Ion source

Information

  • Patent Grant
  • 9859086
  • Patent Number
    9,859,086
  • Date Filed
    Friday, March 1, 2013
    11 years ago
  • Date Issued
    Tuesday, January 2, 2018
    6 years ago
Abstract
According to one embodiment, there is provided an ion source. The ion source includes a vacuum-exhausted vacuum chamber, a target which is set in the vacuum chamber and generates a plurality of valences of ions by irradiation of a laser beam, an acceleration electrode which is applied with voltage in order to accelerate the ions generated by the target, and an intermediate electrode which is provided between the target and the acceleration electrode and is applied with reverse voltage of the voltage applied to the acceleration electrode.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2012-046416, filed Mar. 2, 2012, the entire contents of which are incorporated herein by reference.


FIELD

Embodiments described herein relate generally to an ion source that generates an ion by irradiation of a laser beam.


BACKGROUND

In general, as a method of generating an ion in an ion source, for example, a method of acquiring the ion by causing discharge in gas has been known. In this case, a microwave or an electron beam may be used in order to cause the discharge.


Meanwhile, a technology that generates ions by using a laser is present. By an ion source that generates the ions by using the laser, a laser beam is collected and irradiated onto a solid target, an element contained in the target is vaporized and ionized by energy of the laser beam to generate plasmas, the ions contained in the plasmas are transported as the plasmas are, and the ions are accelerated while extracting an ion beam.


According to the ion source, the ions can be generated by irradiating the laser to the solid target and it is advantageous in generation of the multi-charged ion.


However, ions in every charge state coexist in the ions generated in the ion source as described above.


In this case, for example, a high-frequency acceleration linear accelerator is used at a rear end of the ion source to selectively transport only a necessary ion of a valence, but in an ion source by itself, ions of valences which are unnecessary cannot be removed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of a configuration of an ion source according to a first embodiment of the invention;



FIG. 2 is a characteristic diagram illustrating ions which are incident in an intermediate electrode 5;



FIG. 3 is a characteristic diagram illustrating ions in the case where a positive electric field is applied to the intermediate electrode 5; and



FIG. 4 is a schematic cross-sectional view of a configuration of an ion source according to a second embodiment of the invention.





DETAILED DESCRIPTION

Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings. According to one embodiment, in general, there is provided an ion source, including: a vacuum-exhausted vacuum chamber; a target which is set in the vacuum chamber and generates a plurality of valences of ions by irradiation of a laser beam; an acceleration electrode which is applied with voltage in order to accelerate the ions generated by the target; and an intermediate electrode which is provided between the target and the acceleration electrode and is applied with reverse voltage of the voltage applied to the acceleration electrode.


First Embodiment

First, an ion source according to a first embodiment of the invention will be described with reference to FIG. 1. FIG. 1 schematically illustrates a configuration of an ion source according to the embodiment. The ion source according to the embodiment is, for example, a laser ion source that collects and irradiates a laser beam onto a target and vaporizes and ionizes an element contained in the target by energy of the laser beam to generate ions.


As illustrated in FIG. 1, the ion source includes a vacuum chamber 1, a target 2, a collimator 3, an acceleration electrode 4, and an intermediate electrode 5.


The vacuum chamber 1 is made of, for example, stainless steel and the target 2 is set in the vacuum chamber 1. Further, the vacuum chamber 1 is vacuum-exhausted by an exhaust system (not illustrated).


A laser beam 10 is collected and irradiated onto the target 2 in the vacuum chamber 1 to generate a plurality of valences of ions. In detail, for example, the laser beam 10 collected by using a focusing lens (not illustrated) provided in the vacuum chamber 1 is irradiated to the target 2, and as a result, a laser ablation plasma (hereinafter, simply referred to as a plasma) 11 is generated. The plasma 11 contains a multi-charged ion of a target material as a target in the ion source. Further, the target 2 is, for example, a carbon based plate-like member.


The collimator 3 is installed between the target 2 and the acceleration electrode 4 and excludes unnecessary plasmas from the plasmas 11 generated by irradiating the laser beam 10 to the target 2.


The acceleration electrode 4 is applied with voltage to accelerate the ion contained in the plasma 11 transported via the collimator 3. As a result, an electric field for accelerating and focusing the ion contained in the plasma 11 is generated and the ion is accelerated, in the acceleration electrode 4. Further, the ion accelerated by the acceleration electrode 4 is finally emitted from the ion source as an ion 12.


The intermediate electrode 5 is installed between the collimator 3 and the acceleration electrode 4 and is applied with reverse voltage of the voltage applied to the acceleration electrode 4.


Subsequently, an operation of the ion source according to the embodiment will be described. Further, the ion generated from the ion source according to the embodiment is an ion caused by the ion contained in the target 2 and the plurality of valences of ions coexists. As the target 2, for example, a carbon target, and the like are contained.


First, the laser beam 10 collected by using the focusing lens is irradiated to the target 2 set in the vacuum chamber 1. In this case, the plasma 11 is generated in the target 2. In the case where the target 2 is the carbon target, for example, ions of C6+ to C1+ coexist in the plasma 11. Further, the plasma 11 from which the unnecessary plasma is removed by the collimator 3 is incident in the intermediate electrode 5.


