I/O and memory bus system for DFPs and units with two- or multi-dimensional programmable cell architectures

Information

  • Patent Grant
  • 7899962
  • Patent Number
    7,899,962
  • Date Filed
    Thursday, December 3, 2009
    14 years ago
  • Date Issued
    Tuesday, March 1, 2011
    13 years ago
Abstract
A general bus system is provided which combines a number of internal lines and leads them as a bundle to the terminals. The bus system control is predefined and does not require any influence by the programmer. Any number of memories, peripherals or other units can be connected to the bus system (for cascading).
Description
BACKGROUND INFORMATION

DFP-based Systems:


German Patent No. DE 44 16 881 describes data flow processors (DFPs) in which lines of each edge cell, i.e., a cell at the edge of a cell array often in direct contact with the terminals of the unit, lead outward via the terminals of the unit. The lines do not have any specific function. Instead, the lines assume the function that is written into the edge cells. Several DFPs may be interconnected to form a matrix by connecting all terminals.


Systems with two- or multi-dimensional programmable cell architectures:


In systems with two- or multi-dimensional programmable cell architectures, such as field programmable gate arrays (FPGAs) and dynamically programmable gate arrays (DPGAs), a certain subset of internal bus systems and lines of the edge cells are connected to the outside via the unit terminals. The lines do not have any specific function, and instead they assume the function written in the edge cells. If several FPGAs/DPGAs are interconnected, the terminals assume the function implemented in the hardware or software.


Problems


DFP-based Systems:


The wiring complexity for peripherals or for interconnecting DFPs is very high, because the programmer must also ensure that the respective functions are integrated into the cells of the DFP(s). For connecting a memory, a memory management unit must be integrated into the unit. For connecting peripherals, the peripherals must be supported. Additionally, cascading of DFPs must be similarly taken into account. This is relatively complicated. Moreover, space in the unit is lost for the respective implementations.


Systems with two- or multi-dimensional programmable cell architectures (FPGAs, DPGAs): The above also applies to FPGAs and DPGAs, in particular when the FPGAs and DPGAs implement algorithms or operate as arithmetic (co)processors.


SUMMARY

In accordance with an example embodiment of the present invention, the expense of wiring, in particular the number of unit terminals required, is greatly reduced. A uniform bus system operates without any special consideration by a programmer. A permanent implementation of the bus system control is provided. Memory and peripherals can be connected to the bus system without any special measures. Likewise, units can be cascaded with the help of the bus system.


According to the present invention, a general bus system is provided which combines a number of internal lines and leads them as a bundle to the terminals. The bus system control is predefined and does not require any influence by the programmer. Any number of memory devices, peripherals or other units (i.e., cascading) can be connected to the bus system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of a basic unit as a type A FPGA.



FIG. 2 shows an example of a basic unit as a type B FPGA.



FIG. 3 shows an example of a basic unit as a DFP.



FIG. 4 shows an example of line bundling in FPGAs according to an example embodiment of the present invention.



FIG. 5 shows an example of line bundling in DFPs according to an example embodiment of the present invention.



FIG. 6 shows an example of an OUTPUT CELL according to an example embodiment of the present invention.



FIG. 7 shows an example of an INPUT CELL according to an example embodiment of the present invention.



FIG. 8 shows an example of address generation in accordance with an example embodiment of the present invention.



FIG. 9 shows an example of a complete bus system with controller according to an example embodiment of the present invention.



FIG. 10 shows an example of a connection of memories and peripherals in accordance with an example embodiment of the present invention.



FIG. 11 shows an example of an EB-REG in accordance with an example embodiment of the present invention.



FIG. 12 shows an example embodiment of the present invention using a RAMBUS.



FIG. 13 shows an example implementation of an IO and memory bus system according to the present invention.



FIG. 14 shows an example Bus IO according to the present invention.



FIG. 15
a shows an example address generator according to the present invention.



FIG. 15
b shows another example address generator according to the present invention, generating end-of-data identification.



FIG. 15
c shows an example function sequence with the address generator with end-of-data identification according to the present invention.



FIG. 16 shows an interaction of two segments in indirect addressing according to an example embodiment of the present invention.



FIG. 17 shows an example state machine for indirect addressing according to the present invention.





DETAILED DESCRIPTION

The following description encompasses several architectures which are controlled and configured by a primary logic unit, such as DFPs, FPGAs, DPGAs, etc. Parts of the primary logic unit may be integrated on the unit. Alternatively, the architectures may be dynamically controlled or reconfigured directly through the unit itself (see, e.g., FIGS. 6, 7). The architectures may be implemented in a permanent form on the unit, or they may be created by configuring and possibly combining multiple logic cells, i.e., configurable cells which fulfill simple logical or arithmetic functions according to their configuration (cf. DFP, FPGA, DPGA).


Bundling Internal Lines:


In accordance with the example embodiment of the present invention, to obtain appropriate bus architectures, a plurality of internal lines are combined in buses (I-BUSn, where n denotes the number of the bus). The lines may be internal bus systems or lines of the edge cells. For write access to the external bus (E-Bus) over clocked latches or registers (I-GATE-REG), the individual buses are connected to gates that function as switches to the E-BUS. Such a unit is called an OUTPUT CELL. Access to the E-BUS takes place in such a way that the individual latches are switched via the gates to the common E-BUS. There is always only one gate open. Each I-BUSn has a unique identification number (n: e.g., I-BUS1, I-BUS976, etc.).


For read access, the incoming E-BUS is stored temporarily in clocked latches or registers (E-GATE-REG) and then distributed over the gates to the I-BUSn. Such a unit is called an INPUT CELL. Pick up from the E-BUS takes place in such a way that an E-BUS transfer is written into one or more E-GATE-REGs. The E-GATE-REGs can then be switched either individually or together to their internal bus systems.


Read-write access can take place in any order. Under some circumstances, the internal buses I-BUSn may be subdivided into two groups, e.g., writing output buses IO-BUSn and reading input buses II-BUSn.


Address Generation:


For most accesses to external units, addresses are generated for selecting a unit or parts of a unit. The addresses may be permanent, i.e., they do not change (this is the case especially with peripheral addresses) or the addresses may change by (usually) fixed values with each access (this is the case especially with memory addresses). For generating the addresses, there are programmable counters for read access and programmable counters for write access. The counters are set at a base value by the PLU, which is the unit that configures the configurable units (DFPs, FPGAs, DPGAs, etc.) based on cell architecture. With each access to the gate, the counter is incremented or decremented by a value defined by the PLU, depending on the setting. Likewise, each counter can also be used as a register, which means that counting is not performed with each access, and the value set in the counter is unchanged. The value of the counter belonging to the gate is assigned as an address to each bus transfer. The counter is set by a setting register (MODE PLUREG) to which the PLU has write access.


Masks and States:


Each gate is assigned a number of bits in MODE PLUREG (described below). The bits indicate whether the gate is active or is skipped by the controller, i.e., is masked out (MASK). If a gate is masked out, the gate is skipped in running through all gates to connect to the respective bus system.


The following mask records are examples of possible mask records:

    • always skip the INPUT/OUTPUT CELL,
    • skip the INPUT/OUTPUT CELL only in writing,
    • skip the INPUT/OUTPUT CELL only in reading if the E-BUS MASTER has not accessed the INPUT/OUTPUT CELL,
    • never skip the INPUT/OUTPUT CELL.


Each gate is assigned a state register which may be designed as an RS flip-flop. This register indicates whether data have been written into the register belonging to the gate.


MODE PLUREG


The MODE PLUREG can be written and read by the PLU. It serves to set the bus system.


One possible MODE PLUREG architecture from the standpoint of PLU is set forth below:
















Bit l-m
Bit k-l
Bit 2-k
Bit 1
Bit 0







Mask
Predefined
Step
0 = additive counting
0 = register



value
length
1 = subtractive counting
1 = counter








Masking
Settings for address generator










Description of the INPUT CELL:


A distinction is made according to whether data is transmitted from the E-BUS to the unit (the component used for this is called the INPUT CELL) or whether data is transmitted from the unit to the E-BUS (the component used for this is called an OUTPUT CELL).


An example embodiment of the INPUT CELL is as follows. A latch (I-GATE-REG) which is controlled either by the external E-BUS MASTER or the internal state machine serves as a buffer for the data received from the E-BUS. The clock pulse of the latch is sent to (for example) an RS flip-flop (SET-REG) which retains access to the I-GATE-REG. Downstream from the I-GATE-REG is a gate (I-GATE) which is controlled by the state machine. The data goes from the I-GATE-REG to the I(I)-BUSn via the I-GATE.


In addition the example embodiment, there is a programmable incrementer/decrementer in the INPUT CELL. The programmable incrementer/decrementer can be controlled by the state machine after each active read access to the E-BUS to increment or decrement an adjustable value. It can also serve as a simple register. This counter generates the addresses for bus access where the unit is E-BUS MASTER. The addresses are sent to the E-BUS via a gate (ADR-GATE). The ADR-REG is controlled by the state machine.


The E-BUS MASTER can poll the state of the SET-REG via another gate (STATE-GATE). Each INPUT CELL has a MODE PLUREG in which the PLU configures the counter and turns the INPUT CELL on or off (masks it).


Description of the OUTPUT CELL:


An example embodiment of an OUTPUT CELL is as follows. A latch (E-GATE-REG) which is controlled by the internal state machine provides buffer storage for the data obtained from the I-BUS.


In addition, a programmable incrementer/decrementer is provided in the OUTPUT CELL. The clock signal of the latch is sent to (for example) an RS flip-flop (SET-REG) which retains access to the E-GATE-REG. The programmable incrementer/decrementer can be controlled by the state machine after each read access to the E-BUS to increment or decrement an selectable value. It can also function as a simple register. This counter generates the addresses for bus access in which the unit is E-BUS MASTER.


The data of the E-GATE-REG, the addresses and the state of the SET-REG are sent to the E-BUS via a gate (E-GATE) which is controlled either by the external E-BUS MASTER or the internal state machine. Each OUTPUT CELL has a MODE PLUREG in which the PLU configures the counter and turns the OUTPUT CELL on and off (masks it).


Controlling the Bus System:


At a higher level than the individual gates, address generators and masks, in the example embodiment of the present invention, there is a controller consisting of a simple, conventional state machine. Two operating modes are differentiated:

  • 1. An active mode in which the state machine controls the internal bus (I-BUS) and the external bus (E-BUS). This mode is called E-BUS MASTER because the state machine has control of the E-BUS.
  • 2. A passive mode in which the state machine controls only the internal bus (I-BUS). The E-BUS is controlled by another external unit. The state machine reacts in this mode to the requirements of the external E-BUS MASTER. This mode of operation is called E-BUS SLAVE.


