Intrinsically-safe handheld field maintenance tool with image and/or sound capture

Information

  • Patent Grant
  • 9201414
  • Patent Number
    9,201,414
  • Date Filed
    Wednesday, July 27, 2011
    13 years ago
  • Date Issued
    Tuesday, December 1, 2015
    9 years ago
Abstract
An intrinsically-safe handheld field maintenance tool includes a process communication module configured communicatively couple to a field device. A camera is configured to obtain at least one image relative to the field device. A controller is coupled to the process communication module and operably coupled to the camera. The controller is configured to store the at least one image relative to the field device. The handheld field maintenance tool may also include or employ an audio input device to capture audio files.
Description
BACKGROUND

Handheld field maintenance tools are known. Such tools are highly useful in the process control and measurement industry to allow operators to conveniently communicate with and/or interrogate field devices in a given process installation. Examples of such process installations include petroleum, pharmaceutical, chemical, pulp, and other fluid processing installations. In such installations, the process control and measurement network may include tens or even hundreds of various field devices which periodically require maintenance to ensure that such devices are functioning properly and/or calibrated. Moreover, when one or more errors in the process control and measurement installation are detected, the use of a handheld field maintenance tool allows a technician to quickly diagnose such errors in the field. Handheld field maintenance tools are generally used to configure, calibrate, and diagnose problems relative to intelligent field devices using digital process communication protocols.


Since at least some process installations may involve highly volatile, or even explosive, environments, it is often beneficial, or even required, for field devices and the handheld field maintenance tools used with such field devices to comply with intrinsic safety requirements. These requirements help ensure that compliant electrical devices will not generate a source of ignition even under fault conditions. One example of Intrinsic Safety requirements is set forth in: APPROVAL STANDARD INTRINSICALLY SAFE APPARATUS AND ASSOCIATED APPARATUS FOR USE IN CLASS I, II and III, DIVISION NUMBER 1 HAZARDOUS (CLASSIFIED) LOCATIONS, CLASS NUMBER 3610, promulgated by Factory Mutual Research October, 1998. An example of a handheld field maintenance tool that complies with intrinsic safety requirements includes that sold under trade designation Model 475 Field Communicator, available from Emerson Process Management of Austin, Tex.


SUMMARY

An intrinsically-safe handheld field maintenance tool includes a process communication module configured communicatively couple to a field device. A camera is configured to obtain at least one image relative to the field device. A controller is coupled to the process communication module and operably coupled to the camera. The controller is configured to store the at least one image relative to the field device. The handheld field maintenance tool may also include or employ an audio input device to capture audio files.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are diagrammatic views of a handheld field maintenance tool with which embodiments of the invention are particularly useful.



FIG. 2 is a diagrammatic view of a handheld field maintenance tool with which embodiments of the present invention are particularly useful.



FIG. 3 is a block diagram of a handheld field maintenance tool in accordance with an embodiment of the present invention.



FIG. 4 is a diagrammatic view of an intrinsically safe handheld field maintenance tool interacting with an intrinsically safe camera/input device in accordance with an embodiment of the present invention.



FIG. 5 is a block diagram of an external input module in accordance with an embodiment of the present invention.



FIG. 6 is a diagrammatic view of handheld field maintenance tool receiving and/or sending previously-created audio/photo/video information from/to another handheld field maintenance tool or a personal computer in accordance with an embodiment of the present invention.



FIG. 7 is a flow diagram of a method of performing field maintenance using a handheld field maintenance tool in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION


FIGS. 1A and 1B are diagrammatic views of a handheld field maintenance tool 22 coupled to field devices 20, 23. As shown in FIG. 1A, handheld field maintenance tool 22 includes a pair of terminals 25, 27 that couple to test leads 30, 32, respectively, which are then coupled to terminals 24 of field device 20. Terminals 24 may be dedicated terminals to allow such a handheld field maintenance tool to couple to device 20 and interact with device 20. The utilization of terminals 25, 27 to couple to field device illustrates an example of a wired connection between handheld field maintenance tool 22 and field device 20.



FIG. 1B shows an alternate arrangement where handheld field maintenance tool 22 couples directly to the process control loop 34 to which field device 23 is coupled. In either case, the wired connection between the handheld field maintenance tool and the field device allows the handheld field maintenance tool to interact with the desired field device 20, 23.



