Ion exchangeable glass with high crack initiation threshold

Abstract
Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
Description
BACKGROUND

The disclosure relates to damage resistant glasses. More particularly, the disclosure relates to damage resistant glasses that have optionally been strengthened by ion exchange. Even more particularly, the disclosure relates to damage resistant, phosphate containing glasses that have optionally been strengthened by ion exchange.


SUMMARY

Alkali aluminosilicate glasses which, when strengthened, are resistant to damage due to sharp impact and capable of fast ion exchange, are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.


Accordingly, one aspect comprises an alkali aluminosilicate glass comprising at least about 4% P2O5, wherein the alkali aluminosilicate glass is ion exchanged to a depth of layer of at least about 10 m, and wherein:

    • i. 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4; or ii. 1.3<[(P2O5+R2O)/M2O3]≤2.3;


      where M2O3=Al2O3+B2O3, RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass, and R2O is the sum of monovalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the glass satisfies 1.3<[(P2O5+R2O)/M2O3]≤2.3. In some embodiments, the glass satisfies 1.5<[(P2O5+R2O)/M2O3]≤2.0. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % B2O3. In some embodiments, the the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C. In some embodiments, the glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 300 MPa. In some embodiments, the glass has a Vickers indentation crack initiation load of at least about 7 kgf. In some embodiments, the glass has a Vickers indentation crack initiation load of at least about 12 kgf.


Another aspect comprises an alkali aluminosilicate glass comprising from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In some embodiments, the alkali aluminosilicate glass comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % B2O3. In some embodiments, the the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C. In some embodiments, the glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 300 MPa. In some embodiments, the glass has a Vickers indentation crack initiation load of at least about 7 kgf. In some embodiments, the glass has a Vickers indentation crack initiation load of at least about 12 kgf.


Another aspect comprises a method of strengthening an alkali aluminosilicate glass, the method comprising providing the alkali aluminosilicate glass comprising at least about 4% P2O5, wherein:

    • i. 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4; or
    • ii. 1.3<[(P2O5+R2O)/M2O3]≤2.3;


      where M2O3=Al2O3+B2O3, RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass, and R2O is the sum of divalent cation oxides present in the alkali aluminosilicate glass, and immersing the alkali aluminosilicate glass in an ion exchange bath for a time period of up to about 24 hours to form a compressive layer extending from a surface of the alkali aluminosilicate glass to a depth of layer of at least 10 μm. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the glass satisfies 1.3<[(P2O5+R2O)/M2O3]≤2.3. In some embodiments, the glass satisfies 1.5<[(P2O5+R2O)/M2O3]≤2.0. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the compressive layer is under a compressive stress of at least about 300 MPa. In some embodiments, the ion exchanged glass has a Vickers indentation crack initiation load of at least about 7 kgf. In some embodiments, the ion exchanged glass has a Vickers indentation crack initiation load of at least about 12 kgf.


Another aspect comprises an alkali aluminosilicate glass comprising at least about 4 mol % P2O5, wherein [M2O3 (mol %)/RxO(mol %)]<1.4, where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, [M2O3 (mol %)/RxO(mol %)]<1.2. In some embodiments, [M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO.


In some embodiments, the alkali aluminosilicate glass comprises from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In other embodiments, the alkali aluminosilicate glass comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O.


In some embodiments, the composition further comprises less than 1 mol % K2O. In some embodiments, the composition further comprises about 0 mol % K2O. In some embodiments, the composition further comprises less than 1 mol % B2O3. In some embodiments, the composition further comprises about 0 mol % B2O3.


Embodiments may be ion exchanged. In some embodiments, the glass is ion exchanged to a depth of layer of at least about 10 μm. In some embodiments, the glass is ion exchanged to a depth of layer of at least about 20 m. In other embodiments, the glass is ion exchanged to a depth of layer of at least about 40 m. In some embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 300 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 500 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 750 MPa. In some embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 7 kgf. In still other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 15 kgf. In other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 20 kgf. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


Another aspect is to provide an alkali aluminosilicate glass comprising at least about 4 mol % P2O5. The alkali aluminosilicate glass is ion exchanged to a depth of layer of at least about 10 m, wherein 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4, where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, 0.6<[M2O3 (mol %)/RxO(mol %)]<1.2. In some embodiments, 0.6<[M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, 0.8<[M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO.


In some embodiments, the alkali aluminosilicate glass comprises from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In other embodiments, the alkali aluminosilicate glass comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O.


In some embodiments, the composition further comprises less than 1 mol % K2O. In some embodiments, the composition further comprises about 0 mol % K2O. In some embodiments, the composition further comprises less than 1 mol % B2O3. In some embodiments, the composition further comprises about 0 mol % B2O3.


Embodiments of the aspect may be ion exchanged. In some embodiments, the glass is ion exchanged to a depth of layer of at least about 10 μm. In some embodiments, the glass is ion exchanged to a depth of layer of at least about 20 μm. In other embodiments, the glass is ion exchanged to a depth of layer of at least about 40 μm. In some embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 300 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 500 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 750 MPa. In some embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 7 kgf. In still other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 15 kgf. In other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 20 kgf. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


Another aspect of the disclosure is to provide a method of strengthening an alkali aluminosilicate glass. The method comprises: providing the alkali aluminosilicate glass, the alkali aluminosilicate glass comprising at least about 4 mol % P2O5, wherein:

    • i. 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4; or
    • ii. 1.3<[(P2O5+R2O)/M2O3]≤2.3;


      where M2O3=Al2O3+B2O3, RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass, and R2O is the sum of divalent cation oxides present in the alkali aluminosilicate glass, and immersing the alkali aluminosilicate glass in an ion exchange bath for a time period of up to about 24 hours to form a compressive layer extending from a surface of the alkali aluminosilicate glass to a depth of layer of at least 10 μm. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, the glass satisfies 0.6<[M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the glass satisfies 1.3<[(P2O5+R2O)/M2O3]≤2.3. In some embodiments, the glass satisfies 1.5<[(P2O5+R2O)/M2O3]≤2.0. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the compressive layer is under a compressive stress of at least about 300 MPa. In some embodiments, the ion exchanged glass has a Vickers indentation crack initiation load of at least about 7 kgf. In some embodiments, the ion exchanged glass has a Vickers indentation crack initiation load of at least about 12 kgf. In some embodiments, the compressive layer extends from a surface to a depth of layer of at least 70 m.


In some embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 300 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 500 MPa. In other embodiments, the alkali aluminosilicate glass has a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least about 750 MPa. In some embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 7 kgf. In still other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 15 kgf. In other embodiments, the ion exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least about 20 kgf. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


In some embodiments, the alkali aluminosilicate glass used in the method comprises monovalent and divalent cation oxides selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO.


In some embodiments, the alkali aluminosilicate glass used in the method comprises from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In other embodiments, the alkali aluminosilicate glass used in the method comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O.


In some embodiments, the composition used in the method further comprises less than 1 mol % K2O. In some embodiments, the composition used in the method further comprises about 0 mol % K2O. In some embodiments, the composition used in the method further comprises less than 1 mol % B2O3. In some embodiments, the composition used in the method further comprises about 0 mol % B2O3.


These and other aspects, advantages, and salient features will become apparent from the following detailed description, the accompanying drawings, and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of a glass sheet strengthened by ion exchange; and



FIG. 2 is a plot of depth of layer as a function of compressive stress for 0.7 mm thick samples that were annealed at 700° C. and ion exchanged in a molten KNO3 salt bath at 410° C.





DETAILED DESCRIPTION

Disclosed are materials, compounds, compositions, and components that can be used for, can be used in conjunction with, can be used in preparation for, or are embodiments of the disclosed method and compositions. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein.


Thus, if a class of substituents A, B, and C are disclosed as well as a class of substituents D, E, and F, and an example of a combination embodiment, A-D is disclosed, then each is individually and collectively contemplated. Thus, in this example, each of the combinations A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are specifically contemplated and should be considered disclosed from disclosure of A, B, and/or C; D, E, and/or F; and the example combination A-D. Likewise, any subset or combination of these is also specifically contemplated and disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E are specifically contemplated and should be considered disclosed from disclosure of A, B, and/or C; D, E, and/or F; and the example combination A-D. This concept applies to all aspects of this disclosure including, but not limited to any components of the compositions and steps in methods of making and using the disclosed compositions. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods, and that each such combination is specifically contemplated and should be considered disclosed.


In addition, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other.


Moreover, where a range of numerical values is recited herein, comprising upper and lower values, unless otherwise stated in specific circumstances, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the disclosure be limited to the specific values recited when defining a range. Further, when an amount, concentration, or other value or parameter is given as a range, one or more preferred ranges or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether such pairs are separately disclosed. Finally, when the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.


As used herein, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, an amount, size, formulation, parameter or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such.


The term “or”, as used herein, is inclusive; more specifically, the phrase “A or B” means “A, B, or both A and B”. Exclusive “or” is designated herein by terms such as “either A or B” and “one of A or B”, for example.


The indefinite articles “a” and “an” are employed to describe elements and components of embodiments. The use of these articles means that one or at least one of these elements or components is present. Although these articles are conventionally employed to signify that the modified noun is a singular noun, as used herein the articles “a” and “an” also include the plural, unless otherwise stated in specific instances. Similarly, the definite article “the”, as used herein, also signifies that the modified noun may be singular or plural, again unless otherwise stated in specific instances.


For the purposes of describing the embodiments, it is noted that reference herein to a variable being a “function” of a parameter or another variable is not intended to denote that the variable is exclusively a function of the listed parameter or variable. Rather, reference herein to a variable that is a “function” of a listed parameter is intended to be open ended such that the variable may be a function of a single parameter or a plurality of parameters. It is also understood that, unless otherwise specified, terms such as “top,” “bottom,” “outward,” “inward,” and the like are words of convenience and are not to be construed as limiting terms.


It is noted that terms like “preferably,” “commonly,” and “typically,” when utilized herein, are not utilized to limit the scope or to imply that certain features are critical, essential, or even important to the structure or function of the embodiments described. Rather, these terms are merely intended to identify particular aspects of an embodiment or to emphasize alternative or additional features that may or may not be utilized in a particular embodiment.


For the purposes of describing and defining embodiments it is noted that the terms “substantially” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The terms “substantially” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


It is noted that one or more of the claims may utilize the term “wherein” as a transitional phrase. For the purposes of defining embodiments, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”


As a result of the raw materials and/or equipment used to produce the glass composition, certain impurities or components that are not intentionally added, can be present in the final glass composition. Such materials are present in the glass composition in minor amounts and are referred to herein as “tramp materials.”


As used herein, a glass composition having 0 wt % or mol % of a compound is defined as meaning that the compound, molecule, or element was not purposefully added to the composition, but the composition may still comprise the compound, typically in tramp or trace amounts. Similarly, “sodium-free,” “alkali-free,” “potassium-free” or the like are defined to mean that the compound, molecule, or element was not purposefully added to the composition, but the composition may still comprise sodium, alkali, or potassium, but in approximately tramp or trace amounts. Unless otherwise specified, the concentrations of all constituents recited herein are expressed in terms of mole percent (mol %).


Vickers indentation cracking threshold measurements described herein are performed by applying and then removing an indentation load to the glass surface at a rate of 0.2 mm/min. The maximum indentation load is held for 10 seconds. The indentation cracking threshold is defined at the indentation load at which 50% of 10 indents exhibit any number of radial/median cracks emanating from the corners of the indent impression. The maximum load is increased until the threshold is met for a given glass composition. All indentation measurements are performed at room temperature in 50% relative humidity.


Referring to the drawings in general and to FIG. 1 in particular, it will be understood that the illustrations are for the purpose of describing particular embodiments and are not intended to limit the disclosure or appended claims thereto. The drawings are not necessarily to scale, and certain features and certain views of the drawings may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.


Chemically strengthened alkali aluminosilicate glasses having high damage resistance (i.e., having Vickers cracking thresholds of greater than 15 kilograms force (kgf), and, in some embodiments, greater than 20 kgf, typically have compositions that satisfy the rule [(Al2O3 (mol %)+B2O3 (mol %))/(Σmodifier oxides (mol %))]>1, where the modifier oxides include alkali and alkaline earth oxides. Such glasses have been previously described in U.S. patent application Ser. No. 12/858,490, filed Aug. 18, 2010, by Kristen L. Barefoot et al., entitled “Crack and Scratch Resistant Glass and Enclosures Made Therefrom.”


The enhanced damage resistance of P2O5-containing alkali aluminosilicate glasses has been previously described in U.S. Provisional Patent Application No. 61/417,941, filed on Nov. 30, 2010, by Dana Craig Bookbinder et al., entitled “Ion Exchangeable Glass with Deep Compressive Layer and High Modulus.” The glasses described therein contain phosphate batched with Al2O3 and B2O3 to form AlPO4 and BPO4, respectively, and follow the composition rule

0.75≤[(P2O5(mol %)+R2O(mol %))/M2O3(mol %)]≤1.3,

where M2O3=Al2O3+B2O3.


Described herein are embodiments comprising P2O5-containing alkali aluminosilicate glasses and articles made therefrom which, when chemically strengthened by ion exchange, achieve Vickers cracking thresholds of at least about 7 kgf, 8, kgf, 9, kgf, 10, kgf, 11 kgf, 12 kgf, 13 kgf, 14 kgf, 15 kgf 16 kgf, 17 kgf, 18 kgf, 19 kgf, and, in some embodiments, at least about 20 kgf. The damage resistance of these glasses and glass articles is enhanced by the addition of at least about 4 mol % P2O5. In some embodiments, the damage resistance is enhanced by the addition of at least about 5 mol % P2O5. In some embodiments, the P2O5 concentration is in a range from about 4 mol % up to about 10 mol % and, in other embodiments in a range from about 4 mol % up to about 15 mol %.


Embodiments described herein generally fall outside the glasses and glass articles of the composition space described in U.S. Provisional Patent Application No. 61/417,941. In addition, the glasses described in the present disclosure nominally comprise primarily tetrahedrally coordinated phosphate (PO43−) groups that contain one double-bonded oxygen per tetrahedral phosphorus structural unit.


In some embodiments, ratios of M2O3 to ΣRxO provide glasses that have advantageous melting temperatures, viscosities, and/or liquidus temperatures. Some embodiments may be described by the ratio (M2O3 (mol %)/ΣRxO(mol %))<1.4, where M2O3=Al2O3+B2O3, and wherein ΣRxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the glasses and glass articles described herein comprise greater than 4 mol % P2O5, wherein the ratio (M2O3 (mol %)/ΣRxO(mol %)) is less than 1.4, where M2O3=Al2O3+B2O3, and wherein ΣRxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the ratio of (M2O3 (mol %)/ΣRxO(mol %)) is less than 1.0. In some embodiments, the ratio of (M2O3 (mol %)/ΣRxO(mol %)) is less than 1.4, 1.35, 1.3, 1.25, 1.2, 1.15, 1.1, 1.05, 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, or 0.7. In some embodiments, 0.6<(M2O3 (mol %)/RxO(mol %))<1.4. In some embodiments, 0.6<(M2O3 (mol %)/RxO(mol %))<1.2. In some embodiments, 0.6<(M2O3 (mol %)/RxO(mol %))<1. In some embodiments, 0.8<(M2O3 (mol %)/RxO(mol %))<1.4. In some embodiments, 0.8<(M2O3 (mol %)/RxO(mol %))<1.2. In some embodiments, 0.8<(M2O3 (mol %)/RxO(mol %))<1.0. In some embodiments, Y<(M2O3 (mol %)/RxO(mol %))<Z, wherein Y is about 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, or 1.1 and X is independently about 1.4, 1.35, 1.3, 1.25, 1.2, 1.15, 1.1, 1.05, 1.0, 0.95, 0.9, 0.85, 0.8, and wherein X>Y. Such monovalent and divalent oxides include, but are not limited to, alkali metal oxides (Li2O, Na2O, K2O, Rb2O, Cs2O), alkaline earth oxides (MgO, CaO, SrO, BaO), and transition metal oxides such as, but not limited to, ZnO.