The controller manages the E-BUS protocol. The sequence differs according to whether the controller is functioning in E-BUS MASTER or E-BUS SLAVE mode. A particular protocol is not described herein, because any one of a number of conventional protocols may be implemented.


E-BUS MASTER and E-BUS SLAVE, EB-REG:


In the example embodiment, the E-BUS control register (EB-REG) is provided to manage the data traffic on the E-BUS. The E-BUS control register is connected in series with the gates and can be addressed and operated from the E-BUS. The data exchange may be regulated through the following records:

  • I-WRITE: indicates that the I-BUS is written completely into the INPUT/OUTPUT CELLs,
  • I-READ: indicates that the I-BUS has completely read the INPUT/OUTPUT CELLs,
  • E-WRITE: indicates that the E-BUS has been written completely into the INPUT/OUTPUT CELLs,
  • E-READ: indicates that the E-BUS has completely read the INPUT/OUTPUT CELLs.


In the example embodiment, the EB-REG is always active only on the side of the E-BUS SLAVE, and the E-BUS MASTER has read-write access to it.

    • All I— . . . records are written by E-BUS SLAVE and read by E-BUS MASTER.
    • All E— . . . records are written by E-BUS MASTER and read by E-BUS SLAVE.


An E-BUS SLAVE can request control of the E-BUS by setting the REQ MASTER bit in its EB-REG. If the E-BUS MASTER recognizes the REQ MASTER bit, it relinquishes the bus control as soon as possible. The E-BUS MASTER relinquishes the bus control by setting the MASTER bit in the EB-REG of an E-BUS SLAVE. The E-BUS MASTER then immediately switches the E-BUS to passive mode. The old E-BUS SLAVE becomes the new E-BUS MASTER, and the old E-BUS MASTER becomes the new E-BUS SLAVE. The new E-BUS MASTER assumes control of the E-BUS. To recognize the first E-BUS MASTER after a RESET of the system, there is a terminal on each unit which indicates by the preset polarity whether the unit is E-BUS MASTER or E-BUS SLAVE after a RESET. The MASTER record in the EB-REG can also be set and reset by the PLU. In the example embodiment, the PLU must be sure that there are no bus collisions on the EB-BUS and that no ongoing transfers are interrupted.


E-BUS MASTER writes data to E-BUS SLAVE


In the example embodiment of the present invention, the E-BUS MASTER can write data to the E-BUS SLAVE as follows:

    • The data transfer begins when the state machine of the E-BUS MASTER selects an OUTPUT CELL that is not masked out.
    • Data has already been stored in the I-GATE REG, depending on the design of the state machine, or the data is stored now.
    • The gate is activated.
    • The valid read address is transferred to the bus.
    • The data goes to the E-BUS and is stored in the E-GATE REG of the E-BUS SLAVE.
    • The SET-REG in the E-BUS SLAVE is thus activated.
    • The gate in the E-BUS MASTER is deactivated.
    • The address counter generates the address for the next access.
    • The transfer is terminated for the E-BUS MASTER.


There are two possible embodiments of the E-BUS SLAVE for transferring data from the bus to the unit:

  • 1. The data gate is always open and the data goes directly from the E-GATE-REG to the I-BUSn.
  • 2. The state machine recognizes that SET-REG is activated, and it activates the gate, so that SET-REG can be reset.


The E-BUS MASTER can notify the E-BUS SLAVE when a complete bus cycle is terminated (a bus cycle is defined as the transfer of multiple data strings to different E-GATE-REGs, where each E-GATE-REG may be addressed exactly once).

    • The E-BUS MASTER sets the E-WRITE bit in the EB-REG of the E-BUS SLAVE at the end of a bus cycle.
    • The E-BUS SLAVE can respond by polling the INPUT CELLs.
    • When it has polled all the INPUT CELLs, it sets the I-READ bit in its EB-REG.
    • It then resets E-WRITE and all the SET-REGs of the INPUT CELLS.
    • The E-BUS MASTER can poll I-READ and begin a new bus cycle after its activation.
    • I-READ is reset by E-WRITE being written or the first bus transfer.


The E-BUS SLAVE can analyze whether the INPUT CELLs can/must be read again on the basis of the status of the EB-REG or the individual SET-REGs of the INPUT CELLs.


E-BUS MASTER reads data from E-BUS SLAVE:


From the standpoint of the E-BUS MASTER, there are two basic methods of reading data from the E-BUS SLAVE:


1. Method in which the E-BUS data goes directly to the I-BUS:






    • The data transfer begins with the state machine of the E-BUS MASTER selecting an INPUT CELL which is not masked out.

    • The I-GATE and the ADR-GATE are activated.

    • The valid read address is transferred to the bus.

    • The I-GATE-REG is transparent, i.e., it allows the data through to the I-BUSn.

    • The gate in the E-BUS MASTER is deactivated.

    • The address counter generates the address for the next access.

    • The transfer is terminated for the E-BUS MASTER.


      2. Method in which the E-BUS data is stored temporarily in the I-GATE-REG:

    • The data transfer begins with the state machine of the E-BUS MASTER selecting an INPUT CELL which is not masked out.

    • The I-GATE and the ADR-GATE are activated.

    • The valid read address is transferred to the bus.

    • I-GATE-REG stores the data.

    • The gate in the E-BUS MASTER is deactivated.

    • The address counter generates the address for the next access.

    • The E-BUS transfer is terminated for the E-BUS MASTER.

    • All INPUT CELLS involved in the E-BUS transfer, which can be ascertained on the basis of the masks in the MODE PLUREG or the state of the SET-REG, are run through and the data is transferred to the respective I-BUS.





For the E-BUS SLAVE, the access looks as follows:

    • The gate is activated by the E-BUS.
    • The data and the state of any SET-REG that may be present go to the E-BUS.
    • The gate is deactivated.


The E-BUS MASTER can notify the E-BUS SLAVE when a complete bus cycle is terminated.

    • To do so, at the end of a bus cycle, the E-BUS MASTER sets the E-READ bit in the EB-REG of the E-BUS SLAVE.
    • E-BUS SLAVE can react by writing to the OUTPUT CELLs anew.
    • When it has written to all the OUTPUT CELLs, it sets the I-WRITE bit in its EB-REG.
    • In doing so, it resets E-READ and all the SET-REGs of the OUTPUT CELLS.
    • The E-BUS MASTER can poll I-WRITE and begin a new bus cycle after its activation.
    • I-WRITE is reset by writing E-READ or the first bus transfer.


E-BUS SLAVE can evaluate on the basis of the state of the EB-REG or the individual SET-REGs of the OUTPUT CELLS whether the OUTPUT CELLs can/must be written anew.


Connection of Memory Devices and Peripherals, Cascading:


In addition to cascading identical units (DFPs, FPGAs, DPGAs), memories and peripherals can also be connected as lower-level SLAVE units (SLAVE) to the bus system described here. Memories and peripherals as well as other units (DFPs, FPGAs) can be combined here. Each connected SLAVE analyzes the addresses on the bus and recognizes independently whether it has been addressed. In these modes, the unit addressing the memory or the peripheral, i.e., the SLAVE units, is the bus MASTER (MASTER), i.e., the unit controls the bus and the data transfer. The exception is intelligent peripheral units, such as SCSI controllers that can initiate and execute transfers independently and therefore are E-BUS MASTERs.


Through the method described here, bus systems can be connected easily and efficiently to DFPs and FPGAs. Both memories and peripherals as well as other units of the types mentioned above can be connected over the bus systems.


The bus system need not be implemented exclusively in DFPs, FPGAs and DPGAs. Hybrid operation of this bus system with traditional unit terminal architectures is of course possible. Thus the advantages of the respective technique can be utilized optimally.


Other sequencing methods are also possible for the bus system described here. However, they will not be detailed here because they are free embodiment options that do not depend on the basic principle described here.


DESCRIPTION OF THE FIGURES


FIG. 1 shows a conventional FPGA, where 0101 represents the internal bus systems, 0102 includes one or more FPGA cells. 0103 denotes subbuses which are a subset of 0101 and are connected to 0101 via switches (crossbars). 0103 can also manage internal data of 0102 that are not switched to 0101. The FPGA cells are arranged in a two-dimensional array. 0104 is an edge cell located at the edge of the array and is thus in direct proximity to the terminals at the edge of the unit.



FIG. 2 shows another conventional FPGA. This embodiment does not work with bus systems like 0101 but instead mainly with next-neighbor connections (0201), which are direct connections from an FPGA cell (0203) to a neighboring cell. There may be global bus systems (0202) nevertheless, although they are not very wide. The FPGA cells or a group of FPGA cells have a connection to 0202. The FPGA cells are arranged in a two-dimensional array. 0204 is an edge cell located at the edge of the array and thus in close proximity to the terminals at the edge of the unit.



FIG. 3 shows a DFP described in, for example, German Patent No. 196 51 075.9. The PAE cells (0303) are wired to the bus systems (0301) via a bus interface (0304). Bus systems 0301 can be wired together via a bus switch (0302). The PAE cells are arranged in a two-dimensional array. 0305 is an edge cell located on the edge of the array and is thus in close proximity to the terminals at the edge of the unit.



FIG. 4
a shows an FPGA edge according to FIG. 1. Outside the edge cells (0401) there are arranged a plurality of INPUT/OUTPUT CELLs (0402) connecting the internal bus systems (0403) individually or in groups to the E-BUS (0404). The number of INPUT/OUTPUT CELLs depends on their own width in relation to the width of the internal bus systems. 0405 is an EB-REG. 0406 is a state machine. A bus system (0407) by means of which the state machine controls the INPUT/OUTPUT CELLs runs from the state machine to the EB-REG and each individual INPUT/OUTPUT CELL. There may be several 0405s and 0406s by combining a number of 0402s into groups, each managed by a 0405 and 0406.



FIG. 4
b shows an FPGA edge according to FIG. 2. Several INPUT/OUTPUT CELLs (0412) are arranged outside the edge cells (0411) and are connected individually or in groups to the E-BUS (0414) via the internal bus systems (0413) and the direct connections of the edge cells (0417). The number of INPUT/OUTPUT CELLs depends on their own width in relation to the width of the internal bus systems (0413) and the number of direct connections (0418). 0415 is an EB-REG. 0416 is a state machine. A bus system (0417) by means of which the state machine controls the INPUT/OUTPUT CELLs goes from the state machine to the EB-REG and each individual INPUT/OUTPUT CELL. There may be multiple 0415s and 0416s by combining a number of 0412s into groups, each managed by a 0415 and 0416.