FIG. 2 is a diagrammatic view of handheld field maintenance tool 102 interacting with wireless field device 104. System 100 includes handheld field maintenance tool 102 communicating with field device 104. Handheld field maintenance tool 102 is communicatively coupled to field device 104 via communication link 114. Communication link 114 can take any suitable form including wired connections as shown in FIGS. 1A and 1B, as well as wireless communication techniques that are currently being used or being developed. Handheld field maintenance tool 102 allows a technician to interact with field device 104 to configure, calibrate, and/or diagnose problems with respect to field device 104 using a digital process communication protocol such as FOUNDATION™ Fieldbus and/or the HART® protocol. Handheld field maintenance tools, such as tool 102 can be used to save configuration data from field devices, such as field device 104.


Field device 104 may be any device that senses a variable in the process and transmits information related to the variable over a process communication loop; such as a pressure or temperature. Field device 104 may also be a device that receives information from a process communication loop and sets a physical parameter, such as a valve closure, based on the information. Field device 104 is depicted as an industrial process fluid pressure transmitter having a pressure manifold 106 coupled thereto, and an electronics enclosure 108. Field device 104 is provided for illustrative purposes only. In reality, field device 104 may be any industrial device, such as a process fluid temperature transmitter, process fluid level transmitter, process fluid flow transmitter, valve controller, or any other device that is useful in the measurement and/or control of industrial processes.


Handheld field maintenance tool 102 generally includes a user interface that comprises a display 120 as well as a number of user input buttons 122. Display 120 may be any suitable display such as an active-matrix liquid crystal display, or any other suitable display that is able to provide useful information. Buttons 122 may comprise any suitable arrangement of buttons relative to any number of functions to which the handheld field maintenance tool may be directed. Buttons 122 may comprise a numeric keypad, an alphanumeric keypad, any suitable number of custom functions and/or navigation buttons, or any combination thereof.



FIG. 3 is a diagrammatic system block diagram of a handheld field maintenance tool in accordance with an embodiment of the present invention. It is preferred that tool 52 comply with at least one intrinsic safety specification, such as that listed above, in order to help ensure safety in potentially explosive environments. Handheld field maintenance tool 52 preferably includes at least one wireless process communication module 121. Suitable examples for wireless process communication module 121 include a module that generates and/or receives proper signals in accordance with a known wireless communication protocol, such as the WirelessHART protocol (IEC 62591). Another wireless process communication protocol is set forth in ISA100.11a. While FIG. 3 shows a single wireless process communication module 121, it is expressly contemplated that any suitable number of wireless process communication modules can be used to communicate in accordance with various wireless process communication protocols now in existence or later developed.


Handheld field maintenance tool 52 also includes at least one secondary wireless communication protocol module 123. Wireless communication protocol module 123 can communicate in accordance with one or more of the options shown in phantom in FIG. 3. Specifically, wireless communication protocol module 123 may communicate in accordance with a Bluetooth specification 124 (such as Bluetooth Specification 2.1 rated at Power Class 2; a Wi-Fi specification 126 (such as IEEE 802.11.a/b/g/n); a known RFID specification 128; cellular communication techniques 130 (such as GSM/CDMA); and/or satellite communication 132. These communication techniques and methodologies allow handheld field maintenance tool 52 to communicate directly with a wireless gateway or other suitable device either via direct wireless communication, or using the Internet. While one wireless communication protocol module 123 is shown in FIG. 3, any suitable number may be used. Each of the wireless process communication protocol module 121 and wireless communication protocol module 123 is coupled to controller 130 which is also coupled to the wired process communication module 138. Controller 130 is preferably a microprocessor that executes a sequence of instructions stored therein, or in memory coupled to controller 130, to perform handheld field maintenance tasks. Wired process communication module 138 allows handheld field maintenance tool 52 to be physically coupled via a wired connection at terminals 142, 144 to a field device. Examples of suitable wired process communication include the highway addressable remote transducer (HART®) protocol, the FOUNDATION™ Fieldbus protocol, Profibus and others.


