The present disclosure relates to apparatus and methods, and more particularly to spectrometers, and to spectrometry methods.
Ion mobility spectrometers (IMS) can identify material from a sample of interest by ionizing the material (e.g., molecules, atoms, and so forth) and measuring the time it takes the resulting ions to travel a known distance under a known electric field. Each ion's time of flight can be measured by a detector, and the time of flight is associated with the ion's mobility. An ion's mobility relates to its mass and geometry. Therefore, by measuring the time of flight of an ion in the detector it is possible to infer an identity for the ion. These times of flight may be displayed graphically or numerically as a plasmagram. Other types of spectrometers, such as mass spectrometers, also analyse ions according to their mobility as determined by their mass-charge ratio.
To improve the ability of a spectrometer to identify ions in a sample of interest, it is suggested to modify some of the ions using a radio frequency, RF, electric field (e.g. by fragmenting them) to provide additional information which can be used to infer an identity for the ions. This provides additional degrees of freedom in the measurement of the ions, and therefore may improve the ability to resolve differences between ions. Where measurements are performed in the presence of contaminants, or in difficult operating conditions, or where a sample comprises ions with similar geometries and masses etc. the IMS's ability to detect and identify ions, and ion modification is one way to address these issues.
It is desirable to increase the proportion of ions that are modified by the application of radio frequency electric field, and the energy efficiency of the modification process.
Embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:
In the drawings like reference numerals are used to indicate like elements.
Aspects of the disclosure relate to the application of a high frequency alternating electric field to modify ions from a sample of interest. Despite the prevailing prejudice in the art, it has been found that the use of higher frequency electric fields, such as frequencies of 2.5 MHz or higher, can surprisingly increase the effectiveness of ion modification.
An ion modifier can be arranged between an ioniser and a detector in the path of ions travelling from the ioniser toward the detector. The ion modifier may comprise two electrodes, and ions travelling through the region between the two electrodes can be subjected to an alternating electric field. In aspects of the disclosure the voltage of one of the ion modifier electrodes may be controlled to vary less than the voltage of the other electrode.
In an aspect of the disclosure, a first electrode of an ion modifier may comprise conductors arranged across the direction of travel of the ions, with gaps between the conductors through which the ions can pass. A second electrode of the ion modifier may comprise conductors arranged in the path of ions travelling through the gaps in the first electrode. It may have been assumed that increasing the number of obstacles in the path of ions travelling along a detector would increase the number of ions that would be lost, however it has been found that these embodiments of the disclosure may surprisingly increase the degree of ion modification (e.g. conversion of parent ions into daughter ions).
The spectrometer illustrated in
In the example illustrated in
The IMS 100 may be configured to provide a flow of drift gas in a direction generally opposite an ion's path of travel to the detector 118. For example, the drift gas can flow from adjacent the detector 118 toward the gate 106. As illustrated, a drift gas inlet 122 and drift gas outlet 124 can be used to pass drift gas through the drift chamber. Example drift gases include, but are not limited to, nitrogen, helium, air, air that is re-circulated (e.g., air that is cleaned and/or dried) and so forth.
The detector 118 may be coupled to provide a signal to a controller 200. Current flow from the detector 118 can be used by the controller 200 to infer that ions have reached the detector 118, and a characteristic of the ions can be determined based on the time for ions to pass from the gate 106 along the drift chamber 104 to the detector 118. Examples of a detector 118 are configured to provide a signal indicating that ions have arrived at the detector 118. For example, the detector may comprise a conductive electrode (such as a faraday plate), which may be charged to catch ions.
Electrodes 120a, 120b, may be arranged to guide ions toward the detector 118, for example the drift electrodes 120a, 120b may comprise rings which may be arranged around the drift chamber 104 to focus ions onto the detector 118. Although the example of
The ion modifier electrodes 126, 127 can be spaced apart from the gate electrode 106. As illustrated, the ion modifier electrodes 126, 127 are arranged in the drift chamber, between the gate electrode and the detector. In an embodiment the ion modifier electrode may be arranged in the ionisation chamber, for example between the inlet 108 and the gate 106.
Each of the ion modifier electrodes 126, 127 can comprise an array of conductors arranged across the drift chamber. As illustrated, the conductors of each ion modifier electrode 126, 127 may have gaps between them such that ions can pass through each electrode by travelling through the gaps. In one example ions pass through the gaps between the conductors of the electrode 126, into a region 129 between the electrodes 126, 127, and out of the region through the gaps between the conductors of the electrode 127. While the ions are in the region between the electrodes 126, 127 they can be subjected to an alternating, RF, electric field.