FIG. 5 shows a DFP edge according to FIG. 3. Outside the edge cells (0501) are arranged several INPUT/OUTPUT CELLs (0502) which are connected individually or in groups to the E-BUS (0504) by the internal bus systems (0503). The number of INPUT/OUTPUT CELLs depends on their own width in relation to the width of the internal bus systems (0503). 0505 is an EB-REG. 0506 is a state machine. The state machine controls the INPUT/OUTPUT CELLs via a bus system (0507) which goes from the state machine to the EB-REG and each individual INPUT/OUTPUT CELL. There may be multiple 0505s and 0506s by combining a number of 0412s into groups, each managed by a 0505 and 0506.



FIG. 6 shows an OUTPUT CELL 0601. Outside of 0601 there are the EB-REG (0602) and the state machine (0603) plus a gate (0604) which connects the state machine to the E-BUS (0605) if it is the E-BUS MASTER. Access to the EB-REG is possible via the E-BUS (0605), the I-BUS (0613) and the PLU bus (0609). In addition, when the unit is reset, the MASTER bit can be set via an external terminal (0614) leading out of the unit. The state machine (0603) has read-write access to 0602. In the OUTPUT CELL there is a multiplexer (0606) which assigns control of the E-GATE (0607) to either the E-BUS MASTER or the state machine (0603). The MODE PLUREG (0608) is set via the PLU bus (0609) or the I-BUS (0613) and it configures the address counter (0610) and the state machine (e.g., masking out the OUTPUT CELL). If data of the I-BUS (0613) is stored in the I-GATE-REG (0611), the access is noted in SET-REG (0612). The state of 0612 can be polled via 0607 on the E-BUS. Read access (E-GATE 0607 is activated) resets 0612. The addresses generated by 0610 and the data of 0611 are transferred to the E-BUS via gate 0607. There is the possibility of dynamically reconfiguring and controlling the OUTPUT CELL via the unit itself (DFP, FPGA, DPGA, etc.) rather than through the PLU. The I-BUS connection to the EB-REG (0602) and MODE PLUREG (0608) serves this function.



FIG. 7 shows an INPUT CELL 0701. Outside of 0701 there are the EB-REG (0702) and the state machine (0703), as well as a gate (MASTER GATE) (0704) which connects the state machine to the E-BUS (0705) if it is in the E-BUS MASTER mode. Access to EB-REG is possible via the E-BUS (0705), the I-BUS (0713) and the PLU bus (0709). Furthermore, when the unit is reset, the MASTER bit can be set via an external terminal (0714) leading out of the unit. The state machine (0703) has read-write access to 0702. In the INPUT CELL there is a multiplexer (0706) which assigns control of the E-GATE-REG (0707) to either the E-BUS MASTER or the state machine (0703). The MODE PLUREG (0708) is set via the PLU bus (0709) or the I-BUS (0713) and configures the address counter (0710) and the state machine (e.g., masking out the INPUT CELL). If data of the E-BUS (0705) is stored in the E-GATE-REG (0707), this access is noted in the SET-REG (0712). The state of 0712 can be polled on the E-BUS via a gate (0715) whose control is the same as that of the latch (0707). A read access—E-GATE 0711 is activated and the data goes to the I-BUS (0713)—resets 0712 via 0717. As an alternative, 0712 can be reset (0718) via the state machine (0703).


The addresses generated by 0710 are transferred via the gate (ADR-GATE) 0716 to the E-BUS. 0716 is activated by the state machine (0703) when it is the E-BUS MASTER. There is the possibility of dynamically reconfiguring and controlling the INPUT CELL via the unit itself (DFP, FPGA, DPGA, etc.) instead of through the PLU. The I-BUS connection to the EB-REG (0702) and the MODE PLUREG (0708) serves this function.



FIG. 8 shows the MODE PLUREG (0801) of an INPUT or OUTPUT CELL written by the PLU via the PLU bus (0802) or via an I-BUS (0808). The respective bus system is selected by the multiplexer (0809) (control of the multiplexer is not shown because an ordinary decoder logic can be used). The counter settings such as step length, counting direction and enabling of the counter are sent directly (0807) to the counter (0803). The basic address can either be written directly (0805) to the counter via a load (0804) or stored temporarily in an extension (0811) of 0801. Records in 0801 that are relevant for the state machine go to the state machine via a gate (0806) which is opened by the state machine for the INPUT or OUTPUT CELL activated at the time.



FIG. 9
a shows a bus interface circuit with a state machine (0901), MASTER GATE (0902) and EB-REG (0903). INPUT CELLs (0904) transfer data from the E-BUS (0905) to the II-BUS (0906). OUTPUT CELLs (0907) transfer data from the IO-BUS (0908) to the E-BUS (0905). All units are linked together by the control bus (0909).



FIG. 9
b shows a bus interface circuit with a state machine (0901), MASTER GATE (0902) and EB-REG (0903). INPUT CELLs (0904) transfer data from the E-BUS (0905) to the bidirectional I-BUS (0910). OUTPUT CELLS (0907) transfer data from the bidirectional I-BUS (0910) to the E-BUS (0905). All units are linked together over the control bus (0909). Interface circuits utilizing both possibilities (FIGS. 9a and 9b) in a hybrid design are also conceivable.



FIG. 10
a shows the interconnection of two units (DFPs, FPGAs, DPGAs, etc.) (1001) linked together via the E-BUS (1002).



FIG. 10
b shows the interconnection of a number of units (DFPs, FPGAs, DPGAs, etc.) (1001) via the E-BUS (1002).



FIG. 10
c shows the interconnection of a number of units (DFPs, FPGAs, DPGAs, etc.) (1001) via the E-BUS (1002). This interconnection can be expanded to a matrix. One unit (1001) may also manage multiple bus systems (1002).



FIG. 10
d shows the interconnection [of a] unit (DFP, FPGA, DPGA, etc.) (1001) to a memory unit or a memory bank (1003) via the E-BUS (1002).



FIG. 10
e shows the interconnection [of a] unit (DFP, FPGA, DPGA, etc.) (1001) to a peripheral device or a peripheral group (1004) via the E-BUS (1002).



FIG. 10
f shows the interconnection [of a] unit (DFP, FPGA, DPGA, etc.) (1001) to a memory unit or a memory bank (1003) and to a peripheral device or a peripheral group (1004) via the E-BUS (1002).



FIG. 10
g shows the interconnection [of a] unit (DFP, FPGA, DPGA, etc.) (1001) to a memory unit or a memory bank (1003) and to a peripheral device or a peripheral group (1004) plus another unit (DFP, FPGA, DPGA, etc.) (1001) via the E-BUS (1002).



FIG. 11 shows the architecture of the EB-REG. The bus systems E-BUS (1103), the PLU bus (1104) over which the PLU has access to the EB-REG, and the local internal bus between the INPUT/OUTPUT CELLs, the state machine and the EB-REG (1105, see 0407, 0417, 0517) and possibly an I-BUS (1114) are connected to a multiplexer (1106). The multiplexer (1106) selects either one of the buses or feedback to the register (1108) and switches the data through to the input of the register (1108). The MASTER bit is sent to the register (1108) separately over the multiplexer (1107). The multiplexer is controlled by the RESET signal (1101) (resetting or initializing the unit). If a RESET signal is applied, the multiplexer (1107) switches the signal of an external chip connection (1102) through to the input of the register (1108); otherwise the output of the multiplexer (1106) is switched through to the input of the register (1108). MASTER may thus be pre-allocated. The register (1108) is clocked by the system clock (1112). The contents of the register (1108) are switched via a gate (1109, 1110, 1111, 1113) to the respective bus system (1103, 1104, 1105, 1114) having read access at that time. Control of the gates (1109, 1110, 1111, 1113) and of the multiplexer (1106) is not shown because an ordinary decoder logic may be used.


Embodiments


FIG. 12 shows an example embodiment using a standard bus system RAMBUS (1203). One unit (DFP, FPGA, DPGA, etc.) (1201) is connected to other units (memories, peripherals, other DFPs, FPGAs, DPGAs, etc.) (1202) by the bus system (1203). Independently of the bus system (1203), this unit (1201) may have additional connecting lines (1204), e.g., for connecting any desired circuits, as is customary in the related art.



FIG. 13 shows an example of implementation of an IO and memory bus system. 1310 forms the RAM bus connecting RAM bus interface (1308) to the RAM bus memory. The RAM bus interface is connected to a cache RAM (1306). A tag RAM (1307) and a cache controller (1305) are provided for cache RAM (1306). With the help of the cache controller and tag RAM, a check is performed to determine whether the required data is in the cache memory or whether it must be loaded out of the external RAM bus memory. Cache RAM, cache controller and RAM bus interface are controlled by a state machine (1304). The cache is a known implementation.


Arbiter (1303) regulates access of individual bus segments to the cache RAM and thus also to external memory. In this exemplary implementation, access to eight bus segments is possible. Each connection to a bus segment (1309) has a bus IO (1301) and an address generator (1302). In addition, each bus IO is also connected to the primary logic bus (1307) and to an internal test bus (1311). Every n-th bus IO is connected to the (n+1)-th bus IO, where n is defined as n=(1, 3, 5, . . . ). Through this connection, data requested from memory by the n-th address generator is used by the (n+1)-th segment as the address for a memory access. Indirect addressing of the memory is thus possible. The value of the counter (1509) of segment n indicates a memory location in the RAM. Data from this memory location is transferred to segment (n+1), where it serves as the basic address for addressing the memory.



FIG. 14 shows an example bus IO unit. It is connected to the internal bus system (1406), the test bus system (1408) and the primary logic bus (1407). According to an example embodiment, bus (1412) and bus (1413) serve to connect the n-th bus IO to the (n+1)-th bus IO. In other words, bus (1413) is present only with every n-th segment, and bus (1412) is present only with every (n+1)-th segment. The n-th bus IO sends data over the bus (1413), and the (n+1)-th bus IO receives this data over the bus (1412). Bus systems (1406, 1407, 1412) are connected by gates (1401, 1402, 1403, 1411) to bus (1409) which connects the bus IO to the address generator. The arbiter (1404) selects a bus system (1406, 1407, 1412) for data transmission and delivers a control signal to the state machine (1405) which in turn controls gates (1401, 1402, 1403, 1411). In addition, state machine (1405) also sends control signals (1410) to the address generator and RAM.


