 Bierman et al. Dec 2012 A1
20120323181 Shaw et al. Dec 2012 A1
20130030391 Baid Jan 2013 A1
20130158506 Harris et al. Jun 2013 A1
20130184645 Baid Jul 2013 A1
20130204206 Morgan et al. Aug 2013 A1
20130204226 Keyser Aug 2013 A1
20130218082 Hyer et al. Aug 2013 A1
20130304030 Gray et al. Nov 2013 A1
20130310764 Burkholz et al. Nov 2013 A1
20130324930 Fuchs et al. Dec 2013 A1
20140012203 Woehr et al. Jan 2014 A1
20140031752 Blanchard et al. Jan 2014 A1
20140039461 Anderson et al. Feb 2014 A1
20140058329 Walker et al. Feb 2014 A1
20140058336 Burkholz et al. Feb 2014 A1
20140058357 Keyser et al. Feb 2014 A1
20140073928 Yamashita et al. Mar 2014 A1
20140074034 Tanabe et al. Mar 2014 A1
20140088509 Sonderegger et al. Mar 2014 A1
20140094774 Blanchard Apr 2014 A1
20140094836 Feng et al. Apr 2014 A1
20140114239 Dib et al. Apr 2014 A1
20140128775 Andreae et al. May 2014 A1
20140135702 Woehr et al. May 2014 A1
20140135703 Yeh et al. May 2014 A1
20140143999 Goral et al. May 2014 A1
20140180250 Belson Jun 2014 A1
20140188003 Belson Jul 2014 A1
20140194853 Morgan et al. Jul 2014 A1
20140214005 Belson Jul 2014 A1
20140221977 Belson Aug 2014 A1
20140236099 Nakagami et al. Aug 2014 A1
20140243734 Eubanks et al. Aug 2014 A1
20140249488 Woehr Sep 2014 A1
20140257359 Tegels et al. Sep 2014 A1
20140276224 Ranganathan et al. Sep 2014 A1
20140276432 Bierman et al. Sep 2014 A1
20140276434 Woehr et al. Sep 2014 A1
20140303561 Li Oct 2014 A1
20140323988 Magnani et al. Oct 2014 A1
20140336582 Tisci et al. Nov 2014 A1
20140357983 Toomey et al. Dec 2014 A1
20140358123 Ueda et al. Dec 2014 A1
20140364809 Isaacson et al. Dec 2014 A1
20140371715 Farrell et al. Dec 2014 A1
20140371720 Urmey Dec 2014 A1
20140378867 Belson Dec 2014 A1
20150025467 Woehr Jan 2015 A1
20150038909 Christensen et al. Feb 2015 A1
20150038910 Harding et al. Feb 2015 A1
20150038943 Warring et al. Feb 2015 A1
20150051584 Korkuch et al. Feb 2015 A1
20150080801 Tanabe et al. Mar 2015 A1
20150080810 Henderson et al. Mar 2015 A1
20150088095 Luther et al. Mar 2015 A1
20150094659 Schraga Apr 2015 A1
20150119806 Blanchard et al. Apr 2015 A1
20150119852 Wexler Apr 2015 A1
20150126932 Knutsson May 2015 A1
20150151086 Teoh Jun 2015 A1
20150151088 Lim et al. Jun 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150190570 Teoh Jul 2015 A1
20150190617 Anderson et al. Jul 2015 A1
20150202414 Hwang Jul 2015 A1
20150202421 Ma et al. Jul 2015 A1
20150224267 Farrell et al. Aug 2015 A1
20150231364 Blanchard et al. Aug 2015 A1
20150238705 Gravesen et al. Aug 2015 A1
20150290431 Hall et al. Oct 2015 A1
20150306347 Yagi Oct 2015 A1
20150306356 Gill Oct 2015 A1
20150328434 Gaur Nov 2015 A1
20150328438 Baid Nov 2015 A1
20150335858 Woehr et al. Nov 2015 A1
20150359473 Garrett et al. Dec 2015 A1