In some embodiments, the glasses described herein satisfy the inequality

[(Al2O3(mol %)+B2O3(mol %))/(Σmodifier oxides(mol %))]<1.0.


In some embodiments, the glasses can have sufficient P2O5 to allow for a glass structure wherein P2O5 is present in the structure rather, or in addition to, MPO4. In some embodiments, such a structure may be described by the ratio [(P2O5 (mol %)+R2O (mol %))/M2O3 (mol %)]>1.24, where M2O3=Al2O3+B2O3, P2O5 is 4 mol % or greater, and wherein R2O is the sum divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the glasses described herein comprise greater than 4 mol % P2O5, wherein the ratio of [(P2O5 (mol %)+R2O (mol %))/M2O3 (mol %)] is greater than 1.24, where M2O3=Al2O3+B2O3, and wherein R2O is the sum divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the ratio of [(P2O5 (mol %)+R2O (mol %))/M2O3 (mol %)] is greater than 1.3. In some embodiments, the ratio is 1.24≤[(P2O5 (mol %)+R2O (mol %))/M2O3 (mol %)]≤2.8. In some embodiments, the glasses and glass articles described herein comprise greater than 4 mol % P2O5, and are described by the ratio

S≤[(P2O5(mol %)+R2O (mol %))/M2O3 (mol %)]≤V

wherein S is independently about 1.5, 1.45, 1.4, 1.35, 1.3, 1.25, 1.24, 1.2, or 1.15, and V is independently about 2.0, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, or 2.8.


The alkli aluminosilicate glasses and articles described herein comprise a number of chemical components. SiO2, an oxide involved in the formation of glass, functions to stabilize the networking structure of glass. In some embodiments, the glass composition can comprise from about 40 to about 70 mol % SiO2. In some embodiments, the glass composition can comprise from about 50 to about 70 mol % SiO2. In some embodiments, the glass composition can comprise from about 55 to about 65 mol % SiO2. In some embodiments, the glass composition can comprise from about 40 to about 70 mol %, about 40 to about 65 mol %, about 40 to about 60 mol %, about 40 to about 55 mol %, about 40 to 50 mol %, about 40 to 45 mol %, 50 to about 70 mol %, about 50 to about 65 mol %, about 50 to about 60 mol %, about 50 to about 55 mol %, about 55 to about 70 mol %, about 60 to about 70 mol %, about 65 to about 70 mol %, about 55 to about 65 mol %, or about 55 to about 60 mol % SiO2. In some embodiments, the glass composition comprises about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 mol % SiO2.


Al2O3 may provide, among other benefits, for a) maintaining the lowest possible liquidus temperature, b) lowering the expansion coefficient, or c) enhancing the strain point. In some embodiments, the glass composition can comprise from about 11 to about 25 mol % Al2O3. In some embodiments, the glass composition can comprise from about 14 to about 20 mol % Al2O3. In some embodiments, the glass composition can comprise from about 11 to about 25 mol %, about 11 to about 20 mol %, about 11 to about 18 mol %, about 11 to about 15 mol %, about 12 to about 25 mol %, about 12 to about 20 mol %, about 12 to about 18 mol %, about 12 to about 15 mol %, about 14 to about 25 mol %, about 14 to about 20 mol %, about 14 to about 18 mol %, about 14 to about 15 mol %, about 18 to about 25 mol %, about 18 to about 20 mol %, or about 20 to about 25 mol % Al2O3. In some embodiments, the glass composition can comprise about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mol % Al2O3.


The presence of B2O3 in embodiments can improve damage resistance, but may also be detrimental to compressive stress and diffusivity. The glasses described herein generally do not contain—or are free of—B2O3. In some embodiments, about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, or 4 mol % B2O3 may be present. In some embodiments, less than 4, 3, 2, or 1 mol % B2O3 may be present. In some embodiments, tramp B2O3 may be present. In some embodiments, the glass composition can comprise about 0 mol % B2O3. In some embodiments, the amount of B2O3 is 0.5 mol % or less, 0.25 mol % or less, 0.1 mol % or less, about 0.05 mol % or less, 0.001 mol % or less, 0.0005 mol % or less, or 0.0001 mol % or less. The glass compositions, according to some embodiments, are free of intentionally added B2O3.


It has been discovered that addition of phosphorous to the glass as P2O5 improves damage resistance and does not impede ion exchange. In some embodiments, the addition of phosphorous to the glass creates a structure in which silica (SiO2 in the glass) is replaced by aluminum phosphate (AlPO4), which consists of tetrahedrally coordinated aluminum and phosphorus and/or boron phosphate (BPO4), which consists of tetrahedrally coordinated boron and phosphorus. The glasses described herein generally contain greater than 4 mol % P2O5. In some embodiments, the glass can comprise from about 4 to about 15 mol % P2O5. In some embodiments, the glass can comprise from about 4 to about 12 mol % P2O5. In some embodiments, the glass can comprise from about 4 to about 10 mol % P2O5. In some embodiments, the glass can comprise from about 6 to about 10 mol % P2O5. In some embodiments, the glass composition can comprise from about 4 to about 15 mol %, about 6 to about 15 mol %, about 8 to about 15 mol %, about 10 to about 15 mol %, about 12 to about 15 mol %, about 4 to about 12 mol %, about 4 to about 10 mol %, about 4 to about 8 mol %, about 4 to about 6 mol %, about 6 to about 12 mol %, about 6 to about 10 mol %, about 6 to about 8 mol %, about 8 to about 12 mol %, about 8 to about 10 mol %, about 10 to about 12 mol %. In some embodiments, the glass composition can comprise about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mol % P2O5.


Na2O may be used for ion exchange in embodied glasses. In some embodiments, the glass can comprise from about 13 to about 25 mol % Na2O. In other embodiments, the glass can comprise about 13 to about 20 mol % Na2O. In some embodiments, the glass composition can comprise from about 13 to about 25 mol %, about 13 to about 20 mol %, about 13 to about 18 mol %, about 13 to about 15 mol %, about 15 to about 25 mol %, about 15 to about 20 mol %, about 15 to about 18 mol %, about 18 to about 25 mol %, about 18 to about 20 mol %, or about 20 to about 25 mol %. In some embodiments, the glass can comprise about 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mol % Na2O.


RxO generally describes monovalent and divalent cation oxides present in the alkali aluminosilicate glass. The presence RxO may provide advantages for ion exchange of the glass. Such monovalent and divalent oxides include, but are not limited to, alkali metal oxides (Li2O, Na2O, K2O, Rb2O, Cs2O), alkaline earth oxides (MgO, CaO, SrO, BaO), and transition metal oxides such as, but not limited to, ZnO. In some embodiments, the amount of RxO in the composition is described by the equation (M2O3 (mol %)/ΣRxO(mol %))<1.4. In some embodiments, the amount of RxO in the composition is described by the equation (M2O3 (mol %)/ΣRxO(mol %))<1.0. In some embodiments, the amount of RxO in the composition is described by the equation 0.6<(M2O3 (mol %)/ΣRxO(mol %))<1.4. In some embodiments, the amount of RxO in the composition is described by the equation 0.6<(M2O3 (mol %)/ΣRxO(mol %))<1.0. In some embodiments, the glass composition can comprise from about 7 to about 30 mol % Al2O3. In some embodiments, the glass composition can comprise from about 14 to about 25 mol % Al2O3. In some embodiments, the glass composition can comprise from about 7 to about 30 mol %, about 7 to about 25 mol %, about 7 to about 22 mol %, about 7 to about 20 mol %, about 7 to about 18 mol %, about 7 to about 15 mol %, about 7 to about 10 mol %, about 10 to about 30 mol %, about 10 to about 25 mol %, about 10 to about 22 mol %, about 10 to about 18 mol %, about 10 to about 15 mol %, about 15 to about 30 mol %, about 15 to about 25 mol %, about 15 to about 22 mol %, about 15 to about 18 mol %, about 18 to about 30 mol %, about 18 to about 25 mol %, about 18 to about 22 mol %, about 18 to about 20 mol %, about 20 to about 30 mol %, about 20 to about 25 mol %, about 20 to about 22 mol %, about 22 to about 30 mol %, about 22 to about 25 mol %, or about 25 to about 30 mol %. In some embodiments, the glass composition can comprise about 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mol % RxO.


M2O3 describes the amount of Al2O3 and B2O3 in the composition. In some embodiments, the glass composition can comprise from about 11 to about 30 mol % M2O3. In some embodiments, the glass composition can comprise from about 14 to about 20 mol % M2O3. In some embodiments, the glass composition can comprise from about 11 to about 30 mol %, about 11 to about 25 mol %, about 11 to about 20 mol %, about 11 to about 18 mol %, about 11 to about 15 mol %, about 12 to about 30 mol %, about 12 to about 25 mol %, about 12 to about 20 mol %, about 12 to about 18 mol %, about 12 to about 15 mol %, about 14 to about 30 mol %, about 14 to about 25 mol %, about 14 to about 20 mol %, about 14 to about 18 mol %, about 14 to about 15 mol %, about 18 to about 25 mol %, about 18 to about 20 mol %, or about 20 to about 25 mol % M2O3. In some embodiments, the glass composition can comprise about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mol % M2O3.


K2O in some embodiments can be used for ion exchange, but can be detrimental to compressive stress. In some embodiments, the glass compositions are free of K2O. The glass compositions are substantially K2O-free, for example, when the content of K2O is 0.5 mol percent or less, 0.25 mol % or less, 0.1 mol % or less, about 0.05 mol % or less, 0.001 mol % or less, 0.0005 mol % or less, or 0.0001 mol % or less. The glass sheets, according to some embodiments, are free of intentionally added sodium. In some embodiments, the glass can comprise from 0 to about 1 mol % K2O. In other embodiments, the glass can comprise greater than 0 to about 1 mol % K2O. In some embodiments, the glass composition can comprise from 0 to about 2 mol %, 0 to about 1.5 mol %, 0 to about 1 mol %, 0 to about 0.9 mol %, 0 to about 0.8 mol % 0 to about 0.7 mol %, 0 to about 0.6 mol %, 0 to about 0.5 mol %, 0 to about 0.4 mol %, 0 to about 0.3 mol %, 0 to about 0.2 mol %, or 0 to about 0.1 mol %. In some embodiments, the glass can comprise about 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1 mol % K2O.


Additional components can be incorporated into the glass compositions to provide additional benefits. For example, additional components can be added as fining agents (e.g., to facilitate removal of gaseous inclusions from melted batch materials used to produce the glass) and/or for other purposes. In some embodiments, the glass may comprise one or more compounds useful as ultraviolet radiation absorbers. In some embodiments, the glass can comprise 3 mol % or less TiO2, MnO, ZnO, Nb2O5, MoO3, Ta2O5, WO3, ZrO2, Y2O3, La2O3, HfO2, CdO, SnO2, Fe2O3, CeO2, As2O3, Sb2O3, Cl, Br, or combinations thereof. In some embodiments, the glass can comprise from 0 to about 3 mol %, 0 to about 2 mol %, 0 to about 1 mol %, 0 to 0.5 mol %, 0 to 0.1 mol %, 0 to 0.05 mol %, or 0 to 0.01 mol % TiO2, MnO, ZnO, Nb2O5, MoO3, Ta2O5, WO3, ZrO2, Y2O3, La2O3, HfO2, CdO, SnO2, Fe2O3, CeO2, As2O3, Sb2O3, Cl, Br, or combinations thereof. In some embodiments, the glass can comprise from 0 to about 3 mol %, 0 to about 2 mol %, 0 to about 1 mol %, 0 to about 0.5 mol %, 0 to about 0.1 mol %, 0 to about 0.05 mol %, or 0 to about 0.01 mol % TiO2, CeO2, or Fe2O3, or combinations thereof.


The glass composition, according to some embodiments, (e.g., any of the glasses discussed above) can include F, Cl, or Br, for example, as in the case where the glasses comprise Cl and/or Br as fining agents.


The glass composition, according to some embodiments, can comprise BaO. In certain embodiments, the glasses can comprise less than about 5, less than about 4, less than about 3, less than about 2, less than about 1, less than 0.5, or less than 0.1 mol % of BaO.


In some embodiments, the glass can be substantially free of Sb2O3, As2O3, or combinations thereof. For example, the glass can comprise 0.05 mol % or less of Sb2O3 or As2O3 or a combination thereof, the glass may comprise zero mol % of Sb2O3 or As2O3 or a combination thereof, or the glass may be, for example, free of any intentionally added Sb2O3, As2O3, or combinations thereof.


The glasses, according to some embodiments, can further comprise contaminants typically found in commercially-prepared glass. In addition, or alternatively, a variety of other oxides (e.g., TiO2, MnO, ZnO, Nb2O5, MoO3, Ta2O5, WO3, ZrO2, Y2O3, La2O3, P2O5, and the like) may be added, albeit with adjustments to other glass components, without compromising the melting or forming characteristics of the glass composition. In those cases where the glasses, according to some embodiments, further include such other oxide(s), each of such other oxides are typically present in an amount not exceeding about 3 mol %, about 2 mol %, or about 1 mol %, and their total combined concentration is typically less than or equal to about 5 mol %, about 4 mol %, about 3 mol %, about 2 mol %, or about 1 mol %. In some circumstances, higher amounts can be used so long as the amounts used do not place the composition outside of the ranges described above. The glasses, according to some embodiments, can also include various contaminants associated with batch materials and/or introduced into the glass by the melting, fining, and/or forming equipment used to produce the glass (e.g., ZrO2).


In some embodiments, the alkali aluminosilicate glasses and articles described herein comprise from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 11 mol % to about 25 mol % Na2O.


In some embodiments, the glass compositions have high damage resistance. In some embodiments, the glass compositions have Vickers cracking thresholds of greater than 7 kilograms force (kgf). In some embodiments, the glass compositions have Vickers cracking thresholds of greater than 12 kgf. In some embodiments, the glass compositions have Vickers cracking thresholds of greater than 15 kgf. In some embodiments, the glass compositions have Vickers cracking thresholds of greater than 20 kgf. In some embodiments, the glass compositions have Vickers cracking thresholds of greater than 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 kgf.


Non-limiting examples of embodied glasses (wherein the glass thickness is 0.7 mm) are listed in Table 1.









TABLE 1







Glass compositions and properties.



















Sample
a
b
c
d
e
f
g
h
i
j
k
l






















SiO2 (mol %)
61
59
57
62
60
58
60
60
60
60
60
60


B2O3 (mol %)
0
0
0
0
0
0
0
0
0
0
0
0


Al2O3 (mol %)
15.5
16.5
17.5
15.5
16.5
17.5
16
16
16
16
16
16


P2O5 (mol %)
7
7
7
6
6
6
5
5
6
6
7
7


Na2O (mol %)
16.5
17.5
18.5
16.5
17.5
18.5
16
16
16
16
16
16


MgO (mol %)
0
0
0
0
0
0
3
0
2
0
1
0


ZnO (mol %)
0
0
0
0
0
0
0
3
0
2
0
1


Density (g/cm3)
2.388
2.401
2.412
2.393
2.406
2.416


Molar Volume
30.41
30.43
30.47
30.01
30.03
30.08


(cm3/mol)


Strain Point
615
620
625
633
638
640


(° C.)