Two example possibilities are as follows:

  • a) Segment n: State machine (1405) receives from the address generator a configuration signal (1415) which determines whether indirect addressing is to take place. After a read trigger signal (1416) from internal bus (1406) or primary logic bus (1407), state machine (1405) enables the respective gate (1401, 1402, 1403, 1411) and generates control signals (1410). The memory location addressed by the loadable incrementer/decrementer (1509) is read out. Data contained in the RAM memory location is not sent back to the bus but instead is transmitted by the bus (1413) to the (n+1)-th segment, where it serves as a basic address for addressing the RAM. After having received data from the RAM, the state machine (1405) delivers an acknowledge signal for synchronization to state machine (1414), which controls the sequence in indirect addressing. This state machine (1414) is referred to below as ind state machine. It generates all the necessary control signals and sends them to the following segment (1413).
  • b) Segment (n+1): The (n+1)-th segment receives data transmitted from the n-th segment over the bus (1412). Arbiter (1404) receives a write signal and sends a request to the state machine, which enables gate (1411). Gate (1411) adds the internal address of the basic address entry to the data from 1412, so that decoder (1502) enables the basic address latches.



FIG. 15
a shows the address generator. Data and address information is transmitted from the bus IO to the address generator over the bus (1409). Bus (1410) transmits control signals CLK (1517, 1508) and the output enable signal (1518) as well as control signals to RAM (1519). The output enable signal (1518) enables the gates (1503, 1515). Gate (1503) switches data from bus (1409) to data bus (1504) to the RAM. Gate (1515) switches the addresses thus generated to address bus (1520) leading to the RAM.


Addresses are generated as follows: Four entries in the address generator generate addresses. Each entry is stored in two latches (1501), with one latch storing the higher-order address and the other latch storing the lower-order address. The basic address entry contains the start address of a memory access. The step width entry is added to or subtracted from the basic address in loadable incrementer/decrementer (1509). The (incrementing/decrementing) function of loadable incrementer/decrementer (1509) is coded in one bit of the basic address and transmitted to loadable incrementer/decrementer (1509).


The end address is stored in the end address entry, and one bit is encoded according to whether address generation is terminated on reaching the end address or whether the end address entry is ignored. If the counter counts up to an end address, the value of the end address entry is compared with the initial value of the loadable incrementer/decrementer. This takes place in the comparator (1510), which generates a high as soon as the end address is reached or exceeded. With an active enable end address signal (1507), the AND gate (1512) delivers this high to the OR gate (1514), which then relays a trigger signal (1521) to the primary logic bus.


The data count entry contains the number of data transfers and thus of the addresses to be calculated. Here again, one bit in the data count entry determines whether this function is activated and the enable data counter signal (1506) is sent to the AND gate (1513) or whether the data count entry is ignored. Counter (1505) receives the value of the data count entry and decrements it by one with each clock pulse. Comparator (1511) compares the value of counter (1505) [with] zero and delivers a signal to AND gate (1513). If enable data counter signal (1506) is active, the signal of comparator (1511) is sent to OR gate (1514) and as trigger signal (1521) to the primary logic bus.


Bus (1409) contains control signals and addresses for the decoder (1502), which selects one of the latches (1501) according to the address. Configuration register (1516) can also be controlled by decoder (1502), determining whether the segment is used for indirect addressing. Data of the configuration register is transmitted to the bus IO of the segment over connection (1415).



FIG. 15
b shows a modification of the address generator from FIG. 15a, which deposits the end address of the data block at the beginning of a data block in the memory. The advantage of this design is that (with) a variable size of the data block, the end is defined precisely for subsequent access. This structure corresponds basically to the structure of the address generator from FIG. 15a, but with the addition of two multiplexers (1522, 1523) and an additional entry in the configuration register (1523). This entry is called the calculate end address and determines whether the end address of the data block is deposited as the first entry of the data block at the location defined by the base address entry. These multiplexers are controlled by state machine (1405). Multiplexer (1522) serves to switch the basic address or output of counter (1509) to gate (1515). Multiplexer (1523) switches either data coming from bus (1404) or the output of counter (1509) to gate (1503).



FIG. 15
c shows the sequence in the state machine and the pattern of memory access by the address generator shown in FIG. 15b. State machine (1405) is first in the IDLE state (1524). If the calculate end address entry is set in configuration register (1523), after writing step width (1529), state machine (1405) goes into state (1525) where the address for RAM access is written into the loadable incrementer/decrementer from the basic address entry, and the step width is added or subtracted, depending on counter mode (incrementing/decrementing). The RAM is accessed and the state machine returns to IDLE state (1524). The following data transfers are performed as specified by the basic addresses and step width entries. The pattern in memory is thus as follows. Basic address (1526) has not been written. First entry (1527) is in the position defined by the basic address plus (minus) the step width. The next entries (1528) follow one another at step width intervals.


When the end of the transfer has been reached, a trigger signal is generated (1521). On the basis of the trigger signal (1521) or an external trigger signal (1417), state machine (1405) goes from IDLE state (1524) into state (1530), where multiplexers (1522, 1523) are switched, so that the basic address is applied to the input of gate (1515), and the address is applied to gate (1503) after the end of the data block. Then state machine (1405) enters state (1531) and writes the address to the RAM at the position of the basic address after the end of the data block. The pattern in memory is then as follows. The entry of basic address (1526) indicates the address after the end of the data block. The first entry in the data block is at address (1527), and then the remaining entries follow. Another possible embodiment of the state machine is for the state machine to first correct the count in 1509 on the basis of one of trigger signals (1521 or 1417) so that 1509 indicates the last data word of the data block. This is implemented technically by performing the inverse operation to that preset in 1509, i.e., if 1509 adds the step width according to the presettings, the step width is now subtracted; if 1509 subtracts according to the presettings, it is added. To perform the correction, an additional state (1540) is necessary in the state machine described below in conjunction with FIG. 15c to control 1509 accordingly.



FIG. 16 shows the interaction of multiple segments in indirect addressing. Segment n (1601) receives a read signal over the bus (1605) (primary logic bus (1407) or internal bus (1406)). Bus IO (1603) enables the respective gate and generates the required control signals. The memory location determined by 1509 is addressed. Data (1607) coming from the RAM is sent to segment (n+1) (1602). Ind state machine (1604) generates the required control signals and likewise sends them to segment (n+1) (1602). In segment (n+1) (1602), signals pass through gate (1411) of bus IO (1608) described in conjunction with FIG. 14, where an address is added for decoder (1502) described in conjunction with FIG. 15, so that the basic address entry of the address generator (1608) is addressed by segment (n+1) (1602). Data coming from segment n (1601) thus serves as the basic address in segment (n+1) (1602), i.e., read-write access over bus (1609) (primary logic bus (1407) or internal bus (1406)) can use this basic address for access to the RAM. Bus (1610) serves to transmit addresses to the RAM, and bus (1612) transmits data to and from the RAM, depending on whether it is a read or write access.



FIG. 17 illustrates the ind state machine. The basic state is the IDLE state (1701). It remains in this state until the acknowledge signal of state machine (1405) from FIG. 14 arrives. Then ind state machine goes into a write state (1702), generating a write enable signal which is sent with the data to segment (n+1), where it serves to activate the decoder selecting the various entries. Next it enters a wait_for_ack state. After the acknowledge signal of segment (n+1), the ind state machine returns to the IDLE state (1701).


DEFINITION OF TERMS



  • ADR-GATE: Gate which switches addresses to the E-BUS if the unit is in E-BUS MASTER mode.

  • DFP: Data flow processor according to German Patent DE 44 16 881.

  • DPGA: Dynamically programmable gate array. Related art.

  • D flip-flop: Storage element which stores a signal at the rising edge of a clock pulse.

  • EB-REG: Register that stores the status signals between I-BUS and E-BUS.

  • E-BUS: External bus system outside a unit.

  • E-BUS MASTER: Unit that controls the E-BUS. Active.

  • E-BUS SLAVE: Unit controlled by the E-BUS MASTER. Passive.

  • E-GATE: Gate which is controlled by the internal state machine of the unit or by the E-BUS MASTER and switches data to the E-BUS.

  • E-GATE-REG: Register into which data transmitted to the E-BUS over the E-GATE is entered.

  • E-READ: Flag in the EB-REG indicating that the OUTPUT CELLS have been transferred completely to the E-BUS.

  • E-WRITE: Flag in the EB-REG indicating that the E-BUS has been transferred completely to the INPUT CELLS.

  • Flag: Status bit in a register, indicating a state.

  • FPGA: Field programmable gate array. Related art.

  • Handshake: Signal protocol where a signal A indicates a state and another signal B confirms that it has accepted signal A and responded to it.

  • INPUT CELL: Unit transmitting data from the E-BUS to an I-BUS.

  • I-BUSn (also I-BUS): Internal bus system of a unit, which may also consist of bundles of individual lines, where n indicates the number of the bus.

  • II-BUSn (also II-BUS): Internal bus system of a unit, which may also consist of bundles of individual lines, with n denoting the number of the bus. The bus is driven by an INPUT CELL and goes to logic inputs.

  • IO-BUSn (also IO-BUS): Internal bus system of a unit, which may also consist of bundles of individual lines, with n denoting the number of the bus. The bus is driven by logic outputs and goes to an OUTPUT CELL. n indicates the number of the bus.

  • I-GATE: Gate that switches data to the I-BUS.

  • I-GATE-REG: Register which is controlled by the internal state machine or by E-BUS MASTER and into which data transmitted over the I-GATE to the I-BUS is entered.

  • I-READ: Flag in the EB-REG indicating that the INPUT CELLs have been completely transferred to the I-BUS.

  • I-WRITE: Flag in the EB-REG indicating that the I-BUS has been completely transferred to the OUTPUT CELLs.

  • Edge cell: Cell at the edge of a cell array, often with direct contact with the terminals of a unit.

  • Configuring: Setting the function and interconnecting a logic unit, a (FPGA) cell (logic cell) or a PAE (see reconfiguring).

  • Primary logic unit (PLU): Unit for configuring and reconfiguring a PAE or logic cell. Configured by a microcontroller specifically designed for this purpose.

  • Latch: Storage element which usually relays a signal transparently during the H level and stores it during the L level. Latches where the function of levels is exactly the opposite are sometimes used in PAEs. An inverter is then connected before the clock pulse of a conventional latch.

