JOINT DETECTION METHOD FOR LYMPHANGIOLEIO-MYOMATOSIS AND USE THEREOF

Information

  • Patent Application
  • 20230151418
  • Publication Number
    20230151418
  • Date Filed
    December 27, 2019
    4 years ago
  • Date Published
    May 18, 2023
    a year ago
Abstract
A joint detection method for lymphangioleio-myomatosis and a use thereof is provided. The method includes the following steps: performing Target Sequencing based Hybridization capture: a Panel is designed for the whole coding regions of TSC1 and TSC2 genes highly related to LAM and mutation genes closely related to solid tumors to construct a gDNA library, and sequencing is performed on a machine after a hybrid capture; sorting: the above sequencing data are processed and analyzed by bioinformatics; performing a supplementary detection by CMA if the TSC1 and TSC2 genes are detected to be negative; performing a supplementary detection by MLPA if a one-hit locus is detected; and performing a supplementary detection by Sanger method if a locus is detected to be a undefined locus derived from either a somatic mutation or a germline mutation. This method improves the positive mutation detection rate of LAM patients.
Description
SEQUENCE LISTING

This application includes a separate sequence listing in compliance with the requirement of 37 C.F.R.§.§ 1.824(a)(2)-1.824 (a)(6) and 1.824 (b), submitted under the file name “0102US01_Sequence_Listing”, created on Jun. 13, 2022, having a file size of 71.5 KB, the contents of which are hereby incorporated by reference.


FIELD OF TECHNOLOGY

The following relates to the technical field of genetic detection, particularly, it relates to a joint detection method for lymphangioleio-myomatosis and a use thereof.


BACKGROUND

Lymphangioleio-myomatosis (LAM) is a rare multisystem neoplastic disease that almost exclusively occurs in women. The main symptom of such disease is a disseminated thin-walled cystic lesions in the lung, which has progressed slowly. In the early stages, LAM patients experience mild symptoms, usually with gradually increasing dyspnea symptom, recurrent pneumothorax and chylothorax. About 60% to 70% of the patients develop a pneumothorax at some stages, while about 30% of the patients have chylothorax. The conventional extrapulmonary manifestation includes angiomyolipoma of the kidney, blockage of retroperitoneal lymphangion and blockage of pelvic lymph node, etc.


LAMs can be divided into two types, i.e., Sporadic LAM (S-LAM) and LAM associated with Tuberous Sclerosis Complex (TSC-LAM). The pathogenesis of LAM is unknown yet, but currently, it can be considered that patients suffering from LAM have gene mutations of TSC1 and TSC2, which result in continually activating cellular signaling pathway mediated by mammalian target of rapamycin (mTOR). Sirolimus can effectively inhibit the mTOR pathway and thus become an effective medicament for the treatment of LAM. It is also the first drug approved by FDA to treat LAM. And, it is reported that some LAM patients administrated with Sirolimus show improved lung function and decreased serum level of vascular endothelial growth factor D (VEGF-D) levels, and thus the symptoms of these patients are relieved and their life quality is improved; some LAM patients administrated with Sirolimus show continual exacerbation for the symptoms. Therefore, the primary cause of the difference in Sirolimus response is unclear. It is also shown in the researches that gene mutations of TSC1 and TSC2 cannot be detected in some patients, indicating that there may be another mechanism to participate in the occurrence and development of LAM.


Thus, it is significant for the diagnosis and treatment of LAM to develop a perfect LAM gene detection method and map a genetic mutation profile of a large samples for LAM patients so as to fully understand the pathogenesis of LAM.


SUMMARY

An aspect relates to a joint detection method for lymphangioleio-myomatosis and a use thereof. In the method, a probe capture method is firstly used to obtain coding regions sequences of TSC1/TSC2 genes and hotspot regions sequences of core genes related to the occurrence and development of tumors; and then paired-end sequencing is conducted on Illumina sequencing platform to detect sequence variant in the targeted region of samples; meanwhile, supplementary detections and result verification are performed in the methods, such as CMA, MLPA and Sanger, etc. to improve positive variant detection rate of LAM patients. Further, auxiliary diagnosis and pre-conception genetic counseling can be performed according to the detection results.