Anneal Point
675
678
682
693
697
699


(° C.)


Softening
963
958
951
973
978
969


Point (° C.)


T200P (° C.)
1732
1708
1683
1752
1720
1698


T35000P (° C.)
1284
1274
1260
1304
1289
1275


T160000P (° C.)
1195
1186
1176
1215
1202
1191


Liquidus
775
740
730
770
790
770


Temperature (° C.)


0.7 mm thick


parts annealed


410° C., 8 hr
665
over
over
over
over
over


Compressive

limits
limits
limits
limits
limits


Stress (MPa)

of
of
of
of
of




FSM
FSM
FSM
FSM
FSM


410° C., 8 hr Depth
113
over
over
over
over
over


of Layer (μm)

limits
limits
limits
limits
limits




of
of
of
of
of




FSM
FSM
FSM
FSM
FSM


410° C., 1 hr
764
806
866
805
863
922


Compressive


Stress (MPa)


410° C., 1 hr Depth
40
38
38
39
37
36


of Layer (μm)


410° C., 4 hr
706
747
804
745
805
over


Compressive





limits


Stress (MPa)





of








FSM


410° C., 4 hr Depth
80
82
80
77
77
over


of Layer (microns)





limits








of








FSM


410° C., 4 hr Vickers
>25
>20
>20
>15
>25
>15


Crack Initiation


Load (kgf)


470° C., 6 min
736
780
837
778
836
894


Compressive


Stress (MPa)


470° C., 6 min Depth
23
23
23
23
23
23


of Layer (μm)


(Al2O3 + B2O3)/RxO
0.94
0.94
0.95
0.94
0.94
0.95
0.84
0.84
0.89
0.89
0.94
0.94


(P2O5 + RxO)/M2O3
1.52
1.48
1.46
1.45
1.42
1.40
1.5
1.5
1.5
1.5
1.54
1.5


K+/Na+ Ion-
5.78
5.65
5.50
5.43
5.16
4.69


Exchange


Interdiffusion


Coefficient at


410° C. in


annealed parts ×


10−10(cm2/s)









Non-limiting examples of embodied glasses (wherein the glass thickness is 1.0 mm) are listed in Table 2 (for ion-exchange data, if no SOC is provided, the default used was 3.0 using 1.0 mm thick ion-exchanged parts).









TABLE 2





Glass compositions and properties.






















Example Number
1
2
3
4
5
6
7





SiO2 in mol %
61.0
59.0
57.0
62.0
60.0
58.0
58.0


Al2O3 in mol %
15.5
16.5
17.5
15.5
16.5
17.5
17.4


P2O5 in mol %
7.0
7.0
7.0
6.0
6.0
6.0
6.1


Na2O in mol %
16.5
17.5
18.5
16.5
17.5
18.5
18.5


MgO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.94
0.94
0.95
0.94
0.94
0.95
0.95


(P2O5 + R2O)/(M2O3)
1.52
1.48
1.46
1.45
1.42
1.40
1.41


in mol %


(P2O5 + RxO)/(M2O3)
1.52
1.48
1.46
1.45
1.42
1.40
1.40


in mol %


SiO2 in wt %
50.5
48.5
46.6
51.9
49.9
48.0
48.0


Al2O3 in wt %
21.8
23.0
24.3
22.0
23.3
24.6
24.4


P2O5 in wt %
13.7
13.6
13.5
11.9
11.8
11.7
11.8


Na2O in wt %
14.1
14.8
15.6
14.2
15.0
15.8
15.8


MgO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
none
none
none
none
none
none
XRF


analysis


Density (g/cm3)
2.388
2.401
2.412
2.393
2.406
2.416
2.416


Molar Volume
30.41
30.43
30.47
30.01
30.03
30.08
30.08


(cm3/mol)


Strain Pt. (° C.)
615
620
625
633
638
640
640


Anneal Pt. (° C.)
675
678
682
693
697
699
699


Softening Pt. (° C.)
963
958
951
973
978
969
969


Temperature at 200 P
1732
1708
1683
1752
1720
1698
1698


Viscosity (° C.)


Temperature at 35 kP
1284
1274
1260
1304
1289
1275
1275


Viscosity (° C.)


Temperature at 160
1195
1186
1176
1215
1202
1191
1191


kP Viscosity (° C.)


Liquidus
775
740
730
770
790
770
890


Temperature (° C.)


Liquidus
2.91E+10 
8.74E+10 
4.40E+11 
1.67E+11 
2.46E+10 
2.04E+11 
7.09E+08 


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
675
678
682
693
697
699
795


temperature (° C.)


410° C. 1 hr
777
820
881
819
878
938
804


Compressive


Stress (MPa)


410° C. 1 hr Depth
40
38
38
39
37
36
43


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr


Compressive


Stress (MPa)


410° C. 2 hr Depth


of Layer (mm)


410° C. 2 hr Vickers


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr
718
760
818
758
819
over


Compressive


Stress (MPa)


410° C. 4 hr Depth
80
82
80
77
77
over


of Layer (mm)


410° C. 4 hr Vickers
>25
>20
>20
>15
>25
>15


Crack Initiation


Load (kgf)


410° C. 8 hr
678
over
over
over
over
over


Compressive


Stress (MPa)


410° C. 8 hr Depth
113
over
over
over
over
over


of Layer (mm)


D FSM DOL~
5.7E−10
5.1E−10
5.1E−10
5.4E−10
4.9E−10
4.6E−10
6.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~
5.7E−10
6.0E−10
5.7E−10
5.3E−10
5.3E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~
5.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
8
9
10
11
12
13
14





SiO2 in mol %
60.0
60.0
60.0
60.0
60.0
60.0
62.0


Al2O3 in mol %
16.0
16.0
16.0
16.0
16.0
16.0
15.0


P2O5 in mol %
5.0
5.0
6.0
6.0
7.0
7.0
5.0


Na2O in mol %
16.0
16.0
16.0
16.0
16.0
16.0
15.0


MgO in mol %
3.0
0.0
2.0
0.0
1.0
0.0
3.0


ZnO in mol %
0.0
3.0
0.0
2.0
0.0
1.0
0.0


SnO2 in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.84
0.84
0.89
0.89
0.94
0.94
0.83


(P2O5 + R2O)/(M2O3)
1.31
1.31
1.38
1.38
1.44
1.44
1.33


in mol %


(P2O5 + RxO)/(M2O3)
1.50
1.50
1.50
1.50
1.50
1.50
1.53


in mol %


SiO2 in wt %
51.1
50.2
50.3
49.8
49.6
49.4
53.1


Al2O3 in wt %
23.1
22.7
22.8
22.5
22.5
22.3
21.8


P2O5 in wt %
10.1
9.9
11.9
11.8
13.7
13.6
10.1


Na2O in wt %
14.0
13.8
13.8
13.7
13.7
13.6
13.3


MgO in wt %
1.7
0.0
1.1
0.0
0.6
0.0
1.7


ZnO in wt %
0.0
3.4
0.0
2.2
0.0
1.1
0.0


SnO2 in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
none
none
none
none
none
none
none


analysis


Density (g/cm3)
2.417
2.453
2.406
2.428
2.393
2.404
2.423


Molar Volume
29.21
29.28
29.76
29.83
30.35
30.38
28.95


(cm3/mol)


Strain Pt. (° C.)
643
621
623
619
611
621
680


Anneal Pt. (° C.)
696
681
684
681
675
683
730


Softening Pt. (° C.)
964
954.3
963.5
963.4
965
967.4
989.1


Temperature at 200 P
1668
1677
1695
1698
1714
1713
1676


Viscosity (° C.)


Temperature at 35 kP
1247
1252
1268
1265
1280
1277
1252


Viscosity (° C.)


Temperature at 160
1162
1166
1181
1178
1193
1190
1167


kP Viscosity (° C.)


Liquidus
960





1100


Temperature (° C.)


Liquidus
1.85E+07 





6.28E+05 


Viscosity (P)


Zircon Breakdown
1240





>1265


Temperature (° C.)


Zircon Breakdown
39255





<28281


Viscosity (P)


Stress Optical
3.015
3.132
3.055
3.122


2.999


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
798
754
767
745
778
778
824


temperature (° C.)


410° C. 1 hr
932
963
833
895
817
820
970


Compressive


Stress (MPa)


410° C. 1 hr Depth
32
28
33
32
39
39
33


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
901
959
813
874
797
796
959


Compressive


Stress (MPa)


410° C. 2 hr Depth
44
38
48
46
54
53
44


of Layer (mm)


410° C. 2 hr Vickers
>30
>20
>20
>20
>20
>20
>20


Crack Initiation


Load (kgf)


410° C. 3 hr
895
949
808
868
787
781


Compressive


Stress (MPa)


410° C. 3 hr Depth
54
46
57
55
65
65


of Layer (mm)


410° C. 4 hr
884
942
792
842
770
772


Compressive


Stress (MPa)


410° C. 4 hr Depth
63
54
64
63
76
76


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
3.6E−10
2.8E−10
3.9E−10
3.6E−10
5.4E−10
5.4E−10
3.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.4E−10
2.6E−10
4.1E−10
3.7E−10
5.2E−10
5.0E−10
3.4E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
3.4E−10
2.5E−10
3.8E−10
3.6E−10
5.0E−10
5.0E−10


1.4*2*(Dt)A0.5 at


410° C. 3 hr


D FSM DOL~
3.5E−10
2.6E−10
3.6E−10
3.5E−10
5.1E−10
5.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
15
16
17
18
19
20
21





SiO2 in mol %
61.0
63.1
61.2
61.3
60.8
60.9
60.3


Al2O3 in mol %
14.8
13.9
15.9
15.8
16.0
15.8
15.7


P2O5 in mol %
4.9
5.0
5.0
4.9
4.9
4.9
5.5


Na2O in mol %
15.3
13.9
15.8
16.0
16.1
15.8
16.0


MgO in mol %
3.8
4.1
2.0
2.0
2.0
2.5
2.5


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.0
0.0
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.1
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.77
0.77
0.90
0.88
0.88
0.86
0.85


(P2O5 + R2O)/(M2O3)
1.36
1.36
1.30
1.32
1.31
1.31
1.37


in mol %


(P2O5 + RxO)/(M2O3)
1.63
1.65
1.43
1.45
1.44
1.47
1.53


in mol %


SiO2 in wt %
52.5
54.6
52.0
52.1
51.7
51.9
51.0


Al2O3 in wt %
21.6
20.4
23.0
22.7
23.1
22.8
22.5


P2O5 in wt %
10.0
10.2
10.0
9.8
9.8
9.8
10.9


Na2O in wt %
13.6
12.4
13.8
14.0
14.1
13.9
13.9


MgO in wt %
2.2
2.4
1.1
1.1
1.1
1.4
1.4


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.0
0.0
0.1
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.411
2.404
2.413
2.415
2.417
2.418
2.416


Molar Volume
28.98
28.89
29.32
29.26
29.28
29.17
29.38


(cm3/mol)


Strain Pt. (° C.)
659
672
631
630
628
630
631


Anneal Pt. (° C.)
709
734
689
687
685
683
685


Softening Pt. (° C.)
980.3
999.4
977.9
973.6
969.2
968.2
960.6


Temperature at 200 P
1695
1711
1704
1699
1698
1691
1687


Viscosity (° C.)


Temperature at 35 kP
1260
1270
1285
1273
1274
1268
1263


Viscosity (° C.)


Temperature at 160
1173
1183
1197
1187
1188
1182
1177


kP Viscosity (° C.)


Liquidus


970


Temperature (° C.)


Liquidus


2.97E+07 


Viscosity (P)


Zircon Breakdown


>1260


Temperature (° C.)


Zircon Breakdown


<52623


Viscosity (P)


Stress Optical


3.095



3.014


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
797
831
787
784
781
775
782


temperature (° C.)


410° C. 1 hr
919
875

918
966
954


Compressive


Stress (MPa)


410° C. 1 hr Depth
36
32

37
35
35


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
917
863
879
906
926
942
912


Compressive


Stress (MPa)


410° C. 2 hr Depth
48
45
47
49
46
48
47


of Layer (mm)


410° C. 2 hr Vickers
>20
15-20
>20
15-20
15-20
15-20
15-20


Crack Initiation


Load (kgf)


410° C. 3 hr
881
855
856
906
924
910
878


Compressive


Stress (MPa)


410° C. 3 hr Depth
56
56
57
59
55
56
55


of Layer (mm)


410° C. 4 hr
874
854
858
869
898
896


Compressive


Stress (MPa)


410° C. 4 hr Depth
65
65
66
67
64
65


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
4.6E−10
3.6E−10

4.9E−10
4.3E−10
4.3E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
4.1E−10
3.6E−10
3.9E−10
4.3E−10
3.7E−10
4.1E−10
3.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
3.7E−10
3.7E−10
3.8E−10
4.1E−10
3.6E−10
3.7E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~
3.7E−10
3.7E−10

4.0E−10
3.6E−10
3.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr





Example Number
22
23
24
25
26
27
28





SiO2 in mol %
60.3
62.3
61.3
60.8
60.5
62.2
62.1


Al2O3 in mol %
15.9
14.7
15.7
16.0
15.9
14.6
14.6


P2O5 in mol %
5.5
4.9
5.0
5.0
5.2
5.0
5.0


Na2O in mol %
16.2
15.0
16.0
16.1
16.3
15.1
15.2


MgO in mol %
1.9
2.0
1.9
2.0
2.0
3.1
0.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
3.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
1.0
0.0
0.0
0.0
0.1
0.0


(M2O3)/RxO in mol %
0.88
0.82
0.87
0.88
0.87
0.80
0.80


(P2O5 + R2O)/(M2O3)
1.36
1.36
1.34
1.32
1.35
1.37
1.38


in mol %


(P2O5 + RxO)/(M2O3)
1.48
1.56
1.46
1.45
1.47
1.59
1.59


in mol %


SiO2 in wt %
50.9
53.3
52.1
51.6
51.2
53.4
52.4


Al2O3 in wt %
22.8
21.3
22.6
23.0
22.9
21.2
20.9


P2O5 in wt %
10.9
10.0
10.0
10.0
10.4
10.1
9.9


Na2O in wt %
14.1
13.2
14.0
14.1
14.2
13.3
13.2


MgO in wt %
1.1
1.1
1.1
1.1
1.1
1.8
0.0


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
3.4


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.8
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.415
2.415
2.414
2.417
2.416
2.413
2.449


Molar Volume
29.49
29.07
29.30
29.31
29.40
29.02
29.10


(cm3/mol)


Strain Pt. (° C.)
632
644
638
639
636
652
614


Anneal Pt. (° C.)
688
695
694
696
694
702
671


Softening Pt. (° C.)
965.7
980.7
975.7
972.1
970.6
977.2
950


Temperature at 200 P
1690
1699
1703
1698
1691
1704
1702


Viscosity (° C.)


Temperature at 35 kP
1267
1267
1278
1275
1269
1263
1253


Viscosity (° C.)


Temperature at 160
1181
1179
1191
1189
1183
1178
1167


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical
3.058
3.045
3.029
3.045
3.041
3.044
3.156


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
773
795
780
782
769
796
762


temperature (° C.)