  • Logic cells: Configurable cells used in DFPs, FPGAs, DPGAs, fulfilling simple logical or arithmetic functions, depending on configuration.

  • MASTER: Flag in EB-REG showing that the E-BUS unit is a MASTER.

  • MODE PLUREG: Register in which the primary logic unit sets the configuration of an INPUT/OUTPUT CELL.

  • OUTPUT CELL: Unit that transmits data from an I-BUS to the E-BUS.

  • PAE: Processing array element: EALU with 0-REG, R-REG, R20-MUX, F-PLUREG, M-PLUREG, BM UNIT, SM UNIT, sync UNIT, state-back UNIT and power UNIT.

  • PLU: Unit for configuring and reconfiguring a PAE or a logic cell. Configured by a microcontroller specifically designed for this purpose.

  • REQ-MASTER: Flag in the EB-REG indicating that the unit would like to become E-BUS MASTER.

  • RS flip-flop: Reset/set flip-flop. Storage element which can be switched by two signals.

  • SET-REG: Register indicating that data has been written in an I-GATE-REG or E-GATE-REG but not yet read.

  • STATE-GATE: Gate switching the output of the SET-REG to the E-BUS.

  • Gate: Switch that relays or blocks a signal. Simple comparison: relay.

  • Reconfiguring: New configuration of any number of PAEs or logic cells while any remaining number of PAEs or logic cells continue their own function (see configuring).

  • State machine: Logic which can assume miscellaneous states. The transitions between states depend on various input parameters. These machines are used to control complex functions and belong to the related art.


Claims
  • 1. A Field Programmable Gate Array (FPGA) Integrated Circuit comprising: a cell structure including (a) configurable cells in a two-dimensional array and (b) a configurable internal interconnection that interconnects the configurable cells; andat least one dedicated hardwired interface unit that: is separate from the plurality of configurable cells;is connected to the configurable internal interconnection;is adapted for transferring processing data between the configurable cells and an external unit at runtime, while the configurable cells are operational;has at least one state machine controlling said transfer;includes a protocol generator adapted for generating data transfer protocols; andhas at least one dedicated line transmitting signals to said external unit and at least one dedicated line receiving signals from said external unit.
  • 2. The FPGA Integrated Circuit according to claim 1, wherein the external unit is a data processing unit.
  • 3. The FPGA Integrated Circuit according to claim 2, wherein said data processing unit is external to the FPGA Integrated Circuit.
  • 4. The FPGA Integrated Circuit according to claim 1, wherein the external unit is a memory.
  • 5. The FPGA Integrated Circuit according to claim 4, wherein said memory is external to the FPGA Integrated Circuit.
  • 6. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein at least some of the configurable cells comprise dedicated Arithmetic Logic Units (ALUs).
  • 7. The FPGA Integrated Circuit according to claim 6, wherein at least some of the configurable cells are reconfigurable at runtime without disturbing other configurable cells, so that processing by others of the configurable cells continues during the reconfiguration of the at least some of the configurable cells.
  • 8. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein the interface unit further comprises a synchronization arrangement adapted for synchronizing the configurable cell array with the external unit.
  • 9. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein the interface unit further comprises an address generator adapted for generating addresses transferred to the external unit.
  • 10. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein the transfer occurs while the FPGA Integrated Circuit operates as one of an arithmetic coprocessor and an arithmetic processor.
  • 11. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein the transfer occurs while the FPGA Intergrated Circuit operates as a processor.
  • 12. The FPGA Integrated Circuit according to any one of claims 2, 3, and 4, wherein the transfer occurs while the FPGA Integrated Circuit processes algorithms.
  • 13. The FPGA Integrated Circuit according to claim 1, wherein the external unit is a peripheral device.
  • 14. A Field Programmable Gate Array (FPGA) Integrated Circuit comprising: a cell structure including (a) configurable cells in a two-dimensional array and (b) a configurable internal interconnection that interconnects the configurable cells; andat least one dedicated hardwired interface unit that: is separate from the plurality of configurable cells;is connected to the configurable internal interconnection;is adapted for transferring processing data between the configurable cells and an external unit at runtime, while the configurable cells are operational;has at least one state machine controlling said transfer;has at least one dedicated line transmitting signals to said external unit and at least one dedicated line receiving signals from said external unit; andcombines individual and unrelated lines of the internal interconnection to form a FPGA internal bus.
  • 15. The FPGA Integrated Circuit according to claim 14, wherein the external unit is a data processing unit.
  • 16. The FPGA Integrated Circuit according to claim 15, wherein said data processing unit is external to the FPGA Integrated Circuit.
  • 17. The FPGA Integrated Circuit according to claim 14, wherein the external unit is a memory.
  • 18. The FPGA Integrated Circuit according to claim 17, wherein said memory is external to the FPGA Integrated Circuit.
  • 19. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein at least some of the configurable cells comprise dedicated Arithmetic Logic Units (ALUs).
  • 20. The FPGA Integrated Circuit according to claim 19, wherein at least some of the configurable cells are reconfigurable at runtime without disturbing other configurable cells, so that processing by others of the configurable cells continues during the reconfiguration of the at least some of the configurable cells.
  • 21. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein the interface unit further comprises a synchronization arrangement adapted for synchronizing the configurable cell array with the external unit.
  • 22. The FPGA Integrated Circuit according to any one of claims 14, 15, 16, and 17, wherein the interface unit further comprises a protocol generator adapted for generating data transfer protocols.
  • 23. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein the interface unit further comprises an address generator adapted for generating addresses transferred to the external unit.
  • 24. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein the transfer occurs while the FPGA Integrated Circuit operates as one of an arithmetic coprocessor and an arithmetic processor.
  • 25. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein the transfer occurs while the FPGA Intergrated Circuit operates as a processor.
  • 26. The FPGA Integrated Circuit according to any one of claims 15, 16, and 17, wherein the transfer occurs while the FPGA Integrated Circuit processes algorithms.
  • 27. The FPGA Integrated Circuit according to claim 14, wherein the external unit is a peripheral device.
  • 28. A Field Programmable Gate Array (FPGA) Integrated Circuit comprising: a cell structure including (a) configurable cells in a two-dimensional array and (b) a configurable internal interconnection that interconnects the configurable cells; andat least one dedicated hardwired interface unit that: is separate from the plurality of configurable cells;is connected to the configurable internal interconnection;is adapted for transferring processing data between the configurable cells and an external unit at runtime, while the configurable cells are operational;has at least one state machine controlling said transfer;has at least one dedicated line transmitting signals to said external unit and at least one dedicated line receiving signals from said external unit; anddefines a FPGA internal bus by a configurable connection of individual and unrelated lines of the internal interconnection to the interface unit.
  • 29. The FPGA Integrated Circuit according to claim 28, wherein the external unit is a data processing unit.
  • 30. The FPGA Integrated Circuit according to claim 29, wherein said data processing unit is external to the FPGA Integrated Circuit.
  • 31. The FPGA Integrated Circuit according to claim 28, wherein the external unit is a memory.
  • 32. The FPGA Integrated Circuit according to claim 31, wherein said memory is external to the FPGA Integrated Circuit.
  • 33. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein at least some of the configurable cells comprise dedicated Arithmetic Logic Units (ALUs).
  • 34. The FPGA Integrated Circuit according to claim 33, wherein at least some of the configurable cells are reconfigurable at runtime without disturbing other configurable cells, so that processing by others of the configurable cells continues during the reconfiguration of the at least some of the configurable cells.
  • 35. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein the interface unit further comprises a synchronization arrangement adapted for synchronizing the configurable cell array with the external unit.
  • 36. The FPGA Integrated Circuit according to any one of claims 28, 29, 30, and 31, wherein the interface unit further comprises a protocol generator adapted for generating data transfer protocols.
  • 37. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein the interface unit further comprises an address generator adapted for generating addresses transferred to the external unit.
  • 38. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein the transfer occurs while the FPGA Integrated Circuit operates as one of an arithmetic coprocessor and an arithmetic processor.
  • 39. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein the transfer occurs while the FPGA Intergrated Circuit operates as a processor.
  • 40. The FPGA Integrated Circuit according to any one of claims 29, 30, and 31, wherein the transfer occurs while the FPGA Integrated Circuit processes algorithms.
  • 41. The FPGA Integrated Circuit according to claim 28, wherein the external unit is a peripheral device.
  • 42. A system comprising: a Field Programmable Gate Array (FPGA) Integrated Circuit including a cell structure that includes (a) configurable cells in a two-dimensional array and (b) a configurable internal interconnection that interconnects the configurable cells; andat least one dedicated hardwired interface unit that: is separate from the plurality of configurable cells;is connected to the configurable internal interconnection;is adapted for, at runtime, while the configurable cells are operational, transferring processing data between the configurable cells and an external unit;has at least one state machine controlling said transfer;includes a protocol generator adapted for generating data transfer protocols; andhas at least one dedicated line transmitting signals to said external unit and at least one dedicated line receiving signals from said external unit.
Priority Claims (1)
Number Date Country Kind
196 54 595 Dec 1996 DE national
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/008,543, filed on Jan. 10, 2008, now U.S. Pat. No. 7,650,448 which is a continuation of U.S. patent application Ser. No. 11/820,943, filed on Jun. 20, 2007, now U.S. Pat. No. 7,337,249 which is a continuation of U.S. patent application Ser. No. 10/792,168 filed on Mar. 2, 2004, now U.S. Pat. No. 7,243,175 which is a continuation of U.S. patent application Ser. No. 10/304,252 filed on Nov. 26, 2002, now U.S. Pat. No. 6,721,830 which is a continuation of U.S. patent application Ser. No. 09/915,213 filed on Jul. 25, 2001, now U.S. Pat. No. 6,513,077 which is a continuation of U.S. patent application Ser. No. 09/335,974 filed Jun. 18, 1999, now U.S. Pat. No. 6,338,106 which is a continuation of International Patent Application PCT/DE97/03013 filed on Dec. 21, 1997 and a continuation-in-part of U.S. patent application Ser. No. 08/947,254 filed on Oct. 8, 1997, now U.S. Pat. No. 6,119,181 the entire contents of each of which are expressly incorporated herein by reference thereto.