Handheld field maintenance tool 52 includes a user interface module 156 for generating a user interface using display 120 and keys 122. Module 156 can include suitable display driver circuitry 158 and/or memory to interact with display 120. Module 156 also includes input circuitry 160 which is configured to interact with buttons 122 to receive user input. Additionally, in embodiments where display 120 includes a touchscreen, module 160 can include circuitry to generate user input data to controller 130 based upon a user's touch and/or gestures received by the touchscreen.


Handheld field maintenance tool includes or is coupled to camera 157. Preferably camera 157 is an internal component of handheld field maintenance tool 52. However, embodiments of the present invention do include camera 157 being a separate intrinsically-safe external module, such as that described below with respect to FIGS. 4 and 5. Preferably, camera 157 is a known CCD (Charge Coupled Device) or CMOS Image Acquisition System. While it is preferred that camera 157 capture images (either still, video, or both) in the visible spectrum, some embodiments may include a camera that is sensitive to, or images, infrared radiation. Moreover, while embodiments of the present invention will generally be described with respect to a single camera, it is expressly contemplated that multiple such cameras could be used. For example, a first camera may be an internal component of handheld field maintenance tool 52 and be sensitive to the visible spectrum. A second camera 157 could be an intrinsically-safe external camera that transmits its image data to the handheld field maintenance tool using wireless communication. Further still, yet another external camera 157 could be configured to capture a video using high-speed image acquisition using a high frame rate (for example 1000 frames per second) to capture fleeting occurrences within a process installation.


Handheld field maintenance tool 52 can include a number of additional items that facilitate additional functionality. Specifically, tool 52 can include a position detection module, such as GPS module 150. GPS module 150 can be configured to additionally use the Wide Area Augmentation System (WAAS) for improved accuracy and/or can be configured to operate using differential GPS techniques as appropriate. Module 150 is coupled to controller 130 to provide controller 130 with an indication of the geographic position of tool 52. While position detection module 150 is preferably an internal component of tool 52, it may be external and communicatively coupled thereto using a suitable wireless or wired communication protocol, such as Bluetooth 124, RFID 128, et cetera. Further, while position detection module 150 is generally described as GPS module 150, other techniques for triangulating the position of the handheld field maintenance tool based upon relative strength of wireless communication with wireless transceivers having known fixed positions can be employed. Examples of such wireless triangulation techniques include triangulation of the position of handheld field maintenance tool 52 based upon communication with three or more fixed-position WiFi communication points, or access points. Further still, as set forth above, embodiments of the present invention may include the ability to employ one or more wireless process communication protocol modules, such as module 121.


Additionally, tool 52 also preferably comprises compass module 152 coupled to controller 130 such that tool 52 can indicate the direction in which it is pointing. Finally, tool 52 can also include tilt module 154 coupled to controller 130 to provide an indication to controller 130 relative to an angle of inclination of tool 52 relative to gravity. However, additional axes of sensing are also contemplated.


The positional location module 150, compass module 152 and tilt module 154 are particularly useful where a handheld field maintenance tool helps a technician or engineer find the physical location of a wireless field device in the field. An oil refinery is often a very large process installation with many field devices positioned at various locations, some of which may not be readily visible. Position detection module 150 preferably provides position information to controller 130 such that images and/or video acquired by the handheld field maintenance tool is stored with meta data indicative of the geographic position of the handheld field maintenance tool when the image or video was acquired. Moreover, the compass heading is also preferably stored in the image or video metadata.


When a technician is out in the field, it may sometimes be useful for the technician to have the ability to either view a picture of a field device in its location (for the purposes of identification or to compare historical pictures to a current view) or to compare the noise generated by the device (a motor, for example) to that previously recorded. In accordance with an embodiment of the present invention, an intrinsically safe handheld field maintenance tool includes, or is operably coupled to, a video and/or audio input device that provides the ability to record audio and/or photo/video of a field device. Moreover, the handheld field maintenance tool is configured, through hardware, software, or a combination thereof, to associate the recorded audio and/or video of a field device with other device information, such as a device tag, geographic position, et cetera.