20160008580 Woehr et al. Jan 2016 A1
20160015943 Belson et al. Jan 2016 A1
20160015945 Warring et al. Jan 2016 A1
20160022312 Tang et al. Jan 2016 A1
20160022963 Belson Jan 2016 A1
20160030716 Mallin et al. Feb 2016 A1
20160045715 Galgano et al. Feb 2016 A1
20160089513 Ishida Mar 2016 A1
20160106959 Woehr Apr 2016 A1
20160114136 Woehr Apr 2016 A1
20160114137 Woehr et al. Apr 2016 A1
20160158503 Woehr Jun 2016 A1
20160158526 Woehr Jun 2016 A1
20160175563 Woehr et al. Jun 2016 A1
20160184557 Call et al. Jun 2016 A1
20160199575 Belley et al. Jul 2016 A1
20160206852 Morgan et al. Jul 2016 A1
20160206858 Ishida Jul 2016 A1
20160220161 Goral et al. Aug 2016 A1
20160220786 Mitchell et al. Aug 2016 A1
20160256667 Ribelin et al. Sep 2016 A1
20160296729 Fuchs et al. Oct 2016 A1
20160310704 Ng et al. Oct 2016 A1
20160331937 Teoh Nov 2016 A1
20160331938 Blanchard et al. Nov 2016 A1
20160354580 Teoh et al. Dec 2016 A1
20160361490 Phang et al. Dec 2016 A1
20160361519 Teoh et al. Dec 2016 A1
20170000982 Ishida Jan 2017 A1
20170035992 Harding et al. Feb 2017 A1
20170043132 Ishida Feb 2017 A1
20170087338 Belson Mar 2017 A1
20170136217 Riesenberger et al. May 2017 A1
20170203050 Bauer et al. Jul 2017 A1
20170209668 Belson Jul 2017 A1
20170246429 Tan et al. Aug 2017 A1
20170259036 Belson Sep 2017 A1
20170361071 Belson Dec 2017 A1
20180028780 Blanchard et al. Feb 2018 A1
20180071509 Tran et al. Mar 2018 A1
20180099123 Woehr Apr 2018 A1
20180126125 Hall et al. May 2018 A1
20180133437 Blanchard May 2018 A1
20180229003 Blanchard et al. Aug 2018 A1
20180229004 Blanchard et al. Aug 2018 A1
20190022358 Belson Jan 2019 A1
20190192829 Belson et al. Jun 2019 A1
20190201667 Braithwaite et al. Jul 2019 A1
20190240459 Belson Aug 2019 A1
20190275303 Tran et al. Sep 2019 A1
20190307986 Belson Oct 2019 A1
20190351193 Hall Nov 2019 A1
20190351196 Ribelin et al. Nov 2019 A1
20200001051 Huang et al. Jan 2020 A1
20200094037 Tran et al. Mar 2020 A1
20200261696 Blanchard Aug 2020 A1
20200261703 Belson et al. Aug 2020 A1
20200316347 Belson Oct 2020 A1
20210052858 Isaacson et al. Feb 2021 A1
20210308428 Blanchard et al. Oct 2021 A1
20210402155 Hall et al. Dec 2021 A1
Foreign Referenced Citations (137)
Number Date Country
691141 May 1998 AU
710967 Sep 1999 AU
1178707 Apr 1998 CN
1319023 Oct 2001 CN
1523970 Aug 2004 CN
1871043 Nov 2006 CN
101242868 Aug 2008 CN
101293122 Oct 2008 CN
101417159 Apr 2009 CN
101784300 Jul 2010 CN
102099075 Jun 2011 CN
102939129 Feb 2013 CN
104689456 Jun 2015 CN
105073174 Nov 2015 CN
105188826 Dec 2015 CN
105705191 Jun 2016 CN
20210394 Sep 2002 DE
0314470 May 1989 EP
417764 Mar 1991 EP
475857 Mar 1992 EP
515710 Dec 1992 EP
567321 Oct 1993 EP
652020 May 1995 EP
0730880 Sep 1996 EP
747075 Dec 1996 EP
750916 Jan 1997 EP