US Referenced Citations (549)
Number Name Date Kind
3681578 Stevens Aug 1972 A
3855577 Vandierendonck Dec 1974 A
4151611 Sugawara et al. Apr 1979 A
4233667 Devine et al. Nov 1980 A
4414547 Knapp et al. Nov 1983 A
4498134 Hansen et al. Feb 1985 A
4498172 Bhavsar Feb 1985 A
4566102 Hefner Jan 1986 A
4571736 Agrawal et al. Feb 1986 A
4590583 Miller May 1986 A
4591979 Iwashita May 1986 A
4623997 Tulpule Nov 1986 A
4663706 Allen et al. May 1987 A
4667190 Fant et al. May 1987 A
4682284 Schrofer Jul 1987 A
4686386 Tadao Aug 1987 A
4706216 Carter Nov 1987 A
4720778 Hall et al. Jan 1988 A
4720780 Dolecek Jan 1988 A
4739474 Holsztynski Apr 1988 A
4761755 Ardini et al. Aug 1988 A
4791603 Henry Dec 1988 A
4811214 Nosenchuck et al. Mar 1989 A
4852043 Guest Jul 1989 A
4852048 Morton Jul 1989 A
4860201 Stolfo et al. Aug 1989 A
4870302 Freeman Sep 1989 A
4882687 Gordon Nov 1989 A
4884231 Mor et al. Nov 1989 A
4891810 de Corlieu et al. Jan 1990 A
4901268 Judd Feb 1990 A
4910665 Mattheyses et al. Mar 1990 A
4918440 Furtek et al. Apr 1990 A
4959781 Rubinstein et al. Sep 1990 A
4967340 Dawes Oct 1990 A
4972314 Getzinger et al. Nov 1990 A
4992933 Taylor Feb 1991 A
5010401 Murakami et al. Apr 1991 A
5014193 Garner et al. May 1991 A
5015884 Agrawal et al. May 1991 A
5021947 Campbell et al. Jun 1991 A
5023775 Poret Jun 1991 A
5034914 Osterlund Jul 1991 A
5036473 Butts et al. Jul 1991 A
5036493 Nielsen Jul 1991 A
5041924 Blackborow et al. Aug 1991 A
5043978 Nagler et al. Aug 1991 A
5047924 Fujioka et al. Sep 1991 A
5055997 Sluijter et al. Oct 1991 A
5065308 Evans Nov 1991 A
5072178 Matsumoto Dec 1991 A
5076482 Kozyrski et al. Dec 1991 A
5081375 Pickett et al. Jan 1992 A
5099447 Myszewski Mar 1992 A
5103311 Sluijter et al. Apr 1992 A
5109503 Cruickshank et al. Apr 1992 A
5113498 Evan et al. May 1992 A
5115510 Okamoto et al. May 1992 A
5123109 Hillis Jun 1992 A
5128559 Steele Jul 1992 A
5142469 Weisenborn Aug 1992 A
5144166 Camarota et al. Sep 1992 A
5193202 Jackson et al. Mar 1993 A
5203005 Horst Apr 1993 A
5204935 Mihara et al. Apr 1993 A
5208491 Ebeling et al. May 1993 A
5212716 Ferraiolo et al. May 1993 A
5212777 Gove et al. May 1993 A
5218302 Loewe et al. Jun 1993 A
5226122 Thayer et al. Jul 1993 A
RE34363 Freeman Aug 1993 E
5233539 Agrawal et al. Aug 1993 A
5237686 Asano et al. Aug 1993 A
5243238 Kean Sep 1993 A
5247689 Ewert Sep 1993 A
RE34444 Kaplinsky Nov 1993 E
5274593 Proebsting Dec 1993 A
5276836 Fukumaru et al. Jan 1994 A
5287472 Horst Feb 1994 A
5287511 Robinson et al. Feb 1994 A
5287532 Hunt Feb 1994 A
5301284 Estes et al. Apr 1994 A
5301344 Kolchinsky Apr 1994 A
5303172 Magar et al. Apr 1994 A
5311079 Ditlow et al. May 1994 A
5327125 Iwase et al. Jul 1994 A
5336950 Popli et al. Aug 1994 A
5343406 Freeman et al. Aug 1994 A
5347639 Rechtschaffen et al. Sep 1994 A
5349193 Mott et al. Sep 1994 A
5353432 Richek et al. Oct 1994 A
5355508 Kan Oct 1994 A
5361373 Gilson Nov 1994 A
5365125 Goetting et al. Nov 1994 A
5379444 Mumme Jan 1995 A
5386154 Goetting et al. Jan 1995 A
5386518 Reagle et al. Jan 1995 A
5392437 Matter et al. Feb 1995 A
5408643 Katayose Apr 1995 A
5410723 Schmidt et al. Apr 1995 A
5412795 Larson May 1995 A
5418952 Morley et al. May 1995 A
5418953 Hunt et al. May 1995 A
5421019 Holsztynski et al. May 1995 A
5422823 Agrawal et al. Jun 1995 A
5425036 Liu et al. Jun 1995 A
5426378 Ong Jun 1995 A
5428526 Flood et al. Jun 1995 A
5430687 Hung et al. Jul 1995 A
5440245 Galbraith et al. Aug 1995 A
5440538 Olsen et al. Aug 1995 A
5442790 Nosenchuck Aug 1995 A
5444394 Watson et al. Aug 1995 A
5448186 Kawata Sep 1995 A
5450022 New Sep 1995 A
5455525 Ho et al. Oct 1995 A
5457644 McCollum Oct 1995 A
5465375 Thepaut et al. Nov 1995 A
5469003 Kean Nov 1995 A
5473266 Ahanin et al. Dec 1995 A
5473267 Stansfield Dec 1995 A
5475583 Bock et al. Dec 1995 A
5475803 Stearns et al. Dec 1995 A
5475856 Kogge Dec 1995 A
5477525 Okabe Dec 1995 A
5483620 Pechanek et al. Jan 1996 A
5485103 Pedersen et al. Jan 1996 A
5485104 Agrawal et al. Jan 1996 A
5489857 Agrawal et al. Feb 1996 A
5491353 Kean Feb 1996 A
5493239 Zlotnick Feb 1996 A
5497498 Taylor Mar 1996 A
5504439 Tavana Apr 1996 A
5506998 Kato et al. Apr 1996 A
5510730 El Gamal et al. Apr 1996 A
5511173 Yamaura et al. Apr 1996 A
5513366 Agarwal et al. Apr 1996 A
5521837 Frankle et al. May 1996 A
5522083 Gove et al. May 1996 A
5525971 Flynn Jun 1996 A
5530873 Takano Jun 1996 A
5530946 Bouvier et al. Jun 1996 A
5532693 Winters et al. Jul 1996 A
5532957 Malhi Jul 1996 A
5535406 Kolchinsky Jul 1996 A
5537057 Leong et al. Jul 1996 A
5537580 Giomi et al. Jul 1996 A
5537601 Kimura et al. Jul 1996 A
5541530 Cliff et al. Jul 1996 A
5544336 Kato et al. Aug 1996 A
5548773 Kemeny et al. Aug 1996 A
5550782 Cliff et al. Aug 1996 A
5555434 Carlstedt Sep 1996 A
5559450 Ngai et al. Sep 1996 A
5561738 Kinerk et al. Oct 1996 A
5568624 Sites et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572710 Asano et al. Nov 1996 A
5574930 Halverson, Jr. et al. Nov 1996 A
5581731 King et al. Dec 1996 A
5581734 DiBrino et al. Dec 1996 A
5583450 Trimberger et al. Dec 1996 A
5586044 Agrawal et al. Dec 1996 A
5587921 Agrawal et al. Dec 1996 A
5588152 Dapp et al. Dec 1996 A
5590345 Barker et al. Dec 1996 A
5590348 Phillips et al. Dec 1996 A
5596742 Agarwal et al. Jan 1997 A
5600265 El Gamal et al. Feb 1997 A
5600597 Kean et al. Feb 1997 A
5600845 Gilson Feb 1997 A
5606698 Powell Feb 1997 A
5608342 Trimberger Mar 1997 A
5611049 Pitts Mar 1997 A
5617547 Feeney et al. Apr 1997 A
5617577 Barker et al. Apr 1997 A
5619720 Garde et al. Apr 1997 A
5625806 Kromer Apr 1997 A
5625836 Barker et al. Apr 1997 A
5627992 Baror May 1997 A
5634131 Matter et al. May 1997 A
5635851 Tavana Jun 1997 A
5642058 Trimberger et al. Jun 1997 A
5646544 Iadanza Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5649176 Selvidge et al. Jul 1997 A
5649179 Steenstra et al. Jul 1997 A
5652529 Gould et al. Jul 1997 A
5652894 Hu et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5655124 Lin Aug 1997 A
5656950 Duong et al. Aug 1997 A
5657330 Matsumoto Aug 1997 A
5659785 Pechanek et al. Aug 1997 A
5659797 Zandveld et al. Aug 1997 A
5675262 Duong et al. Oct 1997 A
5675743 Mavity Oct 1997 A
5675757 Davidson et al. Oct 1997 A
5680583 Kuijsten Oct 1997 A
5682491 Pechanek et al. Oct 1997 A
5687325 Chang Nov 1997 A
5694602 Smith Dec 1997 A
5696791 Yeung Dec 1997 A
5696976 Nizar et al. Dec 1997 A
5701091 Kean Dec 1997 A
5705938 Kean Jan 1998 A
5706482 Matsushima et al. Jan 1998 A
5713037 Wilkinson et al. Jan 1998 A
5717943 Barker et al. Feb 1998 A
5732209 Vigil et al. Mar 1998 A
5734869 Chen Mar 1998 A
5734921 Dapp et al. Mar 1998 A
5737516 Circello et al. Apr 1998 A
5737565 Mayfield Apr 1998 A
5742180 DeHon et al. Apr 1998 A
5745734 Craft et al. Apr 1998 A
5748872 Norman May 1998 A
5748979 Trimberger May 1998 A
5752035 Trimberger May 1998 A
5754459 Telikepalli May 1998 A
5754820 Yamagami May 1998 A
5754827 Barbier et al. May 1998 A
5754871 Wilkinson et al. May 1998 A
5760602 Tan Jun 1998 A
5761484 Agarwal et al. Jun 1998 A
5773994 Jones Jun 1998 A