FIG. 4 is a diagrammatic view of an intrinsically safe handheld field maintenance tool 200 interacting, wirelessly, with an intrinsically safe camera/input device 202. Preferably, handheld field maintenance tool 200 and external input device 202 communicate in accordance with one of the wireless communication technologies set forth with respect to FIG. 3. More preferably, the communication is in accordance with either Bluetooth communication, or WiFi communication. Wireless communication is preferred over wired communication since wireless communication does not have wired connection ports, and thus facilitates compliance with intrinsic safety requirements. Input device 202 may be a photographic camera that is able to capture one or more still images in the field. Alternatively, or additionally, device 202 may be a video camera capable of capturing and storing/streaming, or otherwise communicating video and corresponding audio information. Device 202 may also be a high-speed camera to capture fleeting process events. Further still, embodiments where the camera or the input device 202 is external to handheld field maintenance tool 200 are particularly useful in situations where a technician cannot easily view a given area. In such circumstances, the input device can simply be placed in a convenient location for viewing, and the image or video information can be viewed on the technician's handheld field maintenance tool. Moreover, embodiments of the present invention also contemplate a single handheld field maintenance tool simultaneously communicating with a plurality of such external input devices 202. In this manner, a technician viewing display 120 is able to simultaneously monitor conditions at a plurality of locations in the field. While the embodiment described above with respect to FIG. 4 employs wireless communication between the camera/input device 202 and the handheld field maintenance tool, embodiments of the present invention can be practiced where camera/input device 202 is physically coupled to the handheld field maintenance tool. In such instances, communication therebetween would preferably be via wired communication, such as through a Universal Serial Bus (USB) connection.



FIG. 5 is a block diagram of external input module 202 in accordance with an embodiment of the present invention. Module 202 includes camera subsystem 204 which may be a known CCD (Charge Coupled Device) or CMOS image acquisition system. Preferably, input device 202 is powered by an internal battery 206 that may be rechargeable. Input device 202 preferably includes a controller 208, which is preferably a microprocessor. Controller 208 includes, or is coupled to, suitable memory to contain a number of program instructions to execute the functions of image acquisition, video or photo streaming, image or photo transfer, or other suitable functions. Additionally, the memory preferably includes sufficient capacity to store a substantial number of individual images, and/or videos. Input device 202 also includes a wireless communication module 210 which preferably operates in accordance with either a Bluetooth specification or a WiFi specification. Both such specifications support high-speed data transfer over a relatively limited physical proximity, such as tens of meters.



FIG. 6 is a diagrammatic view of handheld field maintenance tool 200 receiving and/or sending previously-created audio/photo/video information from/to another handheld field maintenance tool 212, or a personal computer 214, in accordance with an embodiment of the present invention. Handheld field maintenance tool 200 is also preferably capable of loading previously created audio/photo/video information from either another handheld field maintenance tool, or a personal computer. The previously-created audio/photo/video information could have been previously created by another handheld field maintenance tool, such as tool 214, created using another type or recording device, such as a digital camera, and stored on personal computer 214, et cetera. Handheld field maintenance tool 200 allows the technician to import this audio/video/photo information and associate such information with a field device's tag/unique identification such that the next time the handheld field maintenance tool 200 connects to the field device, the technician will be able to call up, or otherwise invoke the audio/photo/video information and view it on the display of the handheld field maintenance tool and/or listen to it on headset 216 communicating with the handheld field maintenance tool via Bluetooth. Moreover, the technician also has the ability to create new information and add it to the handheld, or otherwise associate it with the field device. Such new audio/photo/video information can also be uploaded to PC 214, handheld field maintenance tool 200 and/or maintained in a library for that field device. The audio/photo/video information could also be associated with one or more assets in an asset management system.



FIG. 7 is a flow diagram of a method of performing field maintenance using a handheld field maintenance tool in accordance with an embodiment of the present invention. Method 300 begins at block 302 where a technician employs a handheld field maintenance tool to acquire an image and/or video of a field device prior to working on the field device. This is an “as-found” image of the field device. There may be more than one as-found image. For example, multiple images or video from different views may be acquired. Additionally, multiple types of camera may be used for the as-found images. For example, a still camera may take an as-found high-resolution photo in the visible spectrum, and an as-found video may be acquired in the infrared spectrum.