778043 Jun 1997 EP
800790 Oct 1997 EP
832663 Apr 1998 EP
910988 Apr 1999 EP
942761 Sep 1999 EP
1075850 Feb 2001 EP
1378263 Jan 2004 EP
1418971 May 2004 EP
1457229 Sep 2004 EP
1611916 Jan 2006 EP
1907042 Apr 2008 EP
2150304 Feb 2010 EP
2272432 Jan 2011 EP
2569046 Mar 2013 EP
2529270 Feb 2016 GB
2003-159334 Jun 2003 JP
2004-130074 Apr 2004 JP
2004-223252 Aug 2004 JP
2005-137888 Jun 2005 JP
2009-500129 Jan 2009 JP
2010-088521 Apr 2010 JP
2013-529111 Jul 2013 JP
2018-118079 Aug 2018 JP
6692869 May 2020 JP
8301575 May 1983 WO
1992013584 Aug 1992 WO
9222344 Dec 1992 WO
1994006681 Mar 1994 WO
1995011710 May 1995 WO
9519193 Jul 1995 WO
9523003 Aug 1995 WO
9632981 Oct 1996 WO
1996040359 Dec 1996 WO
9705912 Feb 1997 WO
9721458 Jun 1997 WO
1997045151 Dec 1997 WO
9824494 Jun 1998 WO
1998030268 Jul 1998 WO
1998053875 Dec 1998 WO
1999008742 Feb 1999 WO
1999026682 Jun 1999 WO
0006226 Feb 2000 WO
0012160 Mar 2000 WO
2000012167 Mar 2000 WO
0047256 Aug 2000 WO
0067829 Nov 2000 WO
2001007103 Feb 2001 WO
0126725 Apr 2001 WO
0241932 May 2002 WO
02066093 Aug 2002 WO
0311381 Feb 2003 WO
03043686 May 2003 WO
03047675 Jun 2003 WO
2004018031 Mar 2004 WO
2005002659 Jan 2005 WO
2004106203 Mar 2005 WO
2005074412 Aug 2005 WO
2005087306 Sep 2005 WO
2006062996 Jun 2006 WO
2007006055 Jan 2007 WO
2007032343 Mar 2007 WO
2007094841 Aug 2007 WO
2007098355 Aug 2007 WO
2007098359 Aug 2007 WO
2008005618 Jan 2008 WO
2008030999 Mar 2008 WO
2008131300 Oct 2008 WO
2008137956 Nov 2008 WO
2009001309 Dec 2008 WO
2008147600 Dec 2008 WO
2009031161 Mar 2009 WO
2009114837 Sep 2009 WO
2009124990 Oct 2009 WO
2010015676 Feb 2010 WO
2010048449 Apr 2010 WO
2010132608 Nov 2010 WO
2011036574 Mar 2011 WO
2011143621 Nov 2011 WO
2012106266 Aug 2012 WO
2012154277 Nov 2012 WO
2012166746 Dec 2012 WO
2012174109 Dec 2012 WO
2013119557 Aug 2013 WO
2013126446 Aug 2013 WO
2013187827 Dec 2013 WO
2014006403 Jan 2014 WO
2014029424 Feb 2014 WO
2014074417 May 2014 WO
2014081942 May 2014 WO
2014123848 Aug 2014 WO
2014120741 Aug 2014 WO
2014133617 Sep 2014 WO
2014140257 Sep 2014 WO
2014140265 Sep 2014 WO
2014165783 Oct 2014 WO
2014158908 Oct 2014 WO
2014182421 Nov 2014 WO
2014197656 Dec 2014 WO
2014204593 Dec 2014 WO
2015017136 Feb 2015 WO
2015024904 Feb 2015 WO
2015035393 Mar 2015 WO
2015058136 Apr 2015 WO
15108913 Jul 2015 WO
2015168655 Nov 2015 WO
15164912 Nov 2015 WO
2016037127 Mar 2016 WO
16178974 Nov 2016 WO
2018049413 Mar 2018 WO
2018170349 Sep 2018 WO
2019173641 Sep 2019 WO
Non-Patent Literature Citations (239)
Entry
U.S. Appl. No. 15/154,384, filed May 13, 2016 Notice of Allowance dated Apr. 29, 2021.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Notice of Allowance dated Jun. 16, 2021.
U.S. Appl. No. 16/296,087, filed Mar. 7, 2019 Final Office Action dated Sep. 10, 2021.