410° C. 1 hr





873
901


Compressive


Stress (MPa)


410° C. 1 hr Depth





33
29


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
900
858
902
906
909
870
862


Compressive


Stress (MPa)


410° C. 2 hr Depth
47
47
47
47
46
47
41


of Layer (mm)


410° C. 2 hr Vickers
>20
15-20
15-20
15-20
>20
>20
15-20


Crack Initiation


Load (kgf)


410° C. 3 hr
896
846
890
906
900
862
880


Compressive


Stress (MPa)


410° C. 3 hr Depth
55
56
56
55
53
55
49


of Layer (mm)


410° C. 4 hr





864
870


Compressive


Stress (MPa)


410° C. 4 hr Depth





61
54


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~





3.9E−10
3.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.9E−10
3.9E−10
3.9E−10
3.9E−10
3.7E−10
3.9E−10
3.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
3.6E−10
3.7E−10
3.7E−10
3.6E−10
3.3E−10
3.6E−10
2.8E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~





3.3E−10
2.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
29
30
31
32
33
34
35





SiO2 in mol %
62.2
60.3
60.0
60.0
59.9
60.7
60.3


Al2O3 in mol %
14.8
15.6
15.6
15.8
15.7
15.4
15.5


P2O5 in mol %
5.0
5.0
5.0
5.0
5.0
4.9
5.4


Na2O in mol %
15.3
15.9
16.2
16.4
16.3
15.9
15.8


MgO in mol %
2.5
3.0
0.0
2.6
2.9
2.9
3.0


ZnO in mol %
0.0
0.0
3.1
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.1
0.0
0.0
0.1
0.1
0.1


(M2O3)/RxO in mol %
0.83
0.82
0.81
0.83
0.82
0.82
0.82


(P2O5 + R2O)/(M2O3)
1.37
1.34
1.36
1.35
1.35
1.35
1.37


in mol %


(P2O5 + RxO)/(M2O3)
1.54
1.54
1.56
1.52
1.54
1.54
1.56


in mol %


SiO2 in wt %
53.2
51.4
50.3
51.0
51.0
51.8
51.2


Al2O3 in wt %
21.5
22.5
22.1
22.8
22.7
22.4
22.3


P2O5 in wt %
10.0
10.1
9.8
10.0
10.1
10.0
10.8


Na2O in wt %
13.5
14.0
14.0
14.4
14.3
14.0
13.8


MgO in wt %
1.5
1.7
0.0
1.5
1.7
1.7
1.7


ZnO in wt %
0.0
0.0
3.5
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.411
2.424
2.46
2.423
2.426
2.422
2.422


Molar Volume
29.12
29.07
29.15
29.17
29.08
29.06
29.20


(cm3/mol)


Strain Pt. (° C.)
642
646
618
641
633
630
625


Anneal Pt. (° C.)
696
696
674
693
682
681
676


Softening Pt. (° C.)
972.7
960.3
941.8
960
952.8
957.2
950.7


Temperature at 200 P
1713
1664
1668
1676
1670
1673
1672


Viscosity (° C.)


Temperature at 35 kP
1271
1240
1238
1246
1243
1250
1241


Viscosity (° C.)


Temperature at 160
1185
1155
1153
1162
1160
1164
1157


kP Viscosity (° C.)


Liquidus





995
975


Temperature (° C.)


Liquidus





6.97E+06 
1.21E+07 


Viscosity (P)


Zircon Breakdown





1240
1265


Temperature (° C.)


Zircon Breakdown





41251
23823


Viscosity (P)


Stress Optical
3.05
2.938
3.112
3.009
2.994
3.018
3.266??


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
795
794
749
791
779
775
772


temperature (° C.)


410° C. 1 hr


921
927


Compressive


Stress (MPa)


410° C. 1 hr Depth


28
33


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
868
943
921
946
948
890
834


Compressive


Stress (MPa)


410° C. 2 hr Depth
48
46
41
48
46
44
48


of Layer (mm)


410° C. 2 hr Vickers
>20
>20
15-20
10-15
10-15
>20
>20


Crack Initiation


Load (kgf)


410° C. 3 hr
862
941
895
921
936
885
818


Compressive


Stress (MPa)


410° C. 3 hr Depth
55
54
47
55
51
55
52


of Layer (mm)


410° C. 4 hr


894
924

875


Compressive


Stress (MPa)


410° C. 4 hr Depth


52
61

63


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~


2.8E−10
3.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
4.1E−10
3.7E−10
3.0E−10
4.1E−10
3.7E−10
3.4E−10
4.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
3.6E−10
3.4E−10
2.6E−10
3.6E−10
3.1E−10
3.6E−10
3.2E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


2.4E−10
3.3E−10

3.5E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
36
37
38
39
40
41
42





SiO2 in mol %
60.0
60.4
60.2
62.8
61.3
61.1
60.9


Al2O3 in mol %
15.6
15.6
15.5
14.4
15.1
15.2
15.3


P2O5 in mol %
5.5
5.0
4.9
4.1
4.7
4.8
4.9


Na2O in mol %
16.3
16.4
16.4
15.6
15.7
15.8
15.8


MgO in mol %
2.5
2.5
2.9
3.0
3.0
3.0
3.0


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.1
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.83
0.83
0.80
0.77
0.81
0.81
0.81


(P2O5 + R2O)/(M2O3)
1.39
1.37
1.38
1.37
1.35
1.35
1.35


in mol %


(P2O5 + RxO)/(M2O3)
1.55
1.53
1.57
1.58
1.55
1.55
1.55


in mol %


SiO2 in wt %
50.8
51.4
51.4
54.5
52.6
52.3
52.1


Al2O3 in wt %
22.4
22.5
22.4
21.1
22.0
22.1
22.2


P2O5 in wt %
10.9
10.1
9.9
8.3
9.5
9.7
9.9


Na2O in wt %
14.2
14.4
14.4
14.0
13.9
13.9
13.9


MgO in wt %
1.4
1.4
1.7
1.7
1.7
1.7
1.7


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.3
0.3
0.3
0.3


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.419
2.421
2.427
2.422
2.422
2.422
2.422


Molar Volume
29.35
29.17
29.00
28.58
28.92
28.98
29.03


(cm3/mol)


Strain Pt. (° C.)
619
624
632
653
635
634
632


Anneal Pt. (° C.)
672
677
680
704
685
684
682


Softening Pt. (° C.)
954.2
956.8
952.6
977.4
963.1
961.8
957.4


Temperature at 200 P
1675
1680
1659
1709
1693
1690
1689


Viscosity (° C.)


Temperature at 35 kP
1246
1255
1229
1263
1257
1256
1254


Viscosity (° C.)


Temperature at 160
1161
1169
1145
1176
1170
1170
1168


kP Viscosity (° C.)


Liquidus
985
990


Temperature (° C.)


Liquidus
1.00E+07 
9.03E+06 


Viscosity (P)


Zircon Breakdown
1260
1240


Temperature (° C.)


Zircon Breakdown
27805
45159


Viscosity (P)


Stress Optical
2.986
3.005
3.008


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
767
768
778
793
773
772
770


temperature (° C.)


410° C. 1 hr

925

979
973
967
967


Compressive


Stress (MPa)


410° C. 1 hr Depth

34

30
30
29
29


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
903
928
934
980
978
975
948


Compressive


Stress (MPa)


410° C. 2 hr Depth
46
46
46
42
41
41
41


of Layer (mm)


410° C. 2 hr Vickers
15-20
10-15
15-20
15-20
15-20
15-20
10-15


Crack Initiation


Load (kgf)


410° C. 3 hr

923
943
930
934
927
925


Compressive


Stress (MPa)


410° C. 3 hr Depth

54
53
53
51
51
51


of Layer (mm)


410° C. 4 hr

920

949
948
943
941


Compressive


Stress (MPa)


410° C. 4 hr Depth

59

59
57
57
57


of Layer (mm)


410° C. 4 hr Vickers



15-20
15-20
15-20
10-15


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~

4.1E−10

3.2E−10
3.2E−10
3.0E−10
3.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.7E−10
3.7E−10
3.7E−10
3.1E−10
3.0E−10
3.0E−10
3.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~

3.4E−10
3.3E−10
3.3E−10
3.1E−10
3.1E−10
3.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~

3.1E−10

3.1E−10
2.9E−10
2.9E−10
2.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr

















Example Number
43
44
45
46
47
48
49





SiO2 in mol %
60.4
60.2
60.1
60.0
59.9
60.1
59.3


Al2O3 in mol %
15.5
15.6
15.6
15.6
15.7
15.6
15.3


P2O5 in mol %
5.0
5.0
5.1
5.1
5.1
5.2
5.7


Na2O in mol %
15.9
16.0
16.0
16.0
16.1
16.1
16.5


MgO in mol %
3.0
3.0
3.0
3.0
3.0
2.9
2.9


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.82
0.82
0.82
0.82
0.82
0.82
0.79


(P2O5 + R2O)/(M2O3)
1.35
1.35
1.35
1.35
1.35
1.37
1.46


in mol %


(P2O5 + RxO)/(M2O3)
1.54
1.55
1.55
1.54
1.54
1.55
1.65


in mol %


SiO2 in wt %
51.5
51.3
51.2
51.1
51.0
51.2
50.2


Al2O3 in wt %
22.4
22.5
22.6
22.6
22.7
22.5
22.0


P2O5 in wt %
10.1
10.2
10.2
10.2
10.3
10.4
11.4


Na2O in wt %
14.0
14.0
14.0
14.1
14.1
14.1
14.5


MgO in wt %
1.7
1.7
1.7
1.7
1.7
1.6
1.7


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.3
0.3
0.3
0.3
0.3
0.3
0.3


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.423
2.424
2.425
2.424
2.424
2.423
2.424


Molar Volume
29.09
29.10
29.10
29.11
29.14
29.14
29.27


(cm3/mol)


Strain Pt. (° C.)
628
629
633
630
629
615
603


Anneal Pt. (° C.)
680
680
680
681
680
664
651


Softening Pt. (° C.)
954
952.8
956.5
953.3
953
944.5
929.6


Temperature at 200 P
1684
1678
1676
1681
1678
1681
1665


Viscosity (° C.)


Temperature at 35 kP
1257
1245
1248
1249
1251
1242
1225


Viscosity (° C.)


Temperature at 160
1171
1160

1163
1166
1158
1141


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
770
769
765
770
769
752
737


temperature (° C.)


410° C. 1 hr
975
964
992


Compressive


Stress (MPa)


410° C. 1 hr Depth
29
29
27


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
960
955
990
945
948
939
905


Compressive


Stress (MPa)


410° C. 2 hr Depth
41
40
38
38
38
38
39


of Layer (mm)


410° C. 2 hr Vickers
25-30
25-30
>20
>20
>20
15-20
10-15


Crack Initiation


Load (kgf)


410° C. 3 hr
930
933
970


Compressive


Stress (MPa)


410° C. 3 hr Depth
50
50
53


of Layer (mm)


410° C. 4 hr
948
940


Compressive


Stress (MPa)


410° C. 4 hr Depth
56
56


of Layer (mm)


410° C. 4 hr Vickers
25-30
20-25


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
3.0E−10
3.0E−10
2.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.0E−10
2.8E−10
2.6E−10
2.6E−10
2.6E−10
2.6E−10
2.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
3.0E−10
3.0E−10
3.3E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~
2.8E−10
2.8E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr





Example Number
50
51
52
53
54
55
56





SiO2 in mol %
61.8
56.9
60.1
60.2
60.1
61.1
61.0


Al2O3 in mol %
13.5
13.4
15.0
15.4
15.2
14.6
14.9


P2O5 in mol %
5.0
10.0
6.0
5.4
5.7
5.4
5.5


Na2O in mol %
19.5
19.6
15.7
15.9
15.9
15.2
15.5


MgO in mol %
0.0
0.0
3.0
3.0
3.0
3.5
3.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.1
0.1
0.1
0.1
0.1


(M2O3)/RxO in mol %
0.69
0.68
0.80
0.81
0.80
0.78
0.80


(P2O5 + R2O)/(M2O3)
1.82
2.21
1.44
1.38
1.42
1.41
1.41


in mol %


(P2O5 + RxO)/(M2O3)
1.82
2.21
1.64
1.58
1.62
1.65
1.62


in mol %


SiO2 in wt %
52.9
46.0
50.9
51.2
50.9
52.2
51.9


Al2O3 in wt %
19.5
18.4
21.6
22.2
21.9
21.2
21.5


P2O5 in wt %
10.1
19.1
11.9
10.7
11.3
10.9
11.0


Na2O in wt %
17.2
16.3
13.7
13.9
13.9
13.4
13.6


MgO in wt %
0.0
0.0
1.7
1.7
1.7
2.0
1.7


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.426
2.408
2.413
2.419
2.416
2.415
2.415


Molar Volume
28.96
30.85
29.45
29.23
29.34
29.10
29.21


(cm3/mol)


Strain Pt. (° C.)
574
522
626
637
630
649
639


Anneal Pt. (° C.)
625
568
679
688
681
701
689


Softening Pt. (° C.)
872.9
825.1
947.3
955.1
949.9
969.4
961


Temperature at 200 P
1651
1587
1686
1679
1684
1678
1698


Viscosity (° C.)


Temperature at 35 kP
1162
1126
1248
1253
1248
1248
1256


Viscosity (° C.)


Temperature at 160
1075
1040
1162
1169
1163
1163
1172


kP Viscosity (° C.)


Liquidus
990
915
1000


Temperature (° C.)


Liquidus
9.59E+05 
2.61E+06 
6.34E+06 


Viscosity (P)


Zircon Breakdown
1235
>1245
1275
>1270

>1300


Temperature (° C.)


Zircon Breakdown
11856
<6194
22653
<26470

<15377


Viscosity (P)


Stress Optical


3.069
3.107
2.986
3.089
3.064


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
710
650
769
776
769
790
777


temperature (° C.)


410° C. 1 hr


850
891
870
852
867


Compressive


Stress (MPa)


410° C. 1 hr Depth


47
37
38
37
38


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
501
496
857
873
848
841
829


Compressive


Stress (MPa)


410° C. 2 hr Depth
90
88
52
49
52
50
50


of Layer (mm)


410° C. 2 hr Vickers
>20
>20
20-30
>20
>20
>20
10-15


Crack Initiation


Load (kgf)


410° C. 3 hr


842
863
834
836
832


Compressive


Stress (MPa)


410° C. 3 hr Depth


59
64
63
63
64


of Layer (mm)


410° C. 4 hr


828
859
842
826
835


Compressive


Stress (MPa)


410° C. 4 hr Depth


70
72
70
73
72


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~


7.8E−10
4.9E−10
5.1E−10
4.9E−10
5.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
1.4E−09
1.4E−09
4.8E−10
4.3E−10
4.8E−10
4.4E−10
4.4E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


4.1E−10
4.8E−10
4.7E−10
4.7E−10
4.8E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


4.3E−10
4.6E−10
4.3E−10
4.7E−10
4.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
57
58
59
60
61
62
63





SiO2 in mol %
60.2
60.2
60.3
60.4
60.3
60.4
60.2


Al2O3 in mol %
15.0
15.3
15.1
15.5
15.3
15.4
15.1


P2O5 in mol %
5.5
6.0
5.9
5.9
5.9
5.9
6.0


Na2O in mol %
15.6
15.4
15.1
15.4
15.3
15.4
15.2


MgO in mol %
3.5
3.0
3.6
2.5
3.1
2.8
3.4


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.1
0.0
0.1
0.0
0.1
0.1
0.1


(M2O3)/RxO in mol %
0.78
0.83
0.81
0.86
0.83
0.85
0.81


(P2O5 + R2O)/(M2O3)
1.41
1.40
1.39
1.38
1.39
1.38
1.40


in mol %


(P2O5 + RxO)/(M2O3)
1.65
1.59
1.63
1.54
1.59
1.56
1.63


in mol %


SiO2 in wt %
51.3
50.9
51.1
50.9
51.0
50.9
50.9


Al2O3 in wt %
21.7
21.9
21.7
22.2
21.9
22.1
21.7


P2O5 in wt %
11.0
11.9
11.7
11.8
11.8
11.8
11.9


Na2O in wt %
13.8
13.4
13.2
13.4
13.3
13.4
13.3


MgO in wt %
2.0
1.7
2.0
1.4
1.7
1.6
1.9


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.42
2.41
2.42
2.41
2.42
2.41
2.41


Molar Volume
29.13
29.49
29.32
29.57
29.43
29.50
29.41


(cm3/mol)


Strain Pt. (° C.)
647
627
634
624
627
625
627


Anneal Pt. (° C.)
697
682
684
680
680
679
679


Softening Pt. (° C.)
962.8
952
959.1
954.6
951
951.6
954.9


Temperature at 200 P
1677
1728
1679
1693
1685
1687
1673


Viscosity (° C.)