Next, at block 304, the technician couples the handheld field maintenance tool to the field device and performs the require maintenance work, such as calibration, diagnosis, repair, et cetera. At block 306, the technician uses the handheld field maintenance tool to acquire the “as-left” image of the field device after the maintenance has been completed at block 304. Both the as-found and as-left images or videos are stored in the handheld field maintenance tool. Preferably, optional step 308 is executed where the as-found and as-left images or videos are uploaded to another device or system, such as an asset management system. In this way, field maintenance may be better documented. The archival of such images over time may also be useful for identifying wear or corrosion, or other conditions that occur slowly over time.


Although the present invention has been described with reference to particular embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A handheld field maintenance tool comprising: a process communication module configured to communicatively couple to a field device and obtain a unique identification tag from the field device;a camera configured to obtain a first image and a second image relative to the field device;a wireless communication protocol module configured to communicatively couple to a wireless gateway;a global positioning system (GPS) module configured to determine a geographic location of the handheld field maintenance tool when the first image and the second image are obtained;a controller coupled to the process communication module and the wireless communication module, and operably coupled to the camera and the GPS module, the controller being configured to: acquire the first image from the camera,link the unique identification tag to the first image,store the first image in memory as an as-found image based on the unique identification tag,perform maintenance on the field device,acquire the second image from the camera,link the unique identification tag to the second image,store the second image in memory as an as-left image based on the unique identification tag,store the geographic location as metadata in the memory based on the unique identification tag,access a library using the wireless gateway,store the first image and the second image in the library based on the unique identification tag, andstore the metadata in the library based on the unique identification tag.
  • 2. The handheld field maintenance tool of claim 1, wherein the camera is an internal component of the handheld field maintenance tool.
  • 3. The handheld field maintenance tool of claim 1, wherein the first image includes a first photograph of the entire field device and the second image includes a second photograph of the entire field device.
  • 4. The handheld field maintenance tool of claim 1, wherein the camera is an external module, and wherein the handheld field maintenance tool and the camera communicate using short-range, high speed wireless communication.
  • 5. The handheld field maintenance tool of claim 1, and further comprising: a compass module configured to determine a pointing direction of the handheld maintenance tool; andwherein the controller is operably coupled to the compass module and further configured to include the pointing direction with the metadata.
  • 6. The handheld field maintenance tool of claim 1, and further comprising: a tilt module configured to determine an angle of inclination of the handheld maintenance tool; andwherein the controller is operably coupled to the tilt module and further configured to include the angle of inclination with the metadata.