U.S. Appl. No. 16/389,719, filed Apr. 19, 2019 Final Office Action dated Jun. 14, 2021.
U.S. Appl. No. 16/450,800, filed Jun. 24, 2019 Non-Final Office Action dated Jul. 9, 2021.
U.S. Appl. No. 16/490,023, filed Aug. 29, 2019 Restriction Requirement dated May 4, 2021.
U.S. Appl. No. 16/529,622, filed Aug. 1, 2019 Non-Final Office Action dated May 7, 2021.
U.S. Appl. No. 16/529,622, filed Aug. 1, 2019 Notice of Allowance dated Aug. 23, 2021.
U.S. Appl. No. 16/389,719, filed Apr. 19, 2019 Non-Final Office Action dated Mar. 19, 2021.
U.S. Appl. No. 16/529,602, filed Aug. 1, 2019 Notice of Allowance dated Jan. 19, 2021.
U.S. Appl. No. 29/536,043, filed Aug. 12, 2015 Final Office Action dated Mar. 26, 2018.
U.S. Appl. No. 29/536,043, filed Aug. 12, 2015 Non-Final Office Action dated Aug. 31, 2017.
U.S. Appl. No. 29/545,436, filed Nov. 12, 2015 Final Office Action dated Mar. 26, 2018.
U.S. Appl. No. 29/545,436, filed Nov. 12, 2015 Non-Final Office Action dated Sep. 12, 2017.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Notice of Allowability dated Sep. 30, 2020.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Notice of Allowance dated Aug. 17, 2020.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Restriction Requirement dated Apr. 8, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Notice of Allowability dated Sep. 30, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Notice of Allowance dated Aug. 18, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Restriction Requirement dated Mar. 10, 2020.
U.S. Appl. No. 29/658,136, filed Jul. 27, 2018 Non-Final Office Action dated Sep. 9, 2020.
U.S. Appl. No. 29/658,136, filed Jul. 27, 2018 Notice of Allowance dated Mar. 23, 2021.
U.S. Appl. No. 29/658,136, filed Jul. 27, 2018 Restriction Requirement dated May 11, 2020.
Waltimire, B. and Rasor, J.S., Midline catheter: Virtually bloodless insertion technique and needle safety tube minimize potential for transmission of bloodborne disease. Sponsored by national Foundation for Infectious Diseases. 5th National forum on AIDS, Hepatitis, and other blood-borne diseases. Atlanta, GA, Mar. 1992.
PCT/US2020/046860 filed Aug. 18, 2020 International Search Report and Written Opinion dated Nov. 18, 2020.
U.S. Appl. No. 16/696,844, filed Nov. 26, 2019 Non-Final Office Action dated Aug. 1, 2022.
U.S. Appl. No. 16/867,349, filed May 5, 2020 Non-Final Office Action dated Jun. 16, 2022.
Access Scientific, The PICC Wand® Product Data Sheet, Revision F, May 22, 2012.
Access Scientific, The Powerwand® Extended Dwell Catheter Brochure (http://accessscientific.com/media/4Fr-POWERWAND-Brochure.pdf) last accessed Sep. 25, 2015.
BD Angiocath™ Autoguard™ Shielded IV Catheter Brochure, © 2001.
BD Medical Systems, I.V. Catheter Family Brochure (2006).
BD Saf-T-Intima™ Integrated Safety IV Catheter Brochure, © 2001.
Becton Dickinson, Insyte® AutoGuard™ Shielded I.V. Catheter Brochure, 1998.
CA 2,799,360 filed May 13, 2011 Office Action dated Jun. 7, 2017.
CN 201180029526.7 filed Dec. 14, 2012 First Office Action dated Apr. 21, 2014.
CN 2012800008866.6 filed Aug. 14, 2013 Second Office Action dated Aug. 17, 2015.
CN 201280008866.6 filed Aug. 14, 2013 First Office Action dated Dec. 31, 2014.
CN 201280008866.6 filed Aug. 14, 2013 Third Office Action dated Jan. 25, 2016.
CN 201380073657.4 filed Aug. 21, 2015 Office Action dated Jun. 28, 2017.
CN 201380073657.4 filed Aug. 21, 2015 Office Action dated Mar. 2, 2018.
