The present invention relates generally to isotope tagging and more particularly to isotope tagging for workpiece authentication.
Artwork forgeries have always posed a problem. Recently, some have theorized that synthetic DNA tagging of paintings or sculptures could possibly provide authentication for artists. This DNA concept, however, may still be prone to copying or altering by sophisticated forgers with scientific knowledge.
Others have attempted to use chemical or isotope markers. Such conventional constructions are disclosed in: U.S. Pat. No. 8,931,696 entitled “Counterfeit Detection System and Method” which issued to Hood on Jan. 13, 2015; U.S. Pat. No. 8,864,038 entitled “Systems and Methods for Fraud Prevention, Supply Chain Tracking, Secure Material Tracing and Information Encoding using Isotopes and Other Markers” which issued to Marka et al. on Oct. 21, 2014; and U.S. Pat. No. 5,177,360 entitled “Devices and Method to Confirm the Authenticity of Art Objects” which issued to Fernandez-Rubio on Jan. 5, 1993. These prior methods, however, use relatively inexpensive and common isotopes which can be easily obtained by a sophisticated forger with access to common medical laboratories. For example, the Hood patent mixes a liquid form of the marker with paint applied to a canvas or a dye applied to a textile, or weaves a solid form of the marker into clothing. The Marka patent pelletizes the marker for placement into bulk manufactured items. The Fernandez-Rubio patent pipetts the marker into a sealed metal enclosed cavity which is adhered to an art object. Accordingly, these conventional methods are not well suited to prevent sophisticated forgeries of unique, one-of-a-kind items.
In accordance with the present invention, a method of assisting with authenticating a workpiece is provided. In another aspect, ions are generated, accelerated in an accelerator (for example, a cyclotron), an isotope is created, and then the isotope is implanted within a workpiece to assist with authenticating of the workpiece. A further aspect includes a workpiece substrate, a visual marker and an isotope internally located within the substrate adjacent the visual marker. Another aspect employs one or more isotopes having a half-life of at least three months, a precise and measurable alpha and/or gamma decay emission, and a unique isotope signature. In still another aspect, a system includes a heavy ion source, a cyclotron accelerator, an isotope separator, an optional cryogenic gas stopper, an optional fragmented isotope reaccelerator, and a rare isotope tagging station for tagging a high value workpiece with the rare isotope. Yet a further aspect uses a unique isotope, a pattern of one or more isotopes, and/or a combination of isotopes, to tag a high value workpiece for later authentication.
The present method, workpiece and system are advantageous over conventional approaches. For example, rare and expensive to produce isotopes are employed which can only be created and implanted in the workpiece in a few expensive facilities, which is well beyond the financial means and technical knowledge of forgers. Furthermore, the present method, workpiece and system allow for extremely accurate and unique authentication and identification tagging or marking. Moreover, the present isotope tagging has a long and predictable lifetime, a precise and measurable decay signature, a unique decay signature, is nonhazardous to people, and will not harm the workpiece. The present method, workpiece and system have the rare isotope implanted within the workpiece after the workpiece is created. Advantageously, the present system implants small quantities of rare isotopes into a workpiece and these isotopes can only be produced by extremely expensive equipment, which are not accessible to forgers. Additionally, the authentication via detection of the decay signatures of the implanted rare ions can be performed completely non-destructively via portable gamma ray detectors with sufficient energy resolution. Additional advantages and features of the present invention will be apparent from the following description and appended drawings.
The present method, workpiece and system are shown in
A high value workpiece 51 is an original artwork, such as a painting, print, photograph, sculpture, vase, tapestry, document or the like. Alternately, workpiece is an antique, jewelry, watch, vintage automobile component such as an engine block, or other such expensive or one-of-a-kind object that is prone to having forgeries or false reproductions made thereof. In the painting workpiece 51 example used herewith, a substrate 53 is canvas with an aesthetic painted layer 55 on a front surface. If a sculpture, substrate 53 includes the clay or ceramic material. If jewelry or an automobile component, substrate 53 may be a metal structure.
First, a visual marker 57 is placed in a small area on a backside of workpiece 51, such as by printing, painting or any other manner which will last for decades without significant degradation or harm to aesthetic painted layer 55. Marker 57 provides a visual point for the authenticator to begin seeking the isotope tag. One or more metallic masks 59 are temporarily placed against marker 57. Each mask 59 is a lead plate of about 2-10 mm thick with one or more holes 61 therethrough. Workpiece 51 is then placed in a fixture within isotope tagging station 39. A hollow and elongated beam pipe 63 is sealed against mask 59.
A beam of heavy ions is generated from source 23 and accelerated to approximately half the speed of light by cyclotrons 25 and 27. Nuclear reactions occur at the beginning of the fragment separator 29 to create the desired isotope. The desired isotope 71 is selected by the fragment separator and then transported for use in a beam pipe or optionally travel through catcher 31 and are slowed down in helium gas stopper 33. Optionally, isotopes 71 are thereafter re-accelerated in linear accelerator 37 to create a precise workpiece-penetration speed. Isotopes from the fragment separator or optionally reaccelerated isotopes 71 then travel through pipe 63 and those isotopes aligned with holes 61 in mask 59, penetrate into and are implanted between 5 mm and 1 micron deep, and more preferably at or between 1 mm and 10 microns inside workpiece 51 relative to the backside surface thereof adjacent pipe 63.
Multiple masks 59 with different hole quantities or patterns (as shown in
Referring to
While various embodiments have been disclosed, other embodiments may fall within the scope of the present invention. For example, the mask can have alternate external and/or hole shapes, such as elongated slots of straight or curved shapes. Additional or alternate accelerator, separator, catcher, stopper and jet equipment may be used as long as the facility is not commonly available and can produce rare isotopes accelerated with the above-specified energies and beam powers; such alternate equipment may lead to difference rates of isotope production as compared to
This application claims the benefit of U.S. Provisional Application No. 62/250,609, filed on Nov. 4, 2015, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5177360 | Fernandez-Rubio | Jan 1993 | A |
6106021 | Phillips | Aug 2000 | A |
6616964 | Hampp et al. | Sep 2003 | B1 |
6740875 | Ishikawa et al. | May 2004 | B1 |
8864038 | Marka et al. | Oct 2014 | B2 |
8931696 | Hood | Jan 2015 | B2 |
20090162278 | Ravn | Jun 2009 | A1 |
Entry |
---|
“Experimental Equipment Needs for the Facility for Rare Isotope Beams (FRIB),” prepared for the APS DNP Low Energy Town Meeting, published Feb. 13, 2015, pp. 1-30. |
Hausmann, M., et al.; “Design of the Advanced Rare Isotope Separator ARIS at FRIB,” Nuclear Instruments and Methods in Physics Research B, 317, 2013, pp. 349-353. |
“Isotope-Ratio Mass Spectrometry,” Wikipedia, modified Sep. 16, 2015, printed Nov. 2, 2015, 11 pages. |
Mashberg, Tom; “Art Forgers Beware: DNA Could Thwart Fakes,” The New York Times, Oct. 12, 2015, four pages. |
Nuclear Physics News International, vol. 24, Issue 1, Jan.-Mar. 2014, pp. 1-40. |
Schriber, Stan O. et al., “Rare-Isotope (Heavy Ion) Accelerators,” Proc. of 11th Workshop on RF Superconductivity, (2003), 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170125213 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62250609 | Nov 2015 | US |