Temperature at 35 kP
1247
1257
1246
1259
1253
1257
1235


Viscosity (° C.)


Temperature at 160
1163
1173
1160
1173
1168
1171
1151


kP Viscosity (° C.)


Liquidus


1090


Temperature (° C.)


Liquidus


6.79E+05 


Viscosity (P)


Zircon Breakdown


1265



>1250


Temperature (° C.)


Zircon Breakdown


25644



<27583


Viscosity (P)


Stress Optical
3.046

3.092

3.085

3.037


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
784
776
778
779
779
773
787


temperature (° C.)


410° C. 1 hr
883


Compressive


Stress (MPa)


410° C. 1 hr Depth
37


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
870
879
910
878
869
885
885


Compressive


Stress (MPa)


410° C. 2 hr Depth
52
46
45
47
50
46
45


of Layer (mm)


410° C. 2 hr Vickers
>20
30-40
30-40
30-40
20-30
20-30
30-40


Crack Initiation


Load (kgf)


410° C. 3 hr
861


Compressive


Stress (MPa)


410° C. 3 hr Depth
63


of Layer (mm)


410° C. 4 hr
853


Compressive


Stress (MPa)


410° C. 4 hr Depth
71


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
4.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
4.8E−10
3.8E−10
3.6E−10
3.9E−10
4.4E−10
3.7E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~
4.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~
4.5E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
64
65
66
67
68
69
70





SiO2 in mol %
59.9
60.0
60.1
60.1
60.2
60.2
57.1


Al2O3 in mol %
15.5
15.3
15.5
15.2
15.4
15.0
17.5


P2O5 in mol %
5.4
5.3
3.6
5.6
5.8
5.8
6.8


Na2O in mol %
15.9
15.6
15.5
15.4
15.4
15.2
18.4


MgO in mol %
3.1
3.6
3.1
3.6
3.0
3.6
0.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.81
0.80
0.83
0.80
0.83
0.80
0.95


(P2O5 + R2O)/(M2O3)
1.38
1.37
1.24
1.38
1.39
1.40
1.44


in mol %


(P2O5 + RxO)/(M2O3)
1.58
1.60
1.44
1.61
1.58
1.63
1.45


in mol %


SiO2 in wt %
50.9
51.2
53.1
51.1
50.9
51.2
46.8


Al2O3 in wt %
22.3
22.1
23.1
21.9
22.0
21.7
24.2


P2O5 in wt %
10.8
10.7
7.6
11.2
11.7
11.6
13.2


Na2O in wt %
14.0
13.7
14.1
13.5
13.5
13.3
15.5


MgO in wt %
1.8
2.1
1.8
2.0
1.7
2.0
0.0


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.419
2.421
2.417
2.419
2.415
2.416
2.41


Molar Volume
29.23
29.12
28.17
29.23
29.43
29.29
30.41


(cm3/mol)


Strain Pt. (° C.)
637
640
631
638
629
634
619


Anneal Pt. (° C.)
689
689
683
687
681
684
679


Softening Pt. (° C.)
958
962.4
956.3
962.4
954.1
959.7
953.7


Temperature at 200 P
1680
1670
1675
1665
1681
1676
1680


Viscosity (° C.)


Temperature at 35 kP
1253
1249
1245
1240
1253
1247
1246


Viscosity (° C.)


Temperature at 160
1168
1165
1159
1155
1167
1162
1165


kP Viscosity (° C.)


Liquidus






855


Temperature (° C.)


Liquidus






1.99E+09 


Viscosity (P)


Zircon Breakdown






1225


Temperature (° C.)


Zircon Breakdown






50768


Viscosity (P)


Stress Optical






2.997


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
778
776
773
774
771
772
776


temperature (° C.)


410° C. 1 hr






808


Compressive


Stress (MPa)


410° C. 1 hr Depth






43


of Layer (mm)


410° C. 1 hr Vickers






>50


Crack Initiation


Load (kgf)


410° C. 2 hr
929
925
914
914
898
900


Compressive


Stress (MPa)


410° C. 2 hr Depth
48
47
49
48
50
48


of Layer (mm)


410° C. 2 hr Vickers
>20
>20
>20
>20
>20
>20


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~






6.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
4.1E−10
3.9E−10
4.3E−10
4.1E−10
4.4E−10
4.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
71
72
73
74
75
76
77





SiO2 in mol %
56.4
55.5
56.2
56.3
57.4
57.3
56.4


Al2O3 in mol %
17.4
17.4
16.5
14.5
16.6
14.5
16.5


P2O5 in mol %
8.0
8.9
8.0
7.9
7.0
6.9
7.9


Na2O in mol %
18.1
18.0
18.1
18.0
17.8
18.1
19.0


MgO in mol %
0.1
0.1
1.0
3.1
1.0
3.0
0.0


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.96
0.97
0.86
0.69
0.88
0.69
0.87


(P2O5 + R2O)/(M2O3)
1.50
1.54
1.59
1.79
1.50
1.72
1.62


in mol %


(P2O5 + RxO)/(M2O3)
1.50
1.55
1.65
2.00
1.56
1.93
1.62


in mol %


SiO2 in wt %
45.6
44.4
45.8
46.7
47.3
48.0
45.9


Al2O3 in wt %
23.9
23.7
22.8
20.4
23.2
20.6
22.8


P2O5 in wt %
15.2
16.8
15.4
15.5
13.6
13.8
15.1


Na2O in wt %
15.1
14.9
15.2
15.4
15.2
15.6
16.0


MgO in wt %
0.0
0.0
0.6
1.7
0.5
1.7
0.0


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.41
2.41
2.42
2.43
2.42
2.43
2.42


Molar Volume
30.82
31.19
30.54
29.86
30.16
29.49
30.58


(cm3/mol)


Strain Pt. (° C.)
603
591
586
571
601
588
586


Anneal Pt. (° C.)
661
648
642
619
658
634
642


Softening Pt. (° C.)
932.5
916.5
909.5
877.4
928.3
900.7
906.5


Temperature at 200 P
1653
1660
1641
1603
1660
1616
1644


Viscosity (° C.)


Temperature at 35 kP
1227
1224
1214
1171
1233
1183
1212


Viscosity (° C.)


Temperature at 160
1142
1138
1128
1086
1148
1098
1126


kP Viscosity (° C.)


Liquidus
800


Temperature (° C.)


Liquidus
2.74E+09 


Viscosity (P)


Zircon Breakdown
1265


Temperature (° C.)


Zircon Breakdown
18914


Viscosity (P)


Stress Optical
3.038

3.005
2.998
2.992
2.977


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
756
742
735
703
752
717
734


temperature (° C.)


410° C. 1 hr
888


734
816
809


Compressive


Stress (MPa)


410° C. 1 hr Depth
43


44
49
45


of Layer (mm)


410° C. 1 hr Vickers
40-50


Crack Initiation


Load (kgf)


410° C. 2 hr

731
706
706
804
775
711


Compressive


Stress (MPa)


410° C. 2 hr Depth

62
62
60
58
59
68


of Layer (mm)


410° C. 2 hr Vickers

>40
>40
>20
30-40
>20
>20


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
6.6E−10


6.9E−10
8.5E−10
7.2E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~

6.9E−10
6.8E−10
6.4E−10
5.9E−10
6.2E−10
8.3E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
78
79
80
81
82
83
84





SiO2 in mol %
56.3
57.2
57.6
50.4
56.4
55.9
55.4


Al2O3 in mol %
15.5
16.5
15.5
19.8
18.1
18.1
18.1


P2O5 in mol %
7.9
6.9
6.8
9.8
7.2
7.7
7.7


Na2O in mol %
20.0
19.1
20.0
19.9
18.2
18.2
18.1


MgO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.6


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.78
0.86
0.78
0.99
0.99
0.99
0.96


(P2O5 + R2O)/(M2O3)
1.80
1.58
1.73
1.50
1.41
1.43
1.43


in mol %


(P2O5 + RxO)/(M2O3)
1.80
1.58
1.73
1.50
1.41
1.43
1.46


in mol %


SiO2 in wt %
46.1
47.0
47.7
39.4
45.8
45.2
44.9


Al2O3 in wt %
21.5
23.0
21.7
26.3
24.9
24.8
24.8


P2O5 in wt %
15.3
13.5
13.3
18.1
13.9
14.7
14.7


Na2O in wt %
16.9
16.2
17.0
16.0
15.2
15.1
15.1


MgO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.3


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.42
2.42
2.43
2.42
2.41
2.41
2.42


Molar Volume
30.36
30.22
29.94
31.72
30.65
30.81
30.74


(cm3/mol)


Strain Pt. (° C.)
572
601
582
588
617
610
607


Anneal Pt. (° C.)
624
658
634
644
676
670
664


Softening Pt. (° C.)
879.4
924.2
888.5
904
951.4
947.1
939.1


Temperature at 200 P
1623
1659
1634
1603
1672
1660
1664


Viscosity (° C.)


Temperature at 35 kP
1180
1224
1190
1192
1254
1250
1233


Viscosity (° C.)


Temperature at 160
1093
1138
1104
1111
1170
1166
1152


kP Viscosity (° C.)


Liquidus




865
800


Temperature (° C.)


Liquidus




5.74E+08 
5.51E+09 


Viscosity (P)


Zircon Breakdown




1215
1245


Temperature (° C.)


Zircon Breakdown




69204
38105


Viscosity (P)


Stress Optical
2.97

2.935
2.999
3.051
3.028
3.044


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
692
751
699
716
750
750
740


temperature (° C.)


410° C. 1 hr
694

750
796
909
887
843


Compressive


Stress (MPa)


410° C. 1 hr Depth
64

60
46
41
42
41


of Layer (mm)


410° C. 1 hr Vickers



30-40
>50
>50


Crack Initiation


Load (kgf)


410° C. 2 hr
680
751
732
749


837


Compressive


Stress (MPa)


410° C. 2 hr Depth
81
66
75
63


56


of Layer (mm)


410° C. 2 hr Vickers
>20
>20
>30
30-40


>40


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
1.5E−09

1.3E−09
7.5E−10
6.0E−10
6.3E−10
6.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
1.2E−09
7.8E−10
1.0E−09
7.0E−10


5.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
85
86
87
88
89
90
91





SiO2 in mol %
58.3
58.3
58.6
58.3
58.4
58.4
59.2


Al2O3 in mol %
15.8
15.6
15.4
15.6
15.4
15.1
15.3


P2O5 in mol %
6.8
6.7
6.7
6.8
6.7
6.7
6.8


Na2O in mol %
15.9
15.7
15.2
15.6
15.4
15.1
15.5


MgO in mol %
3.1
3.0
3.1
3.5
3.5
3.5
3.1


ZnO in mol %
0.0
0.5
0.9
0.0
0.5
1.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


(M2O3)/RxO in mol %
0.83
0.81
0.80
0.81
0.79
0.77
0.82


(P2O5 + R2O)/(M2O3)
1.43
1.43
1.42
1.44
1.44
1.45
1.45


in mol %


(P2O5 + RxO)/(M2O3)
1.63
1.66
1.68
1.67
1.70
1.75
1.66


in mol %


SiO2 in wt %
48.6
48.6
48.9
48.8
48.8
48.9
49.5


Al2O3 in wt %
22.4
22.1
21.9
22.1
21.8
21.5
21.7


P2O5 in wt %
13.4
13.2
13.1
13.4
13.3
13.3
13.4


Na2O in wt %
13.6
13.5
13.1
13.5
13.3
13.1
13.4


MgO in wt %
1.7
1.7
1.7
2.0
2.0
2.0
1.7


ZnO in wt %
0.0
0.5
1.0
0.0
0.5
1.1
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.42
2.42
2.43
2.42
2.42
2.43
2.41


Molar Volume
29.81
29.70
29.62
29.72
29.63
29.52
29.78


(cm3/mol)


Strain Pt. (° C.)
612
614
611
615
614
616
612


Anneal Pt. (° C.)
664
666
661
666
663
664
666


Softening Pt. (° C.)
932.6
935.5
928.4
934
932.5
932.8
942.5


Temperature at 200 P
1660
1656
1654
1655
1651
1650
1675


Viscosity (° C.)


Temperature at 35 kP
1235
1231
1226
1232
1227
1220
1244


Viscosity (° C.)


Temperature at 160
1150
1147
1141
1147
1143
1136
1158


kP Viscosity (° C.)


Liquidus






975


Temperature (° C.)


Liquidus






1.07E+07 


Viscosity (P)


Zircon Breakdown






>1300


Temperature (° C.)


Zircon Breakdown






<14599


Viscosity (P)


Stress Optical
3.109
3.112
3.069
3.049
3.082
3.021
3.03


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
753
755
748
754
749
749
758


temperature (° C.)


410° C. 1 hr






873


Compressive


Stress (MPa)


410° C. 1 hr Depth






33


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
861
862
861
850
881
874
853


Compressive


Stress (MPa)


410° C. 2 hr Depth
49
47
46
47
46
45
45


of Layer (mm)


410° C. 2 hr Vickers
>40
>40
>40
>40
>40
>40
>50


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~






3.9E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
4.3E−10
3.9E−10
3.7E−10
3.9E−10
3.7E−10
3.6E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
92
93
94
95
96
97
98





SiO2 in mol %
59.2
59.3
59.3
59.3
59.2
59.3
58.4


Al2O3 in mol %
15.0
14.8
15.1
14.8
14.6
15.1
16.0


P2O5 in mol %
6.8
6.8
6.8
6.8
6.8
6.7
6.8


Na2O in mol %
15.2
14.9
15.1
14.9
14.8
15.2
15.9


MgO in mol %
3.1
3.0
3.5
3.6
3.6
3.6
2.7


ZnO in mol %
0.5
1.0
0.0
0.5
1.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.1
0.1
0.1
0.1
0.1
0.0
0.0


(M2O3)/RxO in mol %
0.80
0.78
0.81
0.78
0.75
0.80
0.86


(P2O5 + R2O)/(M2O3)
1.46
1.47
1.45
1.46
1.48
1.45
1.41


in mol %


(P2O5 + RxO)/(M2O3)
1.71
1.74
1.69
1.74
1.80
1.69
1.58


in mol %


SiO2 in wt %
49.6
49.6
49.7
49.8
49.7
49.9
48.7


Al2O3 in wt %
21.3
21.0
21.5
21.1
20.7
21.5
22.7


P2O5 in wt %
13.4
13.4
13.5
13.4
13.4
13.3
13.3


Na2O in wt %
13.2
12.9
13.1
12.9
12.8
13.2
13.7


MgO in wt %
1.7
1.7
2.0
2.0
2.0
2.0
1.5


ZnO in wt %
0.6
1.1
0.0
0.6
1.1
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.1
0.1


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.43
2.41
2.41
2.42
2.43
2.411
2.414


Molar Volume
29.61
29.79
29.71
29.59
29.48
29.64
29.87


(cm3/mol)


Strain Pt. (° C.)
615
613
617
620
620
616
612


Anneal Pt. (° C.)
669
663
668
671
669
669
666


Softening Pt. (° C.)
936.3
934.5
939.7
938.2
942.5
940.7
940.2


Temperature at 200 P
1667
1666
1663
1670
1657
1666
1661


Viscosity (° C.)