CN 201480019467.9 filed Sep. 29, 2015 Office Action dated Apr. 6, 2017.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Dec. 30, 2016.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Feb. 5, 2018.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Sep. 19, 2017.
CN 201580022407.7 filed Nov. 2, 2016 Office Action dated Jan. 31, 2019.
CN 201580022407.7 filed Nov. 2, 2016 Office Action dated Sep. 16, 2019.
Cook Medical “Lunderquist Extra-Stiff wire guide” (2012).
Endovascular Today “Coiled Stainless Steel Guidewires” Buyer's Guide pp. 13-20, (2012).
EP 07783404.2 filed Jan. 19, 2009 Office Action dated Apr. 16, 2019.
EP 07783404.2 filed Jan. 19, 2009 Office Action dated Mar. 7, 2018.
EP 10075422.5 filed Jul. 5, 2008 European search report and written opinion dated Dec. 1, 2010.
EP 11781384.0 filed Sep. 21, 2012 Extended European Search Report dated Oct. 31, 2017.
EP 12782187.4 filed Sep. 10, 2013 European search report and written opinion dated Aug. 30, 2016.
EP 12782187.4 filed Sep. 10, 2013 European search report and written opinion dated Dec. 17, 2015.
EP 12782187.4 filed Sep. 10, 2013 Office Action dated Apr. 24, 2018.
EP 12782187.4 filed Sep. 10, 2013 Office Action dated Nov. 28, 2018.
EP 13876666.2 filed Sep. 7, 2015 Extended European Search Report dated Sep. 20, 2016.
EP 15785819.2 filed Dec. 2, 2016 Extended European Search Report dated Dec. 4, 2017.
EP 16797029.2 filed Nov. 21, 2017 Extended European Search Report dated May 3, 2018.
EP 16797029.2 filed Nov. 21, 2017 Office Action dated Mar. 27, 2020.
EP 16797047.4 filed Dec. 6, 2017 Supplemental European Search Report dated Jan. 9, 2019.
EP 19181963.0 filed Jun. 24, 2019 Extended European Search Report dated Jul. 16, 2019.
EP17849786.3 filed Apr. 12, 2019 Extended European Search Report dated May 13, 2020.
European office action dated Apr. 21, 2008 for EP Application No. 06800027.2.
European office action dated Aug. 6, 2012 for EP Application No. 07783404.2.
European office action dated Oct. 5, 2010 for EP Application No. 07783404.2.
European search report and opinion dated Jul. 10, 2009 for EP Application No. 07783404.2.
Hadaway, Lynn C., A Midline Alternative to Central and Peripheral Venous Access, Caring Magazine, May 1990, pp. 45-50.
International search report and written opinion dated Apr. 2, 2012 for PCT/US2012/023192.
International search report and written opinion dated Jun. 1, 2007 for PCT/US2006/026671.
International search report and written opinion dated Oct. 23, 2008 for PCT/US2007/068393.
JP 2013-510353 filed Oct. 31, 2012 First Office Action dated Feb. 19, 2015.
JP 2013-510353 filed Oct. 31, 2012 Office Action dated Dec. 15, 2016.
JP 2013-510353 filed Oct. 31, 2012 Second Office Action dated Jan. 28, 2016.
JP 2015-560173 filed Aug. 28, 2015 Office Action dated Aug. 2, 2018.
JP 2015-560173 filed Aug. 28, 2015 Office Action dated Sep. 19, 2017.
JP 2016-107046 filed May 30, 2016 Office Action dated Apr. 26, 2017.
EP 22159383.3 filed Mar. 1, 2022 Extended European Search Report dated May 30, 2022.
PCT/US2019/052225 filed Sep. 20, 2019 International Search Report and Written Opinion dated Jun. 25, 2020.
U.S. Appl. No. 16/868,461, filed May 6, 2020 Final Office Action dated May 25, 2022.
U.S. Appl. No. 16/996,769, filed Aug. 18, 2020 Notice of Allowance dated Jun. 13, 2022.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Notice of Allowance dated Dec. 24, 2021.
U.S. Appl. No. 16/296,087, filed Mar. 7, 2019 Notice of Allowance dated Mar. 8, 2022.