Herein, the reverse voltage of the voltage applied to the acceleration electrode 4 is applied to the intermediate electrode 5 as described above, and the voltage value is set as an optimal value depending on the multi-charged ion of the target material, which is the target in the ion source, to prevent an ion, which is low in speed, such as, for example, a cluster ion, and the like among the plurality of valences of ions contained in the plasma 11 from passing through the intermediate electrode 5. As a result, unnecessary ions may be avoided from being introduced into a downstream part.


Further, a shape and voltage of the intermediate electrode 5 are optimized to focusing of the ion to control trajectory of the ion and improve a yield of the ion.


The ion, which passes through the intermediate electrode 5, is accelerated by the acceleration electrode 4. Further, the ion accelerated by the acceleration electrode 4 is emitted from the ion source as the ion 12 to be transported to the outside (for example, a linear accelerator 15, and the like) of the ion source.


Further, the plurality of valences of ions contained in the plasma 11 is different from each other in velocity. As a result, the plurality of valences of respective ions contained in the plasma 11 is different from each other in, for example, observation time in the intermediate electrode 5. By using the feature, pulse driving voltage is applied to the intermediate electrode 5 (that is, the intermediate electrode 5 is pulse-driven) to allow only an ion of a valence, which is a target in the ion source, among the plurality of valences of ions (that is, the plurality of valences of ions generated in the target 2) contained in the plasma 11 to pass through the intermediate electrode 5 (that is, transported to the acceleration electrode 4), for example, at a timing depending on a velocity of the multi-charged ion (that is, the ion of the valence which is the target in the ion source) of the target material which is the target in the ion source.


Herein, FIG. 2 illustrates, for example, the ion incident in the intermediate electrode 5. As illustrated in FIG. 2, the ion incident in the intermediate electrode 5 includes the multi-charged ion of the target material which is the target in the ion source and the unnecessary ion.



FIG. 3 illustrates an ion in the case where reverse voltage (for example, a positive electric field) of the voltage applied to the acceleration electrode 4 is applied to the intermediate electrode 5.


As illustrated in FIG. 3, the reverse voltage of the voltage applied to the acceleration electrode 4 is applied to the intermediate electrode 5 to remove the unnecessary ion illustrated in FIG. 2.


Further, as illustrated in FIG. 3, in the case where the target 2 is the carbon target, for example, C6+ to C1+ coexist in the ion observed in the intermediate electrode 5.


Since C6+ to C1+ are different from each other in velocity as described above, C6+ to C1+ are different from each other in time observed in the intermediate electrode 5, as illustrated in FIG. 3.


In this case, when the ion of the valence, which is the target in the ion source, is set as C6+, the intermediate electrode 5 is pulse-driven to lower voltage only while C6+ passes through the intermediate electrode 5 and voltage is applied to prevent the ion from passing through the intermediate electrode 5 during the rest thereof to enable only C6+ to pass through the intermediate electrode 5.


Further, herein, C6+ is the ion of the valence which is the target in the ion source, but the intermediate electrode 5 is pulse-driven at a timing depending on a velocity of an ion other than C6+, which is the target, to enable only the ion to pass through the intermediate electrode 5.


In the embodiment as described above, by the configuration which includes the vacuum-exhausted vacuum chamber 1, the target 2 set in the vacuum chamber 1 and generating the plurality of valences of ions by the irradiation of the laser beam, the acceleration electrode 4 applied with voltage in order to accelerate the ion generated by the target 2, and the intermediate electrode 5 provided between the target 2 and the acceleration electrode 4 and applied with the reverse voltage of the voltage applied to the acceleration electrode 4, the ion, which is low in speed, such as the cluster ion, and the like are unable to pass through the intermediate electrode 5. Therefore, the unnecessary ion may be excluded.


Further, in the embodiment, the configuration in which the pulse driving voltage is applied to the intermediate electrode 5 at a timing depending on a velocity of an ion of a predetermined valence, which is a target in the ion source, enables only the ion of the valence, which is the target, to be transported to the acceleration electrode 4.


In addition, in the embodiment, the pulse driving voltage may be applied to the acceleration electrode 4 (the acceleration electrode 4 is pulse-driven) so as to accelerate only the ion of the valence, which is the target, at the timing depending on the velocity of the ion of the valence which is the target in the ion source.


Second Embodiment

Subsequently, an ion source according to a second embodiment of the invention will be described with reference to FIG. 4. FIG. 4 schematically illustrates a configuration of an ion source according to an embodiment. Further, in FIG. 4, the same reference numerals refer to the same components as FIG. 1 and a detailed description thereof will be omitted.


As illustrated in FIG. 4, the ion source according to the embodiment is different from that of the first embodiment, in that an auxiliary electrode 6 is provided downstream of an acceleration electrode 4.


In the embodiment, pulse driving voltage is applied to the auxiliary electrode 6 to transport an ion of a predetermined valence (that is, the ion of the valence which is the target in the ion source) among the ions accelerated by the acceleration electrode 4 (that is, the auxiliary electrode 6 is pulse-driven). As a result, only the ion of the valence, which is the target, may be transported to the downstream part.