Temperature at 35 kP
1241
1234
1233
1235
1216
1240
1243


Viscosity (° C.)


Temperature at 160
1156
1148
1147
1151
1133
1153
1158


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical
3.067
3.117
3.08
3.115
3.091


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
760
751
757
759
756
760
758


temperature (° C.)


410° C. 1 hr





864
896


Compressive


Stress (MPa)


410° C. 1 hr Depth





29
30


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
831
844
832
850
838
870
889


Compressive


Stress (MPa)


410° C. 2 hr Depth
46
44
45
47
44
43
42


of Layer (mm)


410° C. 2 hr Vickers
>40
>40
>40
>40
>40
40-50
>50


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~





3.0E−10
3.2E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.7E−10
3.4E−10
3.6E−10
3.9E−10
3.4E−10
3.3E−10
3.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr





Example Number
99
100
101
102
103
104
105





SiO2 in mol %
58.2
59.4
56.6
56.3
59.9
60.5
60.9


Al2O3 in mol %
15.6
16.0
16.0
16.1
15.1
15.1
15.0


P2O5 in mol %
6.8
6.8
7.6
7.7
6.8
6.8
6.8


Na2O in mol %
15.8
16.0
15.9
16.2
15.1
15.0
15.1


MgO in mol %
3.6
1.7
3.7
3.6
3.1
2.6
2.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.80
0.90
0.82
0.81
0.83
0.86
0.88


(P2O5 + R2O)/(M2O3)
1.45
1.43
1.47
1.48
1.45
1.44
1.46


in mol %


(P2O5 + RxO)/(M2O3)
1.68
1.53
1.70
1.71
1.66
1.61
1.59


in mol %


SiO2 in wt %
48.7
49.3
46.8
46.5
50.2
50.7
50.9


Al2O3 in wt %
22.1
22.6
22.5
22.6
21.4
21.4
21.3


P2O5 in wt %
13.4
13.3
14.9
15.0
13.5
13.4
13.5


Na2O in wt %
13.6
13.8
13.6
13.8
13.0
13.0
13.0


MgO in wt %
2.0
1.0
2.1
2.0
1.7
1.4
1.2


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.415
2.406
2.417
2.417
2.405
2.4
2.396


Molar Volume
29.70
30.05
30.04
30.08
29.78
29.87
29.98


(cm3/mol)


Strain Pt. (° C.)
612
613
596
598
607
607
613


Anneal Pt. (° C.)
664
671
649
652
663
663
671


Softening Pt. (° C.)
937.7
951.1
918.5
919.9
945.2
949.4
955.8


Temperature at 200 P
1658
1698
1631
1637
1682
1695
1709


Viscosity (° C.)


Temperature at 35 kP
1235
1262
1215
1219
1251
1262
1271


Viscosity (° C.)


Temperature at 160
1150
1176
1131
1135
1164
1174
1182


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
754
767
739
743
758
759
768


temperature (° C.)


410° C. 1 hr
895
889
855
853
839
823
817


Compressive


Stress (MPa)


410° C. 1 hr Depth
29
32
28
28
30
31
31


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
890
843
865
856
846
820
803


Compressive


Stress (MPa)


410° C. 2 hr Depth
43
49
41
42
44
45
46


of Layer (mm)


410° C. 2 hr Vickers
>50
>50
>50
>50
40-50
40-50
40-50


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
3.0E−10
3.6E−10
2.8E−10
2.8E−10
3.2E−10
3.4E−10
3.4E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.3E−10
4.3E−10
3.0E−10
3.1E−10
3.4E−10
3.6E−10
3.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr


















Example Number
106
107
108
109
110
111
112
113





SiO2 in mol %
56.8
55.8
55.7
55.9
56.0
55.8
55.8
59.9


Al2O3 in mol %
17.9
18.0
18.0
18.0
18.0
18.0
18.0
15.7


P2O5 in mol %
7.2
7.8
7.8
7.7
7.7
7.7
7.8
5.4


Na2O in mol %
17.9
16.1
16.3
16.6
16.6
17.0
17.0
16.2


MgO in mol %
0.1
2.0
0.1
1.5
0.1
1.3
0.1
2.6


ZnO in mol %
0.0
0.0
2.0
0.0
1.4
0.0
1.2
0.0


SnO2 in mol %
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.1
0.0
0.1
0.0
0.0
0.0
0.1


(M2O3)/RxO in mol %
0.99
0.99
0.98
0.99
1.00
0.99
0.98
0.83


(P2O5 + R2O)/(M2O3)
1.40
1.33
1.34
1.35
1.35
1.37
1.38
1.38


in mol %


(P2O5 + RxO)/(M2O3)
1.41
1.44
1.45
1.44
1.43
1.44
1.45
1.55


in mol %


SiO2 in wt %
46.3
45.3
44.8
45.3
45.1
45.3
44.9
50.7


Al2O3 in wt %
24.7
24.9
24.6
24.8
24.6
24.8
24.6
22.5


P2O5 in wt %
13.9
14.9
14.7
14.8
14.6
14.8
14.8
10.9


Na2O in wt %
15.0
13.5
13.5
13.9
13.8
14.2
14.1
14.2


MgO in wt %
0.0
1.1
0.0
0.8
0.0
0.7
0.0
1.5


ZnO in wt %
0.0
0.0
2.1
0.0
1.6
0.0
1.4
0.0


SnO2 in wt %
0.0
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.409
2.411
2.436
2.411
2.430
2.411
2.427
2.419


Molar Volume
30.63
30.69
30.69
30.71
30.70
30.72
30.74
29.34


(cm3/mol)


Strain Pt. (° C.)
617
621
609
618
604
617
613
629


Anneal Pt. (° C.)
677
679
666
676
663
676
671
684


Softening Pt. (° C.)
956.5
950.7
935.8
949.4
939
949.5
941.5
953


Temperature at 200 P
1673
1651
1650
1655
1659
1661
1681
1681


Viscosity (° C.)


Temperature at 35 kP
1259
1247
1238
1247
1242
1250
1256
1256


Viscosity (° C.)


Temperature at 160
1174
1164
1154
1164
1161
1167
1171
1171


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical

3.088
3.118
3.127
3.183
3.036
3.124
3.147


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
775
751
742
755
736
751
745
775


temperature (° C.)


410° C. 1 hr

869
916
912
921
899
922
969


Compressive


Stress (MPa)


410° C. 1 hr Depth

29
29
32
32
33
32
30


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
854
884
895
892
901
868
889
933


Compressive


Stress (MPa)


410° C. 2 hr Depth
59
42
44
46
46
49
49
46


of Layer (mm)


410° C. 2 hr Vickers
>50
>50
>50
>50
>50
>50
>50
20-30


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~

3.0E−10
3.0E−10
3.6E−10
3.6E−10
3.9E−10
3.6E−10
3.2E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
6.2E−10
3.1E−10
3.4E−10
3.7E−10
3.7E−10
4.3E−10
4.3E−10
3.7E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
114
115
116
117
118
119
120





SiO2 in mol %
59.2
58.4
57.9
57.1
56.5
56.8
57.4


Al2O3 in mol %
16.1
16.5
16.8
17.2
17.6
16.8
16.6


P2O5 in mol %
5.8
6.2
6.5
6.9
7.3
7.1
7.1


Na2O in mol %
16.6
17.0
17.3
17.7
18.0
17.1
16.7


MgO in mol %
2.2
1.7
1.3
0.9
0.5
2.1
2.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.1
0.0
0.0
0.0
0.0
0.0
0.1


(M2O3)/RxO in mol %
0.86
0.88
0.90
0.93
0.95
0.88
0.88


(P2O5 + R2O)/(M2O3)
1.39
1.40
1.42
1.43
1.44
1.44
1.43


in mol %


(P2O5 + RxO)/(M2O3)
1.53
1.51
1.49
1.48
1.47
1.56
1.56


in mol %


SiO2 in wt %
49.7
48.7
47.9
46.9
46.0
46.8
47.4


Al2O3 in wt %
22.9
23.3
23.6
24.0
24.4
23.5
23.3


P2O5 in wt %
11.5
12.2
12.8
13.5
14.0
13.8
13.8


Na2O in wt %
14.4
14.6
14.8
15.0
15.2
14.5
14.2


MgO in wt %
1.2
1.0
0.7
0.5
0.3
1.1
1.2


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.418
2.415
2.416
2.416
2.414
2.419
2.415


Molar Volume
29.58
29.86
30.07
30.30
30.54
30.14
30.14


(cm3/mol)


Strain Pt. (° C.)
624
618
616
616
615
609
610


Anneal Pt. (° C.)
681
677
675
674
674
666
666


Softening Pt. (° C.)
954.9
950.5
948.1
947.9
949.3
930.8
940.6


Temperature at 200 P
1680
1673
1676
1670
1667
1654
1660


Viscosity (° C.)


Temperature at 35 kP
1257
1253
1254
1250
1249
1235
1240


Viscosity (° C.)


Temperature at 160
1171
1168
1169
1166
1164
1151
1156


kP Viscosity (° C.)


Liquidus

955


Temperature (° C.)


Liquidus

2.67E+07 


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical
3.038
3.050
3.080
3.004
3.093


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
764
750
745
765
747
746
741


temperature (° C.)


410° C. 1 hr
942
953
918
899
888
921
900


Compressive


Stress (MPa)


410° C. 1 hr Depth
30
31
34
36
38
34
34


of Layer (mm)


410° C. 1 hr Vickers

>50


Crack Initiation


Load (kgf)


410° C. 2 hr
945
924
901
868
853
913
895


Compressive


Stress (MPa)


410° C. 2 hr Depth
46
47
50
54
50
46
45


of Layer (mm)


410° C. 2 hr Vickers
20-30
>50
>50
>40
>50
>50
30-40


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
3.2E−10
3.4E−10
4.1E−10
4.6E−10
5.1E−10
4.1E−10
4.1E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.7E−10
3.9E−10
4.4E−10
5.2E−10
4.4E−10
3.7E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr

















Example Number
121
122
123
124
125
126
127





SiO2 in mol %
57.9
57.0
57.4
58.0
59.0
58.9
58.9


Al2O3 in mol %
16.4
16.7
16.6
16.2
15.5
15.7
16.0


P2O5 in mol %
7.1
7.3
7.3
7.4
6.4
6.5
6.4


Na2O in mol %
16.5
16.7
16.5
16.3
15.4
15.7
16.0


MgO in mol %
2.1
2.0
2.0
2.0
3.5
3.0
2.5


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.1
0.1
0.0
0.1
0.1
0.1
0.1


(M2O3)/RxO in mol %
0.88
0.89
0.89
0.88
0.82
0.84
0.86


(P2O5 + R2O)/(M2O3)
1.44
1.43
1.44
1.46
1.41
1.41
1.40


in mol %


(P2O5 + RxO)/(M2O3)
1.56
1.56
1.57
1.59
1.64
1.60
1.56


in mol %


SiO2 in wt %
47.8
46.9
47.2
47.8
49.6
49.4
49.2


Al2O3 in wt %
23.0
23.4
23.1
22.6
22.1
22.4
22.7


P2O5 in wt %
13.8
14.2
14.3
14.4
12.8
12.8
12.7


Na2O in wt %
14.0
14.2
14.0
13.8
13.4
13.6
13.8


MgO in wt %
1.1
1.1
1.1
1.1
2.0
1.7
1.4


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.2
0.2
0.2
0.2
0.1
0.1
0.1


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.411
2.415
2.412
2.409
2.415
2.414
2.413


Molar Volume
30.16
30.26
30.27
30.26
29.59
29.70
29.79


(cm3/mol)


Strain Pt. (° C.)
609
607
607
605
617
612
613


Anneal Pt. (° C.)
667
663
663
662
669
666
669


Softening Pt. (° C.)
941.6
937.7
936.6
940.1
940.6
941.4
948.7


Temperature at 200 P
1670
1658
1661
1665
1666
1669
1677


Viscosity (° C.)


Temperature at 35 kP
1247
1238
1241
1244
1241
1244
1250


Viscosity (° C.)


Temperature at 160
1161
1154
1156
1159
1156
1159
1165


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical




3.056
3.038
3.055


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
742
742
739
730
765
755
754


temperature (° C.)


410° C. 1 hr
885
889
876
857


Compressive


Stress (MPa)


410° C. 1 hr Depth
34
35
34
35


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
874
870
861
838
907
889
896


Compressive


Stress (MPa)


410° C. 2 hr Depth
46
47
47
47
43
44
45


of Layer (mm)


410° C. 2 hr Vickers
>50
>50
>50
40-50
40-50
30-40
40-50


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~
4.1E−10
4.3E−10
4.1E−10
4.3E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.7E−10
3.9E−10
3.9E−10
3.9E−10
3.3E−10
3.4E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr





Example Number
128
129
130
131
132
133
134





SiO2 in mol %
58.2
57.8
57.9
56.8
56.9
56.9
56.8


Al2O3 in mol %
16.1
16.5
16.3
16.5
16.8
17.0
17.5


P2O5 in mol %
6.3
6.5
6.4
6.5
6.4
6.4
6.4


Na2O in mol %
15.9
16.5
16.3
16.5
16.8
17.1
17.1


MgO in mol %
3.5
2.6
3.0
3.6
3.1
2.5
2.0


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.0
0.0
0.0
0.0


CaO in mol %
0.1
0.1
0.1
0.0
0.0
0.0
0.0


(M2O3)/RxO in mol %
0.83
0.86
0.84
0.82
0.84
0.86
0.91


(P2O5 + R2O)/(M2O3)
1.38
1.39
1.39
1.40
1.38
1.38
1.34


in mol %


(P2O5 + RxO)/(M2O3)
1.60
1.55
1.58
1.62
1.56
1.53
1.46


in mol %


SiO2 in wt %
48.8
48.2
48.3
47.5
47.4
47.3
47.0


Al2O3 in wt %
22.9
23.4
23.1
23.3
23.8
24.0
24.6


P2O5 in wt %
12.5
12.7
12.7
12.8
12.5
12.5
12.5


Na2O in wt %
13.7
14.2
14.0
14.2
14.4
14.6
14.6


MgO in wt %
1.9
1.4
1.7
2.0
1.7
1.4
1.1


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.421
2.419
2.420
2.426
2.426
2.424
2.420


Molar Volume
29.58
29.82
29.72
29.64
29.70
29.81
30.00


(cm3/mol)


Strain Pt. (° C.)
615
616
616
615
615
623
624


Anneal Pt. (° C.)
666
671
670
666
669
679
681


Softening Pt. (° C.)
937.8
945.7
941.6
930.6
933.9
949.7
952.4


Temperature at 200 P
1655
1658
1658
1641
1646
1646
1657


Viscosity (° C.)