U.S. Appl. No. 16/490,023, filed Aug. 29, 2019 Notice of Allowance dated Mar. 14, 2022.
U.S. Appl. No. 16/868,461, filed May 6, 2020 Non-Final Office Action dated Feb. 15, 2022.
U.S. Appl. No. 16/996,769, filed Aug. 18, 2020 Non-Final Office Action dated Mar. 2, 2022.
U.S. Appl. No. 14/044,623, filed Oct. 2, 2013 Notice of Allowance dated Nov. 6, 2014.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Advisory Action dated Jun. 1, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Final Office Action dated Jan. 30, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Non-Final Office Action dated Dec. 22, 2015.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Non-Final Office Action dated Jul. 19, 2016.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Notice of Allowance dated Sep. 14, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Notice of Panel Decision dated Aug. 1, 2017.
U.S. Appl. No. 14/167,149, filed Jan. 29, 2014 Non-Final Office Action dated Oct. 21, 2015.
U.S. Appl. No. 14/167,149, filed Jan. 29, 2014 Notice of Allowance dated Jul. 6, 2016.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Final Office Action dated Dec. 2, 2016.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Non-Final Office Action dated Jul. 29, 2016.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Non-Final Office Action dated Mar. 31, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Non-Final Office Action dated Jul. 20, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Notice of Allowance dated Dec. 6, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Notice of Corrected Allowability dated Mar. 8, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Advisory Action dated May 19, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Examiner's Answer dated Jun. 20, 2018.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Final Office Action dated Mar. 9, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Final Office Action dated Nov. 6, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Non-Final Office Action dated Nov. 16, 2016.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Notice of Allowance dated Aug. 19, 2020.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Panel Decision dated Jul. 14, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Patent Board Decision dated Jun. 8, 2020.
U.S. Appl. No. 14/477,717, filed Sep. 4, 2014, Notice of allowance dated Feb. 17, 2015.
U.S. Appl. No. 14/477,717, filed Sep. 4, 2014, Office action dated Dec. 18, 2014.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Final Office Action dated May 11, 2018.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated May 16, 2016.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Nov. 29, 2016.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Nov. 3, 2017.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Oct. 8, 2015.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Notice of Allowance dated Feb. 25, 2019.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Notice of Allowance dated Jul. 3, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Advisory Action dated Nov. 13, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Final Office Action dated Sep. 1, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Non-Final Office Action dated May 3, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Notice of Allowance dated Dec. 8, 2017.
U.S. Appl. No. 14/750,658, filed Jun. 25, 2016 Non-Final Office Action dated Mar. 9, 2017.
U.S. Appl. No. 14/750,658, filed Jun. 25, 2016 Notice of Allowance dated Jul. 20, 2017.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Advisory Action dated May 10, 2018.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Final Office Action dated Mar. 22, 2018.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Non-Final Office Action dated Sep. 22, 2017.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Notice of Allowance dated Oct. 29, 2018.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Advisory Action dated Dec. 22, 2016.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Final Office Action dated Jun. 5, 2018.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Final Office Action dated Sep. 23, 2016.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Non-Final Office Action dated Apr. 7, 2017.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Non-Final Office Action dated Mar. 14, 2016.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Notice of Allowance dated Oct. 17, 2018.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Final Office Action dated Feb. 24, 2017.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Non-Final Office Action dated Nov. 6, 2017.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Non-Final Office Action dated Oct. 31, 2016.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Notice of Allowance dated Sep. 24, 2020.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Notice of Panel Decision dated Jun. 23, 2017.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Patent Board Decision dated Jul. 13, 2020.
U.S. Appl. No. 14/876,735, filed Oct. 6, 2015 Non-Final Office Action dated Mar. 30, 2017.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Final Office Action dated Dec. 24, 2020.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Final Office Action dated Nov. 27, 2019.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Non-Final Office Action dated Jun. 26, 2020.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Non-Final Office Action dated Jun. 28, 2019.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Notice of Allowance dated Mar. 17, 2021.