  • 7. A method of field maintenance using an intrinsically-safe handheld field maintenance tool, the method comprising: acquiring at least one as-found image relative to a field device;coupling the handheld field maintenance tool to the field device and performing at least one maintenance function on the field device;receiving a unique identification of the field device from the field device;acquiring at least one as-left image relative to the field device after completion of the at least one maintenance function;determining a geographic location of the handheld field maintenance tool when the at least one maintenance function is performed;determining a pointing direction of the handheld maintenance tool when the at least one maintenance function is performed;determining an angle of inclination of the handheld maintenance tool when the at least one maintenance function is performed;storing the at least one as-found image and the at least one as-left image based on the unique identification;storing the geographic location, the pointing direction, and the angle of inclination as metadata relating to the field device; andwherein the intrinsically-safe handheld field maintenance tool complies with at least one intrinsic safety specification such that it will not generate a source of ignition even under fault conditions.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/368,477, filed Jul. 28, 2010, the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (99)
Number Name Date Kind
5195392 Moore et al. Mar 1993 A
5309351 McCain et al. May 1994 A
5442632 Burton et al. Aug 1995 A
5903455 Sharpe, Jr. et al. May 1999 A
6033226 Bullen Mar 2000 A
6205239 Lin et al. Mar 2001 B1
6211649 Matsuda Apr 2001 B1
6236223 Brady et al. May 2001 B1
6377859 Brown et al. Apr 2002 B1
6629059 Borgeson et al. Sep 2003 B2
6633782 Schleiss et al. Oct 2003 B1
6725182 Pagnano et al. Apr 2004 B2
6971063 Rappaport et al. Nov 2005 B1
7013184 Romagnoli et al. Mar 2006 B2
7117122 Zielinski et al. Oct 2006 B2
7120391 Stengele et al. Oct 2006 B2
7188200 Griech Mar 2007 B2
7233745 Loechner Jun 2007 B2
7337369 Barthel et al. Feb 2008 B2
7400255 Horch Jul 2008 B2
7421531 Rotvold et al. Sep 2008 B2
7454252 El-Sayed Nov 2008 B2
7505819 El-Sayed Mar 2009 B2
7506812 von Mueller et al. Mar 2009 B2
7675406 Baier et al. Mar 2010 B2
7733833 Kalika et al. Jun 2010 B2
7797061 El-Sayed Sep 2010 B2
8000815 John et al. Aug 2011 B2
8036007 Woehrle Oct 2011 B2
8059101 Westerman et al. Nov 2011 B2
8060862 Eldridge et al. Nov 2011 B2
8060872 Da Silva Neto Nov 2011 B2
8074172 Kocienda et al. Dec 2011 B2
8126145 Tewari et al. Feb 2012 B1
8150462 Guenter et al. Apr 2012 B2
8180948 Kreider et al. May 2012 B2
8224256 Citrano, III et al. Jul 2012 B2
20010047504 Aoyama Nov 2001 A1
20020004370 Stengele et al. Jan 2002 A1
20020007237 Phung et al. Jan 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020086642 Ou et al. Jul 2002 A1
20020171558 Bartelheim et al. Nov 2002 A1
20030050737 Osann, Jr. Mar 2003 A1
20030109937 Zielinski et al. Jun 2003 A1
20030204373 Zielinski et al. Oct 2003 A1
20030229472 Kantzes et al. Dec 2003 A1
20040039458 Mathiowetz et al. Feb 2004 A1
20040093100 Gleis May 2004 A1
20040111238 Kantzes et al. Jun 2004 A1
20040193287 Lefebvre et al. Sep 2004 A1
20040204193 Li et al. Oct 2004 A1
20040228184 Mathiowetz Nov 2004 A1
20040230327 Opheim et al. Nov 2004 A1
20050164684 Chen et al. Jul 2005 A1
20050222698 Eryurek et al. Oct 2005 A1
20050223120 Scharold et al. Oct 2005 A1
20060014533 Warren Jan 2006 A1
20060087402 Manning et al. Apr 2006 A1
20060206277 Horch Sep 2006 A1
20060290496 Peeters Dec 2006 A1
20060291438 Karschnia et al. Dec 2006 A1
20070161352 Dobrowski et al. Jul 2007 A1
20070161371 Dobrowski et al. Jul 2007 A1
20070179645 Nixon et al. Aug 2007 A1
20070208279 Panella et al. Sep 2007 A1
20070280507 Murali Dec 2007 A1
20080114911 Schumacher May 2008 A1
20080234837 Samudrala et al. Sep 2008 A1
20080268784 Kantzes et al. Oct 2008 A1
20090065578 Peterson et al. Mar 2009 A1
20090094466 Matthew et al. Apr 2009 A1
20090111378 Sheynman et al. Apr 2009 A1
20090125713 Karschnia et al. May 2009 A1
20090171483 Scheuermann Jul 2009 A1
20090177970 Jahl et al. Jul 2009 A1
20090228121 Fujiwara et al. Sep 2009 A1
20090271726 Gavimath et al. Oct 2009 A1
20090284390 Lahner et al. Nov 2009 A1
20090296601 Citrano, Iii et al. Dec 2009 A1
20090326852 Vetter et al. Dec 2009 A1
20100100766 Bengtsson et al. Apr 2010 A1
20100114347 Dheenathayalan et al. May 2010 A1
20100114549 Kolavi May 2010 A1