Temperature at 35 kP
1235
1236
1236
1224
1233
1236
1246


Viscosity (° C.)


Temperature at 160
1152
1154
1154
1141
1151
1152
1162


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical
3.021
3.007
3.015


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
763
743
764
760
760
748
748


temperature (° C.)


410° C. 1 hr


Compressive


Stress (MPa)


410° C. 1 hr Depth


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
925
925
927
978
981
975
983


Compressive


Stress (MPa)


410° C. 2 hr Depth
43
45
44
40
40
41
41


of Layer (mm)


410° C. 2 hr Vickers
20-30
30-40
20-30
>30
>30
>30
>30


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.3E−10
3.6E−10
3.4E−10
2.8E−10
2.8E−10
3.0E−10
3.0E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr





Example Number
135
136
137
138
139
140
141





SiO2 in mol %
57.8
58.8
55.8
55.9
55.8
57.8
56.9


Al2O3 in mol %
17.0
16.5
17.0
18.0
18.1
17.0
16.9


P2O5 in mol %
6.4
6.4
7.6
7.7
7.7
6.6
7.0


Na2O in mol %
16.6
16.2
17.3
16.2
16.7
17.2
17.0


MgO in mol %
2.0
2.0
0.1
0.1
0.1
0.1
0.1


ZnO in mol %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in mol %
0.1
0.1
0.1
0.1
0.1
0.1
0.1


CaO in mol %
0.0
0.0
2.0
2.0
1.5
1.2
2.0


(M2O3)/RxO in mol %
0.91
0.90
0.88
0.98
0.99
0.92
0.88


(P2O5 + R2O)/(M2O3)
1.36
1.37
1.46
1.33
1.35
1.40
1.43


in mol %


(P2O5 + RxO)/(M2O3)
1.48
1.49
1.59
1.45
1.44
1.48
1.55


in mol %


SiO2 in wt %
48.0
49.0
45.5
45.2
45.1
47.6
46.7


Al2O3 in wt %
23.9
23.3
23.5
24.7
24.8
23.8
23.5


P2O5 in wt %
12.6
12.6
14.7
14.8
14.8
12.8
13.6


Na2O in wt %
14.2
13.9
14.5
13.5
13.9
14.6
14.4


MgO in wt %
1.1
1.1
0.1
0.1
0.0
0.0
0.1


ZnO in wt %
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SnO2 in wt %
0.1
0.1
0.2
0.2
0.2
0.2
0.2


CaO in wt %
0.0
0.0
1.5
1.5
1.1
0.9
1.5


Compositional
XRF
XRF
XRF
XRF
XRF
XRF
XRF


analysis


Density (g/cm3)
2.416
2.410
2.421
2.429
2.419
2.423
2.427


Molar Volume
29.96
29.93
30.46
30.56
30.71
30.09
30.16


(cm3/mol)


Strain Pt. (° C.)
619
620
623
607
620
622
615


Anneal Pt. (° C.)
676
677
680
660
676
679
669


Softening Pt. (° C.)
948.8
957.8
947.1
916.9
944.6
946.4
928


Temperature at 200 P
1673
1684
1638
1652
1650
1674
1656


Viscosity (° C.)


Temperature at 35 kP
1254
1261
1214
1238
1242
1248
1230


Viscosity (° C.)


Temperature at 160
1171
1176
1130
1156
1157
1163
1147


kP Viscosity (° C.)


Liquidus


Temperature (° C.)


Liquidus


Viscosity (P)


Zircon Breakdown


Temperature (° C.)


Zircon Breakdown


Viscosity (P)


Stress Optical


Coefficient


((nm · Mpa−1 · mm−1)


Approximate Fictive
754
755
730
753
750
749
753


temperature (° C.)


410° C. 1 hr


Compressive


Stress (MPa)


410° C. 1 hr Depth


of Layer (mm)


410° C. 1 hr Vickers


Crack Initiation


Load (kgf)


410° C. 2 hr
953
922
895
898
896
925
906


Compressive


Stress (MPa)


410° C. 2 hr Depth
42
42
45
38
43
45
45


of Layer (mm)


410° C. 2 hr Vickers
>30
>30
>30
>30
>30
>30
>30


Crack Initiation


Load (kgf)


410° C. 3 hr


Compressive


Stress (MPa)


410° C. 3 hr Depth


of Layer (mm)


410° C. 4 hr


Compressive


Stress (MPa)


410° C. 4 hr Depth


of Layer (mm)


410° C. 4 hr Vickers


Crack Initiation


Load (kgf)


410° C. 8 hr


Compressive


Stress (MPa)


410° C. 8 hr Depth


of Layer (mm)


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 1 hr


D FSM DOL~
3.1E−10
3.1E−10
3.6E−10
2.6E−10
3.3E−10
3.6E−10
3.6E−10


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 2 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 3 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 4 hr


D FSM DOL~


1.4*2*(Dt){circumflex over ( )}0.5 at


410° C. 8 hr
















Example Number
142
143
144
145







SiO2 in mol %
57.5
58.1
58.2
58.4



Al2O3 in mol %
16.7
16.0
16.0
16.0



P2O5 in mol %
6.9
6.2
6.2
6.2



Na2O in mol %
16.7
16.0
16.1
16.1



MgO in mol %
0.1
3.6
3.4
3.1



ZnO in mol %
0.0
0.0
0.0
0.0



SnO2 in mol %
0.1
0.1
0.1
0.1



CaO in mol %
2.0
0.1
0.0
0.0



(M2O3)/RxO in mol %
0.89
0.81
0.82
0.83



(P2O5 + R2O)/(M2O3)
1.42
1.39
1.40
1.40



in mol %



(P2O5 + RxO)/(M2O3)
1.54
1.62
1.61
1.59



in mol %



SiO2 in wt %
47.3
48.8
48.9
49.0



Al2O3 in wt %
23.3
22.8
22.8
22.8



P2O5 in wt %
13.5
12.4
12.3
12.3



Na2O in wt %
14.2
13.9
14.0
14.0



MgO in wt %
0.1
2.0
1.9
1.7



ZnO in wt %
0.0
0.0
0.0
0.0



SnO2 in wt %
0.2
0.1
0.1
0.1



CaO in wt %
1.5
0.0
0.0
0.0



Compositional
XRF
XRF
XRF
XRF



analysis



Density (g/cm3)
2.425
2.422
2.421
2.418



Molar Volume
30.12
29.52
29.54
29.61



(cm3/mol)



Strain Pt. (° C.)
615
621
619
616



Anneal Pt. (° C.)
669
672
671
670



Softening Pt. (° C.)
930.1
938.5
938.9
941.3



Temperature at 200 P
1655
1652
1662
1664



Viscosity (° C.)



Temperature at 35 kP
1232
1232
1240
1243



Viscosity (° C.)



Temperature at 160
1147
1148
1157
1159



kP Viscosity (° C.)



Liquidus



Temperature (° C.)



Liquidus



Viscosity (P)



Zircon Breakdown



Temperature (° C.)



Zircon Breakdown



Viscosity (P)



Stress Optical



Coefficient



((nm · Mpa−1 · mm−1)



Approximate Fictive
750
765
772
770



temperature (° C.)



410° C. 1 hr



Compressive



Stress (MPa)



410° C. 1 hr Depth



of Layer (mm)



410° C. 1 hr Vickers



Crack Initiation



Load (kgf)



410° C. 2 hr
902
961
953
948



Compressive



Stress (MPa)



410° C. 2 hr Depth
48
40
42
41



of Layer (mm)



410° C. 2 hr Vickers
>30
>30
>30
>30



Crack Initiation



Load (kgf)



410° C. 3 hr



Compressive



Stress (MPa)



410° C. 3 hr Depth



of Layer (mm)



410° C. 4 hr



Compressive



Stress (MPa)



410° C. 4 hr Depth



of Layer (mm)



410° C. 4 hr Vickers



Crack Initiation



Load (kgf)



410° C. 8 hr



Compressive



Stress (MPa)



410° C. 8 hr Depth



of Layer (mm)



D FSM DOL~



1.4*2*(Dt){circumflex over ( )}0.5 at



410° C. 1 hr



D FSM DOL~
4.1E−10
2.8E−10
3.1E−10
3.0E−10



1.4*2*(Dt){circumflex over ( )}0.5 at



410° C. 2 hr



D FSM DOL~



1.4*2*(Dt){circumflex over ( )}0.5 at



410° C. 3 hr



D FSM DOL~



1.4*2*(Dt){circumflex over ( )}0.5 at



410° C. 4 hr



D FSM DOL~



1.4*2*(Dt){circumflex over ( )}0.5 at



410° C. 8 hr










Ion exchange is widely used to chemically strengthen glass articles for use in in consumer electronics, automotive applications, appliances, architectural components, and other areas where high levels of damage resistance are desirable. In the ion exchange process, a glass article containing a first metal ion (e.g., alkali cations in Li2O, Na2O, etc.) is at least partially immersed in or otherwise contacted with an ion exchange bath or medium containing a second metal ion that is either larger or smaller than the first metal ion that is present in the glass. The first metal ions diffuse from the glass surface into the ion exchange bath/medium while the second metal ions from the ion exchange bath/medium replace the first metal ions in the glass to a depth of layer below the surface of the glass. The substitution of larger ions for smaller ions in the glass creates a compressive stress at the glass surface, whereas substitution of smaller ions for larger ions in the glass typically creates a tensile stress at the surface of the glass. In some embodiments, the first metal ion and second metal ion are monovalent alkali metal ions. However, other monovalent metal ions such as Ag+, Tl+, Cu+, and the like may also be used in the ion exchange process. In those instances where at least one of Ag+ and Cu+ is exchanged for metal ions in the glass, such glasses may be particularly useful for anti-viral and/or anti-microbial applications.


A cross-sectional view of a portion (i.e., ends of the glass sheet are not shown) of a glass sheet strengthened by ion exchange is schematically shown in FIG. 1. In the non-limiting example shown in FIG. 1, strengthened glass sheet 100 has a thickness t, central portion 130, and a first surface 110 and second surface 112 that are substantially parallel to each other. Compressive layers 120, 122 extend from first surface 110 and second surface 112, respectively, to depths of layer d1, d2 below each surface. Compressive layers 120, 122 are under a compressive stress, while central portion 130 is under a tensile stress, or in tension. The tensile stress in central portion 130 balances the compressive stresses in compressive layers 120, 122, thus maintaining equilibrium within strengthened glass sheet 100. In some embodiments, the glasses and glass articles described herein may be ion exchanged to achieve a compressive stress of at least about 300 MPa and/or a depth of compressive layer of at least about 10 μm. In some embodiments, the glasses and glass articles described herein may be ion exchanged to achieve a compressive stress of at least about 500 MPa and/or a depth of compressive layer of at least about 40 μm. In some embodiments, the glass is ion exchanged to achieve a compressive stress of at least about 200, 300, 400, 500, 600, 700, 800, 900, or 1000 MPa. In some embodiments, the glass is ion exchanged to achieve a depth of layer of at least about 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, or 110 μm or more.


In addition to high damage resistance, the glasses described herein may be ion exchanged to achieve desired levels of compressive stress and compressive depth of layer in relatively short times. Following ion exchange at 410° C. for 4 hours in molten KNO3 salt, for example, a compressive layer having a compressive stress of greater than about 700 MPa and a depth of compressive layer of greater than about 75 m may be achieved in these glasses. In some embodiments, the ion exchange is done at about 400° C., 410° C., 420° C., 430° C., 440° C., 450° C., 460° C., 470° C., 480° C., 490° C., 500° C., 510° C., 520° C., 530° C., 540° C., or 550° C. or greater. In some embodiments, the ion exchange is done for about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 hours.



FIG. 2 is a plot of depth of layer as a function of compressive stress for samples a-f in Table 1. The 0.7 mm thick samples were annealed at 700° C. and ion exchanged in a molten KNO3 salt bath at 410° C. for times ranging from 1 hour up to 8 hours (groups “b-d” in FIG. 2) or at 470° C. for six minutes (group “a” in FIG. 2). The samples that were ion exchanged at 470° C. for six minutes exhibited compressive stresses and depths of layer that are well below the frangibility limit (i.e., the point at which the glass sample should or is likely to exhibit frangible behavior, indicated by line 1 in FIG. 2). The ion exchange time required for 0.7 mm thick samples to reach the frangibility limit is slightly greater than one hour at 410° C. In samples having higher fictive temperatures with viscosities corresponding to about 1011 Poise (i.e., unannealed, as down-drawn samples), the frangibility limit will also be met in a similarly short time, but the compressive stress will be lower and the depth of layer will be greater than in annealed samples. Samples that were ion exchanged for one hour (group “b”) exhibited compressive stresses and depths of layer that are just below the frangibility limit, and samples that were ion exchanged for either 4 or 8 hours (groups “c” and “d”, respectively) exhibit compressive stresses and depths of layer that exceed the frangibility limit.


The ability to ion exchange the glasses described herein may be at least partially attributable to the fact that these glasses have potassium and sodium interdiffusion coefficients that are significantly greater that those of other alkali aluminosilicate glasses that are used in applications in which damage resistance, as characterized by the Vickers crack initiation threshold of the glass, is a desirable attribute. At 410° C., the glasses described herein have a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s, 3.0×10−10 cm2/s, 4.0×10−10 cm2/s, or 4.5×10−10 cm2/s, 6.0×10−10 cm2/s, 7.5×10−10 cm2/s, 9.0×10−10 cm2/s, 1.0×10−9 cm2/s, 1.2×10−9 cm2/s, 1.5×10−9 cm2/s and in some embodiments, in a range from about 2.4×10−10 cm2/s, 3.0×10−10 cm2/s, 4.0×10−10 cm2/s, or 4.5×10−10 cm2/s up to about 7.5×10−10 cm2/s, 9.0×10−10 cm2/s, 1.0×10−9 cm2/s, 1.2×10−9 cm2/s, or 1.5×10−9 cm2/s. In contrast to these glasses, the alkali aluminosilicate glasses described in U.S. patent application Ser. Nos. 12/858,490, 12/856,840, and 12/392,577 have potassium/sodium interdiffusion coefficients of less than 1.5×10−10 cm2/s.


An embodiment comprises an alkali aluminosilicate glass comprising at least about 4 mol % P2O5, wherein [M2O3 (mol %)/RxO(mol %)]<1.4, where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, [M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−1° cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


An embodiment comprises an alkali aluminosilicate glass comprising 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4 where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, 0.8<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, 0.8≤[M2O3 (mol %)/RxO(mol %)]≤1.0. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


Another embodiment comprises an alkali aluminosilicate glass comprising at least about 4% P2O5, wherein the alkali aluminosilicate glass is ion exchanged to a depth of layer of at least about 20 m, and wherein 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4, where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, 0.6<[M2O3 (mol %)/RxO(mol %)]<1.0. In some embodiments, 0.8<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, 0.8≤[M2O3 (mol %)/RxO(mol %)]≤1.0. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×10−10 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


Another embodiment comprises an alkali aluminosilicate glass comprising at least about 4% P2O5, wherein 1.3<[(P2O5+R2O)/M2O3]≤2.3, where M2O3=Al2O3+B2O3 and R2O is the sum of monovalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO. In some embodiments, the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least about 2.4×10−10 cm2/s at 410° C. In some embodiments, the potassium/sodium interdiffusion coefficient is in a range from about 2.4×1010 cm2/s up to about 1.5×10−9 cm2/s at 410° C.