U.S. Appl. No. 15/154,384, filed May 13, 2016 Restriction Requirment dated Jan. 25, 2019.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Advisory Action dated Oct. 26, 2018.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Final Office Action dated Aug. 16, 2018.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Non-Final Office Action dated Apr. 6, 2018.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Notice of Allowance dated Apr. 16, 2019.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Restriction Requirement dated Jan. 3, 2018.
U.S. Appl. No. 15/377,880, filed Dec. 13, 2016 Final Office Action dated Oct. 19, 2018.
U.S. Appl. No. 15/377,880, filed Dec. 13, 2016 Non-Final Office Action dated May 14, 2018.
U.S. Appl. No. 15/481,773, filed Apr. 7, 2017 Final Office Action dated Jan. 10, 2019.
U.S. Appl. No. 15/481,773, filed Apr. 7, 2017 Non-Final Office Action dated Jun. 29, 2018.
U.S. Appl. No. 15/608,802, filed May 30, 2017 Non-Final Office Action dated Jun. 6, 2019.
U.S. Appl. No. 15/692,915, filed Aug. 31, 2017 Non-Final Office Action dated Jan. 29, 2018.
U.S. Appl. No. 15/702,537, filed Sep. 12, 2017 Final Office Action dated Mar. 8, 2019.
U.S. Appl. No. 15/702,537, filed Sep. 12, 2017 Non-Final Office Action dated Nov. 29, 2018.
U.S. Appl. No. 15/702,537, filed Sep. 12, 2017 Notice of Allowance dated Jul. 31, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Final Office Action dated Jan. 28, 2020.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Non-Final Office Action dated Sep. 20, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Restriction Requirement dated Aug. 7, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Notice of Allowance dated Mar. 27, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Final Office Action dated Oct. 26, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Non-Final Office Action dated Jul. 9, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Restriction Requirement dated Dec. 23, 2019.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Advisory Action dated Sep. 23, 2020.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Final Office Action dated Jun. 25, 2020.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Non-Final Office Action dated Apr. 10, 2020.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Non-Final Office Action dated Nov. 19, 2019.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Notice of Allowance dated Feb. 20, 2020.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Notice of Allowability dated Apr. 16, 2020.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Non-Final Office Action dated Nov. 4, 2019.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Notice of Allowance dated Feb. 23, 2020.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Notice of Allowability dated Apr. 7, 2020.
U.S. Appl. No. 16/138,523, filed Sep. 21, 2018 Notice of Allowance dated Mar. 26, 2020.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Corrected Notice of Allowance dated Feb. 25, 2021.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Non-Final Office Action dated Aug. 10, 2020.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Notice of Allowance dated Feb. 4, 2021.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Final Office Action dated Dec. 22, 2020.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Non-Final Office Action dated Sep. 4, 2020.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Notice of Allowance dated Mar. 4, 2021.
U.S. Appl. No. 16/296,087, filed Mar. 7, 2019 Non-Final Office Action dated Mar. 26, 2021.
U.S. Appl. No. 16/296,087, filed Mar. 7, 2019 Restriction Requirement dated Feb. 8, 2021.
U.S. Appl. No. 16/450,800, filed Jun. 24, 2019 Notice of Allowance dated Nov. 3, 2021.
U.S. Appl. No. 16/490,023, filed Aug. 29, 2019 Non-Final Office Action dated Oct. 4, 2021.
JP 2016-107046 filed May 30, 2016 Office Action dated Jul. 28, 2016.
JP 2016-107046 filed May 30, 2016 Office Action dated Nov. 7, 2017.
JP 2016-563441 filed Oct. 19, 2016 Office Action dated Jan. 25, 2019.
JP 2018-039302 filed Mar. 6, 2018 Office Action dated Feb. 20, 2019.
Menlo Care, Landmark® Midline Catheter Maintenance and Reference Guide (1993).
Menlo Care, Landmark® Midline Catheters Brochure, 1991.
Menlo Care, Landmark® Venous Access Device Insertion Instructions (1992).
Menlo Care, Landmark™ Aquavene® Catheters Brochure, 1992.
Menlo Care, Publications on Aquavene® Technology, Aug. 1992.
Notice of allowance dated Jan. 29, 2014 for U.S. Appl. No. 12/307,519.
Notice of allowance dated Jun. 10, 2015 for U.S. Appl. No. 11/577,491.