As shown in
In an embodiment the voltage provider is configured to control the voltage of the first electrode to vary less than the voltage of the second electrode. In an example, the amplitude of the variation of the voltage of one of the ion modifier electrodes 126, 127 may be less than the amplitude of the variation of the other ion modifier electrode. For example, the voltage provider 202 may control the voltage of one of the ion modifier electrodes based on a direct current, DC, reference voltage so that the voltage of one electrode is constant whilst the other varies. In one example the voltage provider may control the voltage of the ion modifier electrodes 126, 127 so the variation of each is sinusoidal, or a square wave, a saw tooth, or a train of pulses, and the amplitude of the variation in voltage at one ion modifier electrode may be less than the variation in voltage at the other ion modifier electrode. In embodiments, applying asymmetric voltages to the ion modifier electrodes may reduce unwanted coupling of RF electric fields with other components of the spectrometer, and this may reduce unwanted leakage of electromagnetic interference from the spectrometer.
The voltage provider 202 may control the voltage of the two ion modifier electrodes to vary with a selected phase difference, for example the voltage controller may control the voltage of the two ion modifier electrodes 126, 127 so that the positive voltage excursion of one electrode occurs during the negative voltage excursion of the other. For example, the voltage provider 202 may control the voltage of the two ion modifier electrodes 126, 127 to vary in anti-phase. The voltage excursions of the two electrodes may be of the same amplitude.
In some examples the voltage provider may control the voltage of one of the ion modifier electrodes 126, 127 to vary more quickly than the voltage of the other ion modifier electrode 126, 127. For example, one of the ion modifier electrodes 126, 127 maybe coupled to a reference voltage, which may comprise a DC voltage, whilst the other ion modifier electrode may be coupled to an alternating voltage, such as an RF voltage.
As noted above, the drift electrodes 120a, 120b may provide a voltage profile that moves ions along the drift chamber so that the ions travel from the ioniser toward the detector. As illustrated in
As shown in
Ions travelling towards the detector can pass through gaps between the conductors of one of the ion modifier electrodes 126, and into the region 129 between the ion modifier electrodes 126, 127 where they can be subjected to a radio frequency, RF, electric field.
The ion modifier electrode 127 that is closer to the detector 118 may be arranged so that the conductors of that electrode 127 lie in the path of ions travelling through the gaps in the other ion modifier electrode. As shown in detail in Inset A of
In an embodiment the spectrometer and the voltage provider may be contained in a common housing.
In an embodiment the ion modifier electrodes 126, 127 may be disposed in the drift chamber. The ion modifier electrode may be spaced along the drift chamber from the gate electrode. The spacing may be at least 0.5 mm from the gate electrode 106, for example at least 2 mm, in an embodiment at least 4 mm, in an embodiment at least 6 mm, or at least 7 mm. In an embodiment the spacing may be less than 150 mm, or less than 100 mm, for example less than 50 mm.
The electrodes 126, 127 may comprise wire mesh. The mesh may be a lattice of conductors which may be arranged in a repeating square pattern. The conductors may have a thickness of at least 10 μm, for example less than 30 μm. The pitch of the mesh may be at least 200 μm, for example less than 500 μm. The two meshes may be separated from one another by at least 0.1 mm, for example at least 0.15 mm, for example less than 0.4 mm, for example less than 0.3 mm.
In one embodiment the nearest electrode 126 is arranged in the drift region 7 mm from the gate 106. In this embodiment the spacing between the ion modifier electrodes is 0.2 mm, and the electrodes comprise a mesh having a square pattern. In this embodiment the conductors of the mesh have a thickness of 21 μm and are arranged on a 363 μm pitch. The conductors may comprise wire.
A first example of operation of the apparatus shown in
As illustrated in
In an embodiment the method comprises controlling a voltage at one side of the region to vary less than the voltage at the side of the region. For example the voltage at one side of the region may be controlled to vary more quickly than the voltage at the respective other side of the region.
In spectrometry ion counts may be measured by peaks on a plasmagram, and the height of a peak may be an indicator of the number of ions reaching the detector at a particular time. Ions which are produced by ion modification may be termed “daughter ions”, and ions from which daughter ions are produced may be termed “parent ions”
In the graph 400 shown in
The y-axis, 404, indicates the ratio of the number of daughter ions to the number of parent ions.
A first curve 406 plotted on the graph shows the ratio as a function of RF voltage amplitude where the frequency of the RF voltage is 1.9 MHz. A second curve 408 plotted on the graph shows the ratio as a function of RF voltage amplitude where the frequency of the RF voltage is 2.5 MHz. A third curve 410 plotted on the graph shows the ratio as a function of RF voltage amplitude where the frequency of the RF voltage is 2.8 MHz
It can be seen in
It can be seen from
Without wishing to be bound by theory it is believed that, at a frequency of 1.9 MHz, the distance that an ion travels in one half of the RF waveform is comparable to the distance between the two modifier electrodes 126, 127. As such, the ions do not experience as many cycles of the RF as they do when the frequency is increased. Put another way, if an ion has a velocity of 1000 meters per second then in one half of a 2 MHz cycle it will travel 0.25 mm if the applied voltage is a square wave, or 0.176 mm if the applied voltage is a sine wave. If the gap between the ion modifier electrodes is 0.25 mm or perhaps less it can be seen that, after only a few cycles the ion will be ejected from the ion modifier. When the frequency is increased, for example to 6 MHz, or to 8 MHz, the distance traveled in one half of a cycle reduces (e.g. becomes 0.044 mm at 8 MHz). Therefore the the ion can experience many cycles before it leaves the modifier, and the probability of it experiencing a collision with high enough energy for a bond to break or some other molecular transformation to take place can be increased.