Further, a pulse width of pulse driving in the auxiliary electrode 6 may be increased by adjusting a position where the auxiliary electrode 6 is installed and voltage applied to the auxiliary electrode 6. As a result, coexistence rate of ions other than the ion of the valence, which is the target, may be lowered.


In the embodiment as described above, by a configuration in which the auxiliary electrode 6 installed downstream of the acceleration electrode 4 is provided and the pulse driving voltage is applied to the auxiliary electrode 6 to transport the ion of the predetermined valence among the ions accelerated by the acceleration electrode 4, only the ion of the valence which is the target in the ion source is transported.


While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims
  • 1. A method of using an ion source connected with a linear accelerator as a downstream apparatus, the ion source, including: a vacuum-exhausted vacuum chamber, and a carbon target which is set in the vacuum chamber and generates a plurality of valences of carbon ions by irradiation of a laser beam, the plurality of valences of ions including a multi-charged ion of a target material to be used in the ion source, the method comprising: applying, to an acceleration electrode, a voltage to accelerate the carbon ions generated by the carbon target, the acceleration electrode generating an electric field for accelerating and focusing the carbon ions; andapplying, to an intermediate electrode which is provided between the carbon target and the acceleration electrode, a reverse voltage of the voltage applied to the acceleration electrode having a value depending on the multi-charged carbon ion of the target material among a plurality of valences of carbon ions generated from the carbon target, the intermediate electrode focusing the multi-charged carbon ion of the target material,wherein the applying to the intermediate electrode and the reverse voltage comprises applying to the intermediate electrode a pulse driving voltage depending on a predetermined velocity of the multi-charged carbon ion of the target material among the plurality of valences of carbon ions which has been generated by the target and which have different velocities, only while the multi-charged carbon ion of the target material passes through the intermediate electrode to transport only the multi-charged carbon ion of the target material to the acceleration electrode, andwherein the multi-charged carbon ion of the target material, which has been passed through the intermediate electrode and accelerated by the acceleration electrode, is emitted from the ion source and transported to the linear accelerator.
  • 2. The method according to claim 1, further comprising: applying to an auxiliary electrode which is installed downstream of the acceleration electrode, a pulse driving voltage to transport the multi-charged carbon ion of the target material, among the carbon ions accelerated by the acceleration electrode, downstream of the auxiliary electrode.
  • 3. The method according to claim 1, further comprising: excluding, by a collimator between the target and the acceleration electrode, unnecessary plasmas from plasmas which are generated from the target.
Priority Claims (1)
Number Date Country Kind
2012-046416 Mar 2012 JP national
US Referenced Citations (32)
Number Name Date Kind
3406349 Swain Oct 1968 A
3593018 Cohen Jul 1971 A
4649278 Chutjian et al. Mar 1987 A
5245192 Houseman Sep 1993 A
5569917 Buttrill et al. Oct 1996 A
5614711 Li et al. Mar 1997 A
5742049 Holle et al. Apr 1998 A
6033973 Takemura Mar 2000 A
6140656 Fujii Oct 2000 A
6744225 Okamura Jun 2004 B2
7196337 Mikolas Mar 2007 B2
8872127 Okamura Oct 2014 B2
20020166960 Pronko Nov 2002 A1
20020180365 Okamura Dec 2002 A1
20030030013 Yamashita Feb 2003 A1
20030150984 Guevremont et al. Aug 2003 A1
20030201389 Hartley Oct 2003 A1
20040036032 Leung et al. Feb 2004 A1
20040238753 Mikolas Dec 2004 A1
20040238755 Lee Dec 2004 A1
20060273252 Hayden et al. Dec 2006 A1
20070075240 Hieke Apr 2007 A1
20090200485 Kolodney et al. Aug 2009 A1
20090224700 Chen et al. Sep 2009 A1
20100090103 Mueller et al. Apr 2010 A1
20100264328 Biloiu et al. Oct 2010 A1
20100301199 Chen et al. Dec 2010 A1
20110101237 Jung May 2011 A1
20120025072 Toyoda et al. Feb 2012 A1
20120211668 Okamura Aug 2012 A1
20140225000 Kakutani Aug 2014 A1
20150115169 Hieke Apr 2015 A1
Foreign Referenced Citations (9)
Number Date Country
1933092 Mar 2007 CN
102290315 Dec 2011 CN
11-111185 Apr 1999 JP
2000-146914 May 2000 JP
3713524 Sep 2005 JP
2007-057432 Mar 2007 JP
2009-37764 Feb 2009 JP
2 096 856 Nov 1997 RU
WO 2010109907 Sep 2010 WO
Non-Patent Literature Citations (2)
Entry
Office Action dated Apr. 15, 2014, in Japanese Application No. 2012-046416, filed Mar. 2, 2012 (with English-language translation).
Combined Office Action and Search Report dated Mar. 27, 2015 in Chinese Patent Application No. 201310064976.0 (with English language translation).
Related Publications (1)
Number Date Country
20130228699 A1 Sep 2013 US