Office action dated Mar. 10, 2011 for U.S. Appl. No. 12/307,519.
Office action dated Mar. 15, 2011 for U.S. Appl. No. 11/577,491.
Office action dated Mar. 27, 2013 for U.S. Appl. No. 13/358,099.
Office action dated Aug. 2, 2010 for U.S. Appl. No. 11/577,491.
Office action dated Aug. 18, 2014 for U.S. Appl. No. 11/577,491.
Office action dated Oct. 25, 2010 for U.S. Appl. No. 12/307,519.
Office action dated Nov. 4, 2013 for U.S. Appl. No. 12/307,519.
Office action dated Mar. 12, 2015 for U.S. Appl. No. 11/577,491.
PCT/CN2017/075370 filed Mar. 1, 2017 International Search Report and Written Opinion dated Nov. 30, 2017.
PCT/US15/28950 filed May 1, 2015 International Search Report and Written Opinion dated Oct. 19, 2015.
PCT/US2008/062954 filed May 7, 2008 International search report and written opinion dated Jan. 16, 2009.
PCT/US2011/036530 filed May 13, 2011 International Search Report dated Oct. 6, 2011.
PCT/US2011/036530 filed May 13, 2011 Written Opinion of the International Searching Authority dated Oct. 6, 2011.
PCT/US2012/026618 International Preliminary Report on Patentability dated Aug. 27, 2013.
PCT/US2012/026618 International Search Report and Written Opinion dated Jun. 25, 2012.
PCT/US2013/073577 filed Dec. 6, 2013 International Search Report and Written Opinion dated Feb. 24, 2014.
PCT/US2014/013557 filed Jan. 29, 2014 International search report and written opinion dated Apr. 14, 2014.
PCT/US2015/048676 filed Sep. 4, 2015 International search report and written opinion dated Dec. 4, 2015.
PCT/US2016/032449 filed May 13, 2016 International Search Report and Written Opinion dated Oct. 5, 2016.
PCT/US2016/032534 filed May 13, 2016 International Search Report and Written Opinion dated Oct. 5, 2016.
PCT/US2017/051214 filed Sep. 12, 2017 International Search Report and Written Opinion dated Nov. 13, 2017.
PCT/US2019/021231 filed Mar. 7, 2019 International Search Report and Written Opinion, dated Jun. 27, 2019.
PR Newswire, Luther Medical Products, Inc. Receives Approval to Supply Improved Neonatal Product to Japan, Aug. 20, 1998.
Rasor, Julia S, Review of Catheter-related infection rates: comparison of conventional catheter materials with Aquavene®, JVAN vol. 1, No. 3, Spring 1991.
RU 2017141812 filed Nov. 30, 2017 Office Action dated Jan. 31, 2018.
SG 11201709185X filed Nov. 8, 2017 Office Action dated Oct. 5, 2018.
SG 11201709193S filed Nov. 8, 2017 Office Action dated Oct. 5, 2018.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Notice of allowance dated Jan. 16, 2014.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Aug. 28, 2013.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Dec. 4, 2012.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated May 8, 2013.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Oct. 24, 2013.
U.S. Appl. No. 13/107,781, filed May 13, 2011 Final Office Action dated Jul. 18, 2014.
U.S. Appl. No. 13/107,781, filed May 13, 2011 Non-Final Office Action dated Dec. 30, 2013.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Advisory Action dated Apr. 18, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Final Office Action dated Jan. 31, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Non-Final Office Action dated Aug. 20, 2013.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Non-Final Office Action dated Nov. 18, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Notice of Allowance dated Mar. 11, 2015.
U.S. Appl. No. 17/337,273, filed Jun. 2, 2021 Notice of Allowance dated Oct. 5, 2022.
Related Publications (1)
Number Date Country
20210154441 A1 May 2021 US
Provisional Applications (1)
Number Date Country
60697333 Jul 2005 US
Continuations (4)
Number Date Country
Parent 14866738 Sep 2015 US
Child 17164653 US
Parent 14250093 Apr 2014 US
Child 14866738 US
Parent 12307519 US
Child 14250093 US
Parent 11577491 US
Child 12307519 US