In some embodiments even higher frequencies, for example between 8 MHz and 10 MHz may reduce ion losses in the ion modifier—again without wishing to be bound by theory, this may be because the ions are able to get closer to the conductors of the ion modifier electrodes before they reach a “point of no return” (where they will be drawn onto the conductors). As such fewer ions may hit the wires and more therefore survive the journey through the modifier further increasing sensitivity.
In the graph 500 shown in
The y-axis, 504, indicates the ratio of the normalised peak height comparing the peak height when the ion modifier electrodes are not operated (turned off) to the peak height when the ion modifier electrodes are operated at the voltage indicated on the x-axis 502.
A first curve 506 plotted on the graph shows the ratio as a function of RF voltage amplitude where the frequency of the RF voltage is 3 MHz. A second curve 508 plotted on the graph shows the ratio as a function of RF voltage amplitude where the frequency of the RF voltage is 10 MHz. It can be seen that there is a significant reduction in ion loss where a higher frequency is used, and this is particularly true at higher voltage amplitudes.
As in
In the example 600 shown in
In the example 700 shown in
It will be appreciated that in the context of the present disclosure that RF electric fields comprise any alternating electric field having frequency characteristics appropriate for applying energy to modify ions (e.g. by imparting energy to them to raise their effective temperature).
Other examples and variations will be apparent to the skilled reader in the context of the present disclosure.
Aspects of the disclosure provide computer program products, and computer readable media, such as tangible non-transitory media, storing instructions to program a processor to perform any one or more of the methods described herein. Other variations and modifications of the apparatus will be apparent to persons of skill in the art in the context of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
1315145.1 | Aug 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2014/052540 | 8/19/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/025153 | 2/26/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7265345 | Hashimoto | Sep 2007 | B2 |
7378650 | Hashimoto | May 2008 | B2 |
7910878 | Bowdler | Mar 2011 | B2 |
20030132379 | Li | Jul 2003 | A1 |
20060071159 | Hashimoto et al. | Apr 2006 | A1 |
20070187591 | Bromberg | Aug 2007 | A1 |
20070290128 | Hashimoto | Dec 2007 | A1 |
20080210861 | Wu | Sep 2008 | A1 |
20080230688 | Bowdler | Sep 2008 | A1 |
20090039248 | Atkinson | Feb 2009 | A1 |
20100051800 | Atkinson | Mar 2010 | A1 |
20100200745 | Osgood | Aug 2010 | A1 |
20100314548 | Munchmeyer et al. | Dec 2010 | A1 |
20110284739 | Atkinson | Nov 2011 | A1 |
20130299712 | Atkinson | Nov 2013 | A1 |
20140008527 | Atkinson | Jan 2014 | A1 |
20150233866 | Verenchikov | Aug 2015 | A1 |
20170089863 | Taylor | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
101641593 | Feb 2010 | CN |
101688848 | Mar 2010 | CN |
101918827 | Dec 2010 | CN |
102723254 | Oct 2012 | CN |
103107060 | May 2013 | CN |
1884980 | Feb 2008 | EP |
2122340 | Nov 2011 | EP |
2421842 | Jul 2006 | GB |
2421843 | Jul 2006 | GB |
2439814 | Jan 2008 | GB |
2443952 | May 2008 | GB |
2471581 | Jan 2011 | GB |
2531285 | Apr 2016 | GB |
2531292 | Apr 2016 | GB |
2011510273 | Mar 2011 | JP |
2009009402 | Apr 2010 | MX |
0077823 | Dec 2000 | WO |
0077823 | Dec 2000 | WO |
2006114580 | Nov 2006 | WO |
2008110754 | Sep 2008 | WO |
2008110754 | Sep 2008 | WO |
2012098364 | Jul 2012 | WO |
2013093515 | Jun 2013 | WO |
2013121287 | Aug 2013 | WO |
WO2013121287 | Aug 2013 | WO |
2015025153 | Feb 2015 | WO |
Entry |
---|
International Search Report dated Dec. 12, 2014 for Appln. No. PCT/GB2014/052540. |
GB Search Report dated Apr. 2, 2014 for GB Application No. 1315145.1. |
GB Search Report dated May 20, 2015 for GB Application No. 1414715.1. |
Office Action dated Feb. 7, 2018 for Chinese Appln. No. 201480046700.2. |
Examination Report dated Aug. 21, 2017 for European Appln. No. 14759047.5-1559. |
Search Report dated May 3, 2016 for United Kingdom Appln. No. GB1414715.1. |
Office Action from Russian Patent Appln No. 2016107757/07, dated Jun. 18, 2018. |
Office Action from Mexican Patent Appln No. MX/a/2016/002317, dated Jul. 12, 2018. |
Office Action from Japanese Patent Appln No. 2016-535527, dated Sep. 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20160203967 A1 | Jul 2016 | US |