5778439 Trimberger et al. Jul 1998 A
5781756 Hung Jul 1998 A
5784636 Rupp Jul 1998 A
5794059 Barker et al. Aug 1998 A
5794062 Baxter Aug 1998 A
5801547 Kean Sep 1998 A
5801715 Norman Sep 1998 A
5801958 Dangelo et al. Sep 1998 A
5802290 Casselman Sep 1998 A
5804986 Jones Sep 1998 A
5815004 Trimberger et al. Sep 1998 A
5815715 Kayhan Sep 1998 A
5815726 Cliff Sep 1998 A
828858 Athanas et al. Oct 1998 A
5821774 Veytsman et al. Oct 1998 A
5828229 Cliff et al. Oct 1998 A
5828858 Athanas et al. Oct 1998 A
5831448 Kean Nov 1998 A
5838165 Chatter Nov 1998 A
5841973 Kessler et al. Nov 1998 A
5844422 Trimberger et al. Dec 1998 A
5844888 Markkula, Jr. et al. Dec 1998 A
5848238 Shimomura et al. Dec 1998 A
5854918 Baxter Dec 1998 A
5857097 Henzinger et al. Jan 1999 A
5857109 Taylor Jan 1999 A
5859544 Norman Jan 1999 A
5860119 Dockser Jan 1999 A
5862403 Kanai et al. Jan 1999 A
5867691 Shiraishi Feb 1999 A
5867723 Chin et al. Feb 1999 A
5870620 Kadosumi et al. Feb 1999 A
5884075 Hester et al. Mar 1999 A
5887162 Williams et al. Mar 1999 A
5887165 Martel et al. Mar 1999 A
5889533 Lee Mar 1999 A
5889982 Rodgers et al. Mar 1999 A
5892370 Eaton et al. Apr 1999 A
5892961 Trimberger Apr 1999 A
5892962 Cloutier Apr 1999 A
5894565 Furtek et al. Apr 1999 A
5901279 Davis, III May 1999 A
5915123 Mirsky et al. Jun 1999 A
5924119 Sindhu et al. Jul 1999 A
5926638 Inoue Jul 1999 A
5933023 Young Aug 1999 A
5933642 Greenbaum et al. Aug 1999 A
5936424 Young et al. Aug 1999 A
5943242 Vorbach et al. Aug 1999 A
5956518 DeHon et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5960200 Eager et al. Sep 1999 A
5966143 Breternitz, Jr. Oct 1999 A
5966534 Cooke et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5978583 Ekanadham et al. Nov 1999 A
5996083 Gupta et al. Nov 1999 A
5999990 Sharrit et al. Dec 1999 A
6003143 Kim et al. Dec 1999 A
6011407 New Jan 2000 A
6014509 Furtek et al. Jan 2000 A
6020758 Patel et al. Feb 2000 A
6020760 Sample et al. Feb 2000 A
6021490 Vorbach et al. Feb 2000 A
6023564 Trimberger Feb 2000 A
6023742 Ebeling et al. Feb 2000 A
6026481 New et al. Feb 2000 A
6034538 Abramovici Mar 2000 A
6035371 Magloire Mar 2000 A
6038650 Vorbach et al. Mar 2000 A
6038656 Martin et al. Mar 2000 A
6044030 Zheng et al. Mar 2000 A
6047115 Mohan et al. Apr 2000 A
6049222 Lawman Apr 2000 A
6049866 Earl Apr 2000 A
6052773 DeHon et al. Apr 2000 A
6054873 Laramie Apr 2000 A
6055619 North et al. Apr 2000 A
6058469 Baxter May 2000 A
6076157 Borkenhagen et al. Jun 2000 A
6077315 Greenbaum et al. Jun 2000 A
6078736 Guccione Jun 2000 A
6081903 Vorbach et al. Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6086628 Dave et al. Jul 2000 A
6088795 Vorbach et al. Jul 2000 A
6092174 Roussakov Jul 2000 A
6105105 Trimberger et al. Aug 2000 A
6105106 Manning Aug 2000 A
6108760 Mirsky et al. Aug 2000 A
6118724 Higginbottom Sep 2000 A
6119181 Vorbach et al. Sep 2000 A
6122719 Mirsky et al. Sep 2000 A
6125408 McGee et al. Sep 2000 A
6127908 Bozler et al. Oct 2000 A
6128720 Pechanek et al. Oct 2000 A
6134166 Lytle et al. Oct 2000 A
6137307 Iwanczuk et al. Oct 2000 A
6145072 Shams et al. Nov 2000 A
6150837 Beal et al. Nov 2000 A
6150839 New et al. Nov 2000 A
6154048 Iwanczuk et al. Nov 2000 A
6154049 New Nov 2000 A
6157214 Marshall Dec 2000 A
6170051 Dowling Jan 2001 B1
6172520 Lawman et al. Jan 2001 B1
6173419 Barnett Jan 2001 B1
6173434 Wirthlin et al. Jan 2001 B1
6178494 Casselman Jan 2001 B1
6185256 Saito et al. Feb 2001 B1
6185731 Maeda et al. Feb 2001 B1
6188240 Nakaya Feb 2001 B1
6188650 Hamada et al. Feb 2001 B1
6198304 Sasaki Mar 2001 B1
6201406 Iwanczuk et al. Mar 2001 B1
6202182 Abramovici et al. Mar 2001 B1
6204687 Schultz et al. Mar 2001 B1
6211697 Lien et al. Apr 2001 B1
6212544 Borkenhagen et al. Apr 2001 B1
6212650 Guccione Apr 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6216223 Revilla et al. Apr 2001 B1
6219833 Solomon et al. Apr 2001 B1
RE37195 Kean May 2001 E
6230307 Davis et al. May 2001 B1
6240502 Panwar et al. May 2001 B1
6243808 Wang Jun 2001 B1
6247147 Beenstra et al. Jun 2001 B1
6252792 Marshall et al. Jun 2001 B1
6256724 Hocevar et al. Jul 2001 B1
6260179 Ohsawa et al. Jul 2001 B1
6262908 Marshall et al. Jul 2001 B1
6263430 Trimberger et al. Jul 2001 B1
6266760 DeHon et al. Jul 2001 B1
6279077 Nasserbakht et al. Aug 2001 B1
6282627 Wong et al. Aug 2001 B1
6282701 Wygodny et al. Aug 2001 B1
6285624 Chen Sep 2001 B1
6286134 Click, Jr. et al. Sep 2001 B1
6288566 Hanrahan et al. Sep 2001 B1
6289440 Casselman Sep 2001 B1
6298396 Loyer et al. Oct 2001 B1
6298472 Phillips et al. Oct 2001 B1
6301706 Maslennikov et al. Oct 2001 B1
6311200 Hanrahan et al. Oct 2001 B1
6311265 Beckerle et al. Oct 2001 B1
6321366 Tseng et al. Nov 2001 B1
6321373 Ekanadham et al. Nov 2001 B1
6338106 Vorbach et al. Jan 2002 B1
6341318 Dakhil Jan 2002 B1
6347346 Taylor Feb 2002 B1
6349346 Hanrahan et al. Feb 2002 B1
6353841 Marshall et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6370596 Dakhil Apr 2002 B1
6373779 Pang et al. Apr 2002 B1
6374286 Gee Apr 2002 B1
6378068 Foster et al. Apr 2002 B1
6381624 Colon-Bonet et al. Apr 2002 B1
6389379 Lin et al. May 2002 B1
6389579 Phillips et al. May 2002 B1
6392912 Hanrahan et al. May 2002 B1
6400601 Sudo et al. Jun 2002 B1
6404224 Azegami et al. Jun 2002 B1
6405185 Pechanek et al. Jun 2002 B1
6405299 Vorbach et al. Jun 2002 B1
6421808 McGeer Jul 2002 B1
6421809 Wuytack et al. Jul 2002 B1
6421817 Mohan et al. Jul 2002 B1
6425054 Nguyen Jul 2002 B1
6425068 Vorbach Jul 2002 B1
6426649 Fu et al. Jul 2002 B1
6427156 Chapman et al. Jul 2002 B1
6430309 Pressman et al. Aug 2002 B1
6434642 Camilleri et al. Aug 2002 B1
6434672 Gaither Aug 2002 B1
6434695 Esfahani et al. Aug 2002 B1
6434699 Jones et al. Aug 2002 B1
6437441 Yamamoto Aug 2002 B1
6438747 Schreiber et al. Aug 2002 B1
6457116 Mirsky et al. Sep 2002 B1
6476634 Bilski Nov 2002 B1
6477643 Vorbach et al. Nov 2002 B1
6480937 Vorbach et al. Nov 2002 B1
6480954 Trimberger et al. Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487709 Keller et al. Nov 2002 B1
6490695 Zagorski et al. Dec 2002 B1
6496971 Lesea et al. Dec 2002 B1
6504398 Lien et al. Jan 2003 B1
6507898 Gibson et al. Jan 2003 B1
6507947 Schreiber et al. Jan 2003 B1
6512804 Johnson et al. Jan 2003 B1
6513077 Vorbach et al. Jan 2003 B2
6516382 Manning Feb 2003 B2
6518787 Allegrucci et al. Feb 2003 B1
6519674 Lam et al. Feb 2003 B1
6523107 Stansfield et al. Feb 2003 B1
6525678 Veenstra et al. Feb 2003 B1
6526520 Vorbach et al. Feb 2003 B1
6538468 Moore Mar 2003 B1
6538470 Langhammer et al. Mar 2003 B1
6539415 Mercs Mar 2003 B1
6539438 Ledzius et al. Mar 2003 B1
6539477 Seawright Mar 2003 B1
6542394 Marshall et al. Apr 2003 B2
6542844 Hanna Apr 2003 B1
6542998 Vorbach Apr 2003 B1
6553395 Marshall et al. Apr 2003 B2
6553479 Mirsky et al. Apr 2003 B2
6567834 Marshall et al. May 2003 B1
6571381 Vorbach et al. May 2003 B1
6587939 Takano Jul 2003 B1
6598128 Yoshioka et al. Jul 2003 B1
6606704 Adiletta et al. Aug 2003 B1
6624819 Lewis Sep 2003 B1
6631487 Abramovici et al. Oct 2003 B1
6633181 Rupp Oct 2003 B1