20100145476 Junk et al. Jun 2010 A1
20100150425 Kalteis Jun 2010 A1
20100220630 Kalika et al. Sep 2010 A1
20100290084 Russell, III et al. Nov 2010 A1
20100290351 Toepke et al. Nov 2010 A1
20100290359 Dewey et al. Nov 2010 A1
20100293363 Meyer et al. Nov 2010 A1
20110117529 Barash et al. May 2011 A1
20110238188 Washiro Sep 2011 A1
20120038458 Toepke et al. Feb 2012 A1
20120038548 Toepke et al. Feb 2012 A1
20120040316 Mathiowetz et al. Feb 2012 A1
20120040698 Ferguson et al. Feb 2012 A1
20120041744 Kantzes et al. Feb 2012 A1
20120046911 Mathiowetz et al. Feb 2012 A1
Foreign Referenced Citations (35)
Number Date Country
101763576 Jun 2010 CN
201518523 Jun 2010 CN
10245176 Apr 2004 DE
102007035158 Jan 2009 DE
102008029406 Dec 2009 DE
102009028195 Feb 2011 DE
1515208 Mar 2005 EP
1916582 Apr 2008 EP
2071427 Jun 2009 EP
2077473 Jul 2009 EP
2148259 Jan 2010 EP
2204705 Jul 2010 EP
2382418 May 2003 GB
2 394 124 Apr 2004 GB
9051583 Feb 1997 JP
H11233965 Aug 1999 JP
2001337004 Jul 2001 JP
2004505337 Feb 2004 JP
2004265131 Sep 2004 JP
2006285632 Oct 2006 JP
2007-91381 Apr 2007 JP
2008165193 Jul 2008 JP
2009038544 Feb 2009 JP
20060078883 Jul 2006 KR
WO 0135190 May 2001 WO
WO 02086662 Oct 2002 WO
WO 2006016845 Feb 2006 WO
WO 2008042074 Apr 2008 WO
WO 2008077358 Jul 2008 WO
WO 2008096216 Aug 2008 WO
WO 2008127632 Oct 2008 WO
WO 2009003146 Dec 2008 WO
WO 2009003148 Dec 2008 WO
WO2009026032 Feb 2009 WO
WO 2009074544 Jun 2009 WO
Non-Patent Literature Citations (48)
Entry
Invitation to Pay Additional Fees for international patent application No. PCT/US2010/034889 dated Sep. 15, 2010.
ABB Limited: “Wireless Instrumentation Jargon Buster”. Information bulletin instrumentation ABB no IB/INST-018, Mar. 3, 2009, XP002596601. Retrieved from the Internet: URL:http://www05.abb.com/global/scot/scot203.nsf/veritydisplay/be00ec76ef07e978c125756e003157b9/$File/IB—INST—018—1.pdf.
Notification of Transmittal of the International Search Report and the Written Opinion from the International Application No. PCT/US2010/021764.
David Gustafsson: “WirelessHART—Implementation and Evaluation on Wireless Sensors”. Masters's Degree Project, KTH University, Electrical Engineering, Apr. 1, 2009, pp. 1-39, XP002596602, Stockholm, Sweden. Retrieved from the Internet: URL:http://www.ee.kth.se/php/modules/publications/reports/2009/XR-EE-RT%202009:003.pdf.
Notification of Transmittal of the International Search Report and the Written Opinion for the International application No. PCT/US2010/034848 dated Aug. 26, 2010.
Possio Bluetooth to WLAN Gateway PX20: Full Product Description retrieved from http://www.blueunplugged.com/p.aspx?p=105816.
1420 Wireless Gateway: Product Data Sheet 00813-0100-4420, Rev BA Mar. 2008. Emerson Process Management.
Smart Wireless Gateway (WirelessHART™). Quick Installation Guide 00825-0200-4420, Rev BA. Aug. 2009. Emerson Process Management.
Rosemount 3051S Wireless Series Scalable Pressure, Flow, and Level Solutions. Reference Manual 00809-0100-4802, rev BA. Aug. 2007. Emerson Process Management.
EPO Communication pursuant to Rules 161(I) and 162 EPC for European patent application No. 10701430.0 dated Aug. 30, 2011.
Invitation to Pay Additional Fees for international patent application No. PCT/US2010/034949 dated Sep. 17, 2010.
Technical Data Sheet: VIATOR® USB HART® Interface (Model 010031). MACTek Measurement and Control Technologies.
VIATOR® Bluetooth® Wireless Technology Interface for use with HART field devices. MACTek Measurement and Control Technologies retrieved from www.mactekcorp.com/product5.htm.
Product Data Sheet: VIATOR RS232. MACTek Measurement and Control Technologies retrieved from www.mactekcorp.com/product1.htm.
Notification of Transmittal of the International Search Report and the Written Opinion from the International Application No. PCT/US2010/034889.
Notification of Transmittal of the International Search Report and the Written Opinion from the International Application No. PCT/US2010/034949.
EPO Communication from related European application No. 10730279.6 dated Jan. 13, 2012.