In some embodiments, the alkali aluminosilicate glass comprises from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In some embodiments, the alkali aluminosilicate glass comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO.


In some embodiments, the alkali aluminosilicate glasses described above are ion exchanged to a depth of layer of at least about 20 μm. In some embodiments, the glasses are ion exchanged to a depth of layer of at least about 40 μm. In some embodiments, the alkali aluminosilicate glasses have a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least 500 MPa. In some embodiments, the compressive stress is at least 750 MPa. In some embodiments, the compressive stress layer is from about 500 MPa to about 2000 MPa. In some embodiments, the ion exchanged alkali aluminosilicate glasses have a Vickers indentation crack initiation load of at least about 8 kgf. In some embodiments, the ion exchanged alkali aluminosilicate glasses have a Vickers indentation crack initiation load of at least about 12 kgf.


An embodiment comprises a method of strengthening an alkali aluminosilicate glass, the method comprising: providing an alkali aluminosilicate glass as described above, and immersing the alkali aluminosilicate glass in an ion exchange bath for a time period of up to about 24 hours to form a compressive layer extending from a surface of the alkali aluminosilicate glass to a depth of layer of at least 20 m. In some embodiments, the alkali aluminosilicate glass comprises at least about 4 mol % P2O5, wherein [M2O3 (mol %)/RxO(mol %)]<1.4, where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, [M2O3 (mol %)/RxO(mol %)]<1. In some embodiments, the alkali aluminosilicate glass comprises 0.6<[M2O3 (mol %)/RxO(mol %)]<1.4 where M2O3=Al2O3+B2O3 and RxO is the sum of monovalent and divalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, 0.8<[M2O3 (mol %)/RxO(mol %)]<1.4. In some embodiments, 0.8≤[M2O3 (mol %)/RxO(mol %)]≤1.0. In some embodiments, the alkali aluminosilicate glass comprising at least about 4% P2O5, wherein 1.3<[(P2O5+R2O)/M2O3]≤2.3, where M2O3=Al2O3+B2O3 and R2O is the sum of monovalent cation oxides present in the alkali aluminosilicate glass. In some embodiments, the alkali aluminosilicate glass comprises from about 40 mol % to about 70 mol % SiO2; from about 11 mol % to about 25 mol % Al2O3; from about 4 mol % to about 15 mol % P2O5; and from about 13 mol % to about 25 mol % Na2O. In some embodiments, the alkali aluminosilicate glass comprises from about 50 mol % to about 65 mol % SiO2; from about 14 mol % to about 20 mol % Al2O3; from about 4 mol % to about 10 mol % P2O5; and from about 14 mol % to about 20 mol % Na2O. In some embodiments, the alkali aluminosilicate glass further comprises less than 1 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % K2O. In some embodiments, the alkali aluminosilicate glass comprises less than 1 mol % B2O3. In some embodiments, the alkali aluminosilicate glass comprises 0 mol % B2O3. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, and ZnO.


In some embodiments, the alkali aluminosilicate glasses described above are ion exchanged to a depth of layer of at least about 20 m. In some embodiments, the glasses are ion exchanged to a depth of layer of at least about 40 m. In some embodiments, the alkali aluminosilicate glasses have a compressive layer extending from a surface of the glass to the depth of layer, and wherein the compressive layer is under a compressive stress of at least 500 MPa. In some embodiments, the compressive stress is at least 750 MPa. In some embodiments, the compressive stress layer is from about 500 MPa to about 2000 MPa. In some embodiments, the ion exchanged alkali aluminosilicate glasses have a Vickers indentation crack initiation load of at least about 8 kgf. In some embodiments, the ion exchanged alkali aluminosilicate glasses have a Vickers indentation crack initiation load of at least about 12 kgf.


While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the disclosure or appended claims. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present disclosure or appended claims.

Claims
  • 1. A method, the method comprising: immersing an alkali aluminosilicate glass in an ion exchange bath for a time period of up to 24 hours to form an ion-exchanged alkali aluminosilicate glass,wherein: the alkali aluminosilicate glass comprises: from 4 mol % to 15 mol % P2O5:from 13 mol % to 20 mol % Na2O; andless than 1 mol % B2O3;the alkali aluminosilicate glass has a potassium/sodium interdiffusion coefficient of at least 2.4×10−10 cm2/s at 410° C., andthe ion-exchanged alkali aluminosilicate glass has a Vickers indentation crack initiation load of at least 7 kgf.
  • 2. The method of claim 1, wherein the ion exchange bath comprises KNO3.
  • 3. The method of claim 1, wherein the ion-exchanged alkali aluminosilicate glass comprises a compressive layer extending from a surface of the ion-exchanged alkali aluminosilicate glass to a depth of layer of at least 10 μm.
  • 4. The method of claim 3, wherein the ion-exchanged alkali aluminosilicate glass comprises a compressive stress of at least 300 MPa.
  • 5. The method of claim 1, wherein the ion-exchanged alkali aluminosilicate glass comprises a compressive layer extending from a surface of the ion-exchanged alkali aluminosilicate glass to a depth of layer of at least 20 μm.
  • 6. The method of claim 1, wherein the ion-exchanged alkali aluminosilicate glass comprises a compressive stress of at least 300 MPa.
  • 7. The method of claim 1, wherein a Vickers indentation crack initiation load of the ion-exchanged alkali aluminosilicate glass is at least 12 kgf.
  • 8. The method of claim 1, wherein a Vickers indentation crack initiation load of the ion-exchanged alkali aluminosilicate glass is at least 15 kgf.
  • 9. The method of claim 1, wherein the potassium/sodium interdiffusion coefficient in a range from 2.4×10−10 cm2/s up to 1.5×10−9 cm2/s at 410° C.
  • 10. The method of claim 1, wherein the alkali aluminosilicate glass comprises 0 mol % B2O3.
  • 11. The method of claim 1, wherein the alkali aluminosilicate glass comprises at least 4 mol % P2O5.
  • 12. The method of claim 1, wherein the alkali aluminosilicate glass comprises: MgO;from 40 mol % to 70 mol % SiO2; andfrom 11 mol % to 25 mol % Al2O3;wherein: the alkali aluminosilicate glass is free of Li2O; and1.3<[(P2O5+R2O)/M2O3]≤2.3, where M2O3=Al2O3+B2O3 and R2O is the sum of monovalent cation oxides present in the alkali aluminosilicate glass.
  • 13. The method of claim 12, wherein the alkali aluminosilicate glass comprises 0 mol % K2O.
  • 14. The method of claim 12, wherein the alkali aluminosilicate glass comprises 0 mol % B2O3.
  • 15. The method of claim 12, wherein the alkali aluminosilicate glass comprises: from 50 mol % to 70 mol % SiO2;from 14 mol % to 20 mol % Al2O3;from 4 mol % to 12 mol % P2O5; andfrom 13 mol % to 18 mol % Na2O.
  • 16. The method of claim 12, wherein 1.5<[(P2O5+R2O)/M2O3]≤2.0.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 15/696,831 filed on Sep. 6, 2017, which is a continuation of U.S. patent application Ser. No. 14/842,122 filed on Sep. 1, 2015, which is a continuation of U.S. patent application Ser. No. 13/678,013 filed on Nov. 15, 2012, which claims the benefit of priority under 35 USC § 119 of U.S. Provisional Application Ser. No. 61/560,434 filed Nov. 16, 2011 the content of each is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (56)
Number Name Date Kind
3356477 Chisholm et al. Dec 1967 A
3357876 Welling Dec 1967 A
3433611 Saunders et al. Mar 1969 A
3464880 Rinehart Sep 1969 A
3485647 Harrington Dec 1969 A
3495963 Buckley et al. Feb 1970 A
3642504 Petzold et al. Feb 1972 A
3728095 Monks et al. Apr 1973 A
3876436 Lythgoe Apr 1975 A
3973972 Muller Aug 1976 A
3998617 Gliemeroth Dec 1976 A
4042405 Krohn et al. Aug 1977 A
4053679 Rinehart Oct 1977 A
4055703 Rinehart Oct 1977 A
4059454 Reade Nov 1977 A
4088501 Ellis et al. May 1978 A
4108674 Gliemeroth Aug 1978 A
4125404 Araujo et al. Nov 1978 A
4508834 Gliemeroth et al. Apr 1985 A
4726981 Pierson et al. Feb 1988 A
5698482 Frank et al. Dec 1997 A
5925180 Frank et al. Jul 1999 A
5972816 Goto Oct 1999 A
6165923 Ando et al. Dec 2000 A
6300264 Ohara Oct 2001 B1
6387509 Goto et al. May 2002 B1
7665330 Nakajima Feb 2010 B2
8158543 Dejneka et al. Apr 2012 B2
8187987 Amin et al. May 2012 B2
8257831 Yagi Sep 2012 B2
8367208 Glaesemann et al. Feb 2013 B2
8586492 Barefoot et al. Nov 2013 B2
8652979 Murata Feb 2014 B2
8759238 Chapman et al. Jun 2014 B2
8765262 Gross Jul 2014 B2
8802581 Dejneka et al. Aug 2014 B2
9156724 Gross Oct 2015 B2
9346703 Bookbinder et al. May 2016 B2
9567254 Amin et al. Feb 2017 B2
9682885 Gross Jun 2017 B2
9783453 Gross Oct 2017 B2
10562806 Gross Feb 2020 B2
20040187521 Sato Sep 2004 A1
20100047521 Amin et al. Feb 2010 A1
20100087307 Murata et al. Apr 2010 A1
20110081396 Denry Apr 2011 A1
20110201490 Barefoot et al. Aug 2011 A1
20110294648 Chapman et al. Dec 2011 A1
20120135226 Bookbinder et al. May 2012 A1
20120308827 Boek et al. Dec 2012 A1
20130045375 Gross Feb 2013 A1
20150147576 Bookbinder et al. May 2015 A1
20150239770 Gross Aug 2015 A1
20150239775 Amin et al. Aug 2015 A1
20150259244 Amin et al. Sep 2015 A1
20150368150 Gross Dec 2015 A1
Foreign Referenced Citations (23)
Number Date Country
1207086 Feb 1999 CN
1290665 Apr 2001 CN
1312582 Sep 2001 CN
1417145 May 2003 CN
1450010 Oct 2003 CN
101522584 Sep 2009 CN
102123960 Jul 2011 CN
843304 May 1998 EP
58-145640 Aug 1983 JP
01167245 Jun 1989 JP
2004-102210 Apr 2004 JP
2008-050182 Mar 2008 JP
2009-007194 Jan 2009 JP
2010-059038 Mar 2010 JP
2011-026186 Feb 2011 JP
2011057504 Mar 2011 JP
823326 Apr 1981 SU
925886 May 1982 SU
2004007385 Jan 2004 WO
2010131659 Nov 2010 WO
2011149811 Dec 2011 WO
2012074949 Jun 2012 WO
2012166421 Dec 2012 WO
Non-Patent Literature Citations (25)
Entry
Japanese Patent Application No. 2019-162935, Office Action dated Sep. 17, 2020, 9 pages (4 pages of English Translation and 5 pages of Original Document); Japanese Patent Office.
Chinese Patent Application No. 201910294436.9, Office Action dated Apr. 30, 2021, 11 pages (6 pages of English Translation and 5 pages of Original Document), Chinese Patent Office.
Aboud et al; “Crystallization Behavior in the Glass System SiO2—P2O5—Al2O3—MgO—Na2O” Journal of Non-Crystalline Solids; 219 (1997) 149-154.
Akin et al; “Effect of TiO2 Addition on Crystallization and Machinability of Potassium Mica and Fluorapatite Glass Ceramics”; J. Mater. Sci. (2007) 42:883-888.
Bagdassarov et al; “Effect of Alkalis, Phosphorus, and Water on the Surface Tension of Haplogranite Melt”; Americal Mineralogist, vol. 85, pp. 33-40, 2000.
Baikova et al; “Mechanical Properties of Phosphate Glasses as a Function of the Total Bonding Energy Per Unit Volume of Glass”; Glass Physics and Chemistry, 2008, vol. 34, No. 2 pp. 126-131.
Baikova et al; “The Dependence of Young's Modulus of Phosphate Glasses on Binding Energy”; Proc.Xxith Intern. Congr. on Glass, Strasbourg, 2007, No. Q20.
Baikova et al; “The Influence of Aluminum Oxide on Mechanical Properties of K2O—Al2O3—P2O5 Metaphosphate Glasses and the Role of Aluminium in Their Structure”; Glass Physics and Chemistry, vol. 21, No. 2, 1995, pp. 115-119.
Cekli et al; “The Crystallisation Behaviour and Machinability of Sodium-Potassium Mica and Fluorapatite Containing Glass Ceramics”; J. Aust. Ceram. Soc. 43 [1] (2007) 9-17.
Dexler et al; “Die Aluminiumorthophosphatglaser”; Glastech.Ber., 1951, vol. 24, No. 7, p. 172.
Dingwell et al; “The Effect of P2O5 on the Viscosity of Haplogranitic Liquid”; Eur. J. Mineral; 1993, 5, 133-140.
International Search Report and Written Opinion of the International Searching Authority; PCT/US12/65263; dated Nov. 15, 2012; 12 Pages.
O'Bannon, Dictionary of Ceramic Science and Engineering, 1984, Plenum Press p. 8.
Samia et al; “Crystallization and Properties of Glasses Based on Diopside-Ca-Tschermak's-Fluorapatite System”; Journal of the European Ceramic Society; 25 (2005) 1133-1142.
Sedmalis et al; In: Stekloobraznye Sistemy I Materialy, Riga, 1967, p. 169.
Toplis et al; “The Variable Influence of P2O5 on the Viscosity of Melts of Differing Alkali/Aluminium Ratio: Implications for the Structural Role of Phosphorus in Silicate Melts”; Geochimica Et Cosmochimica Acta, vol. 60, No. 21, pp. 4107-4121, 1996.
Toplis, “A 31P MAS NMR study of glasses in the system xNa2O-(1-x)Al2O3—2SiO2—yP2O5”, Journal of Non-Crystalline Solids, 224(1) 1998, pp. 57-68.
Tsuchiya et al; J.Ceram.Soc.Jpn, 1981, vol. 89, No. 4, p. 181.
Webb et al; “The Glass-Transition, Structural Relaxation and Shear Viscosity of Silicate Melts”; Chemical Geology, 128 (1996), 165-183.
Yucheng et al; “Development of High-Strength Machinable Bioactive Glass-Ceramics”; Proceedings of XVII International Congress on Glass; vol. 5 Special Glasses, Chinese Ceramic Society, Beijing 1995 8 Pages.
CN201280067101.X Office action dated Nov. 27, 2015.
EP12848960.6 Search Report dated Oct. 20, 2015.
TW101142930 Search Report dated Feb. 19, 2016.
JP2017195255 Office Action dated Dec. 6, 2018, Japan Patent Office.
JP2017195256 Office Action dated Dec. 12, 2018, Japan Patent Office, 3 Pgs.
Related Publications (1)
Number Date Country
20200180999 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61560434 Nov 2011 US
Continuations (3)
Number Date Country
Parent 15696831 Sep 2017 US
Child 16793398 US
Parent 14842122 Sep 2015 US
Child 15696831 US
Parent 13678013 Nov 2012 US
Child 14842122 US