6657457 Hanrahan et al. Dec 2003 B1
6658564 Smith et al. Dec 2003 B1
6665758 Frazier et al. Dec 2003 B1
6668237 Sundararajan et al. Dec 2003 B1
6687788 Vorbach et al. Feb 2004 B2
6697979 Vorbach et al. Feb 2004 B1
6704816 Burke Mar 2004 B1
6708325 Cooke et al. Mar 2004 B2
6717436 Kress et al. Apr 2004 B2
6721830 Vorbach et al. Apr 2004 B2
6725334 Barroso et al. Apr 2004 B2
6728871 Vorbach et al. Apr 2004 B1
6745317 Mirsky et al. Jun 2004 B1
6748440 Lisitsa et al. Jun 2004 B1
6751722 Mirsky et al. Jun 2004 B2
6754805 Juan Jun 2004 B1
6757847 Farkash et al. Jun 2004 B1
6757892 Gokhale et al. Jun 2004 B1
6782445 Olgiati et al. Aug 2004 B1
6785826 Durham et al. Aug 2004 B1
6802026 Patterson et al. Oct 2004 B1
6803787 Wicker, Jr. Oct 2004 B1
6820188 Stansfield et al. Nov 2004 B2
6829697 Davis et al. Dec 2004 B1
6836842 Guccione et al. Dec 2004 B1
6871341 Shyr Mar 2005 B1
6874108 Abramovici et al. Mar 2005 B1
6886092 Douglass et al. Apr 2005 B1
6901502 Yano et al. May 2005 B2
6928523 Yamada Aug 2005 B2
6961924 Bates et al. Nov 2005 B2
6975138 Pani et al. Dec 2005 B2
6977649 Baldwin et al. Dec 2005 B1
7000161 Allen et al. Feb 2006 B1
7007096 Lisitsa et al. Feb 2006 B1
7010667 Vorbach Mar 2006 B2
7010687 Ichimura Mar 2006 B2
7028107 Vorbach et al. Apr 2006 B2
7038952 Zack et al. May 2006 B1
7043416 Lin May 2006 B1
6847370 Thendean et al. Oct 2006 B2
7210129 May et al. Apr 2007 B2
7216204 Rosenbluth May 2007 B2
7237087 Vorbach et al. Jun 2007 B2
7249351 Songer et al. Jul 2007 B1
7254649 Subramanian et al. Aug 2007 B2
7340596 Crosland et al. Mar 2008 B1
7346644 Langhammer et al. Mar 2008 B1
7350178 Crosland et al. Mar 2008 B1
7382156 Pani et al. Jun 2008 B2
6868476 Paul et al. Apr 2009 B2
7595659 Vorbach et al. Sep 2009 B2
7650448 Vorbach et al. Jan 2010 B2
7759968 Hussein et al. Jul 2010 B1
20010001860 Beiu May 2001 A1
20010003834 Shimonishi Jun 2001 A1
20010010074 Nishihara et al. Jul 2001 A1
20010018733 Fujii et al. Aug 2001 A1
20010032305 Barry Oct 2001 A1
20020010853 Trimberger et al. Jan 2002 A1
20020013861 Adiletta et al. Jan 2002 A1
20020038414 Taylor Mar 2002 A1
20020045952 Blemel Apr 2002 A1
20020083308 Pereira et al. Jun 2002 A1
20020099759 Gootherts Jul 2002 A1
20020103839 Ozawa Aug 2002 A1
20020124238 Metzgen Sep 2002 A1
20020138716 Master et al. Sep 2002 A1
20020143505 Drusinsky Oct 2002 A1
20020144229 Hanrahan Oct 2002 A1
20020152060 Tseng Oct 2002 A1
20020156962 Chopra et al. Oct 2002 A1
20020165886 Lam Nov 2002 A1
20030001615 Sueyoshi et al. Jan 2003 A1
20030014743 Cooke et al. Jan 2003 A1
20030046607 May et al. Mar 2003 A1
20030052711 Taylor Mar 2003 A1
20030055861 Lai et al. Mar 2003 A1
20030056085 Vorbach et al. Mar 2003 A1
20030056091 Greenberg Mar 2003 A1
20030056202 May et al. Mar 2003 A1
20030061542 Bates et al. Mar 2003 A1
20030062922 Douglass et al. Apr 2003 A1
20030086300 Noyes et al. May 2003 A1
20030093662 Vorbach et al. May 2003 A1
20030097513 Vorbach et al. May 2003 A1
20030123579 Safavi et al. Jul 2003 A1
20030135686 Vorbach et al. Jul 2003 A1
20030192032 Andrade et al. Oct 2003 A1
20040015899 May et al. Jan 2004 A1
20040025005 Vorbach et al. Feb 2004 A1
20040039880 Pentkovski et al. Feb 2004 A1
20040078548 Claydon et al. Apr 2004 A1
20040168099 Vorbach et al. Aug 2004 A1
20040199688 Vorbach et al. Oct 2004 A1
20050066213 Vorbach et al. Mar 2005 A1
20050144210 Simkins et al. Jun 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20060230094 Simkins et al. Oct 2006 A1
20060230096 Thendean et al. Oct 2006 A1
20070083730 Vorbach et al. Apr 2007 A1
20090085603 Paul et al. Apr 2009 A1
Foreign Referenced Citations (129)
Number Date Country
42 21 278 Jan 1994 DE
44 16 881 Nov 1994 DE
38 55 673 Nov 1996 DE
196 51 075 Jun 1998 DE
196 54 593 Jul 1998 DE
196 54 595 Jul 1998 DE
196 54 846 Jul 1998 DE
197 04 044 Aug 1998 DE
197 04 728 Aug 1998 DE
197 04 742 Sep 1998 DE
198 22 776 Mar 1999 DE
198 07 872 Aug 1999 DE
198 61 088 Feb 2000 DE
199 26 538 Dec 2000 DE
100 28 397 Dec 2001 DE
100 36 627 Feb 2002 DE
101 29 237 Apr 2002 DE
102 04 044 Aug 2003 DE
0 208 457 Jan 1987 EP
0 221 360 May 1987 EP
0 398 552 Nov 1990 EP
0 428 327 May 1991 EP
0 463 721 Jan 1992 EP
0 477 809 Apr 1992 EP
0 485 690 May 1992 EP
0 497 029 Aug 1992 EP
0 539 595 May 1993 EP
0 638 867 Aug 1994 EP
0 628 917 Dec 1994 EP
0 678 985 Oct 1995 EP
0 686 915 Dec 1995 EP
0 696 001 Feb 1996 EP
0 707 269 Apr 1996 EP
0 726 532 Aug 1996 EP
0 735 685 Oct 1996 EP
0 746 106 Dec 1996 EP
0 748 051 Dec 1996 EP
0 926 594 Jun 1999 EP
1 061 439 Dec 2000 EP
1 115 204 Jul 2001 EP
1 146 432 Oct 2001 EP
1 669 885 Jun 2006 EP
2 752 466 Feb 1998 FR
2 304 438 Mar 1997 GB
58-058672 Apr 1983 JP
10-44571 Feb 1989 JP
1-229378 Sep 1989 JP
2-130023 May 1990 JP
2-226423 Sep 1990 JP
5-265705 Oct 1993 JP
5-276007 Oct 1993 JP
5-509184 Dec 1993 JP
6-266605 Sep 1994 JP
7-086921 Mar 1995 JP
7-154242 Jun 1995 JP
8-148989 Jun 1995 JP
7-182160 Jul 1995 JP
7482167 Jul 1995 JP
8-044581 Feb 1996 JP
8-069447 Mar 1996 JP
8-101761 Apr 1996 JP
8-102492 Apr 1996 JP
8-106443 Apr 1996 JP
8-221164 Aug 1996 JP
8-250685 Sep 1996 JP
9-027745 Jan 1997 JP
9-237284 Sep 1997 JP
9-294069 Nov 1997 JP
046187 Feb 1999 JP
1 1-1 8471 8 Jul 1999 JP
11-184718 Jul 1999 JP
1 1-3 07725 Nov 1999 JP
11-307725 Nov 1999 JP
2000-076066 Mar 2000 JP
2000-181566 Jun 2000 JP
2000-201066 Jul 2000 JP
2000-311156 Nov 2000 JP
2001-500682 Jan 2001 JP
2001-167066 Jun 2001 JP
2001-510650 Jul 2001 JP
2001-236221 Aug 2001 JP
2002-0033457 Jan 2002 JP
3-961028 Aug 2007 JP
961028 Aug 2007 JP
WO9004835 May 1990 WO
WO9011648 Oct 1990 WO
WO9201987 Feb 1992 WO
WO9311503 Jun 1993 WO
WO9406077 Mar 1994 WO
WO9408399 Apr 1994 WO
WO9526001 Sep 1995 WO
WO9810517 Mar 1998 WO
WO9826356 Jun 1998 WO
WO9828697 Jul 1998 WO
WO9829952 Jul 1998 WO
WO9831102 Jul 1998 WO
WO9835294 Aug 1998 WO
WO9835299 Aug 1998 WO
WO9900731 Jan 1999 WO
WO9900739 Jan 1999 WO
WO9912111 Mar 1999 WO
WO9932975 Jul 1999 WO
WO9940522 Aug 1999 WO
WO9944120 Sep 1999 WO
WO9944147 Sep 1999 WO
WO0017771 Mar 2000 WO
WO0038087 Jun 2000 WO
WO0045282 Aug 2000 WO
WO0049496 Aug 2000 WO
WO0077652 Dec 2000 WO
WO0177652 Dec 2000 WO
WO0155917 Aug 2001 WO
WO0213000 Feb 2002 WO
WO0229600 Apr 2002 WO
WO0250665 Jun 2002 WO
WO02050665 Jun 2002 WO
WO02071196 Sep 2002 WO
WO02071248 Sep 2002 WO
WO02071249 Sep 2002 WO
WO02103532 Dec 2002 WO
WO03017095 Feb 2003 WO
WO03023616 Mar 2003 WO
WO03025781 Mar 2003 WO
WO03036507 May 2003 WO
WO03091875 Nov 2003 WO
WO204053718 Jun 2004 WO
WO2004053718 Jun 2004 WO
WO2004114128 Dec 2004 WO
WO2005045692 May 2005 WO
Related Publications (1)
Number Date Country
20100082863 A1 Apr 2010 US
Continuations (7)
Number Date Country
Parent 12008543 Jan 2008 US
Child 12630139 US
Parent 11820943 Jun 2007 US
Child 12008543 US
Parent 10792168 Mar 2004 US
Child 11820943 US
Parent 10304252 Nov 2002 US
Child 10792168 US
Parent 09915213 Jul 2001 US
Child 10304252 US
Parent 09335974 Jun 1999 US
Child 09915213 US
Parent PCT/DE97/03013 Dec 1997 US
Child 09335974 US
Continuation in Parts (1)
Number Date Country
Parent 08947254 Oct 1997 US
Child PCT/DE97/03013 US