EPO Communication from related European application No. 10730281.2 dated Jan. 13, 2012.
EPO Communication from related European application No. 10725543.2 dated Jan. 12, 2012.
Rosemount 3051 SMV Quick Installation Guide 00825-0100-4803 Rev BA. Apr. 2011.
Invitation to Pay Additional Fees from the International Application No. PCT/US2011/045673 dated Jan. 16, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion from the International Application No. PCT/US2011/045680 dated Jul. 6, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion from the International Application No. PCT/US2011/045681 dated Jan. 5, 2012.
475 Field Communicator. User's Guide XP007919976. Aug. 2009. www.fieldcommunicator.com by Emerson Process Management.
1420 Wireless Gateway. Reference Manual 00809-0100-4420, Rev BA. Aug. 2007. Emerson Process Management.
Invitation to pay additional fees from the related International patent application No. PCT/US2011/045679 dated Aug. 6, 2012.
Invitation to pay additional fees from the related International patent application No. PCT/US2011/045664 dated Aug. 9, 2012.
Invitation to pay additional fees from the related International patent application No. PCT/US2011/045676 dated Jul. 30, 2012.
Lee S W et al: “Honam Petrochemical Corporation Uses Simulator for Ethylene Plant Operator Training”, Processing of the Industrial Computing Conference. Houston, Oct. 18-23, 1992. pp. 219-222.
Kurrle H-P et al.: “Trainingssimulator Zur Ausbildung Von Chemikanten und Anlagenfahrern. Otraining Simulator for the Training of Process Workers (Chemikanten) and Operators”, Automatisierungstechnische Praxis—ATP, Oldenbourg Indusrieverlag, Munchen, DE, vol. 36, No. 7, Jul. 1, 1994. Abstract, Section 2.
Invitation to pay additional fees from the related International patent application No. PCT/US2011/045665 dated Aug. 23, 2012.
Bushman J B: “Ally: An Operator's Associate for Cooperative Supervisory Control Systems”, IEEE Transactions on Systems, Man and Cybernetics, IEEE Inc. New York, US, vol. 23, No. 1, Jan. 1, 1993, pp. 111-128.
First Communication for the related European patent application No. 107302812 dated Oct. 11, 2012.
International Search Report and Written Opinion from the related International patent application No. PCT/US2011/045664 dated Nov. 6, 2012.
International Search Report and Written Opinion from the related International patent application No. PCT/US2011/045679 dated Nov. 6, 2012.
International Search Report and Written Opinion from the related International patent application No. PCT/US2011/045665 dated Nov. 6, 2012.
First Communication from related European patent application No. 107255432 dated Oct. 11, 2012.
First Communication from related European patent application No. 107302796 dated Oct. 19, 2012.
Office Action from related Russian application No. 2011151063 dated Nov. 12, 2012.
First Office Action from related Japanese application No. 2015511048, dated Jan. 29, 2013.
First Office Action from counterpart Japanese patent application No. 2013-521969, dispatched on Jan. 28, 2014. 5 pages.
First Office Action from counterpart Chinese patent application No. 201180001615.0, issued Aug. 29, 2013. 14 pages.
Second Office Action from counterpart Chinese patent application No. 201180001615.0, Issued Feb. 26, 2014. 17 pages.
Notification Regarding Results of Examination on Patentability from Russian Application No. 2013108906, dated Jun. 24, 2014 with English Translation. 10 pages.
Office Action from Canadian Patent Application No. 2,806,244 dated Jul. 22, 2014. 3 pages.
Decision of Rejection from Japanese Application No. 2013-521969, dispatch date Sep. 16, 2014, 6 pages with English Translation.
Notification of Reasons for Rejection from corresponding Japanese patent application No. 2013-521969, from Sep. 15, 2015. [49 pages with English translation].
Communication pursuant to Article 94(3) EPC fromcorresponding European patent application No. 11739256.3, from Sep. 10, 2015, [5 pages].
Related Publications (1)
Number Date Country
20120038760 A1 Feb 2012 US
Provisional Applications (1)
Number Date Country
61368477 Jul 2010 US