A joint detection method for lymphangioleio-myomatosis, comprises the steps as follows:


performing Target Sequencing based Hybridization capture: A Panel is designed for whole coding regions of TSC1 and TSC2 genes highly related to LAM and mutation genes closely related to solid tumors to construct a Genomic DNA (gDNA) library; sequencing is performed on a machine after a hybrid capture;


sorting: data obtained from the above sequencing is processed and analyzed through bioinformatics; when TSC1 and TSC2 genes are detected to be negative or there is only a one-hit mutated locus, a supplementary detection is performed by chromosomal microarray analysis (CMA) and Multiplex ligation-dependent probe amplification (MLPA); when a locus is detected to be an undefined locus originated from either a somatic mutation or a germline mutation, the locus can be verified by Sanger sequencing;


performing CMA to obtain loss of heterozygosity (LOH) and copy number variations; and


performing MLPA to obtain large fragment insertions and deletions; and


performing Sanger sequencing to test leukocyte samples corresponding to samples to be tested after taking the leukocyte samples, and to further determine whether the samples are S-LAM or TSC-LAM.


It has been determined that TSC1 and TSC2 genes are larger, including 23 and 42 exons, respectively, 0 with total coding region length of 9 kb, and have complex sequence regions. In conventional methods, such as Sanger sequencing, TSC1 and TSC2 genes are required to be segmented and amplified for several times and then sequenced, which consumes more workload, money, and samples. For the poor-quality Formalin-Fixed Paraffin-Embedded (FFPE) samples, the conventional amplification fails to achieve full coverage.


In the meanwhile, the research showed that the frequency of the somatic mutation for TSC1 and TSC2 genes was less than 10% for about 50% of LAM patients and the detection sensitivity of the conventional Sanger method was above 10%, leading to detection omission. Further, the occurrence and development of LAM is based on a Double-hit model, and the mutations of LAM occur in multiple forms, such as LOH and large fragment insertion and deletion. Therefore, a single detection method cannot meet the requirements of efficient detection. As LAM is heritable and sporadic, the hereditary patients with unobvious symptoms are often clinically misdiagnosed as sporadic LAM.


Based on the above research basis, the above joint detection method has been provided. In addition to the gene mutations of TSC1 and TSC2, another mechanism, which may be involved in the occurrence and development of LAM, is also taken into consideration in the method. Therefore, the detection of other tumor-related genes is included in the comprehensive detection of above-mentioned LAM, and meanwhile, methods such as CMA, MLPA, and Sanger, etc. are used for auxiliary diagnosis and result verification, thereby improving the positive mutation detection rate of LAM patients. Further, auxiliary diagnosis and pre-conception genetic counseling can be performed according to the detected result.


In one example, in the step of Target Sequencing based Hybridization capture, the Panel is designed to cover the following genes: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.


With references to databases, such as COSMIC and TCGA etc., in combination with the latest guideline/consensus of National Comprehensive Cancer Network (NCCN), proto-oncogenes and tumor suppressor genes closely related to the occurrence and development of solid tumors are screened out and combined to form the above Panel, a gene panel.


In one example, in the step of Target Sequencing based Hybridization capture, probe sequences for the TSC1 and TSC2 genes include SEQ ID NO: 1 to SEQ ID NO: 276.


For the above-mentioned Panel design, the whole coding regions of TSC1 and TSC2 genes, which are basically highly related to LAM, are designed in a shingled form to ensure target regions of the two genes to be covered at least 2 times, with each probe length of 100 bp, thereby further increasing the detection rate.


In one example, in the step of Target Sequencing based Hybridization capture, the sequencing depth is more than 1000×. A mutated locus is identified at a mutation frequency of more than 1%, to avoid detection omission at a low mutation frequency.


It is another aspect to provide a use of the joint detection method for LAM in a study of pathogenesis of LAM and/or in a diagnosis and treatment of LAM.


In one example, it relates to a use of a specific detection reagent in the joint detection method in a preparation of a diagnostic reagent or a diagnostic equipment for jointly detecting LAM.


The present disclosure further discloses a joint detection kit for LAM, including a Panel covering the following genes: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.


In one example, probe sequences of the Panel include SEQ ID NO: 1 to SEQ ID NO: 276.


In one example, the joint detection kit further includes an agent for CMA. It should be understood that the agent for CMA can be selected according to a practical experimental requirement, such as OncoScan® CNV FFRE Assay kit.


In one example, the joint detection kit further includes multiplex ligation-dependent probes for MLPA. It should be understood that the probes can be selected according to practical experimental requirements, 0 such as TSC1 and TSC2 probes from MRC-Holland.


It is another aspect to provide a joint detection system for LAM, comprising the modules as follows:


a detection module, comprising a module of Target Sequencing based Hybridization capture, a module of CMA, a module of MLPA, and a module of Sanger sequencing, wherein the module of Target Sequencing based Hybridization capture comprises a Panel designed for whole coding regions of TSC1 and TSC2 genes highly related to LAM and mutated genes closely related to solid tumors; and


an analysis module, firstly obtaining a detection result of Target Sequencing based Hybridization capture; requesting the module of chromosomal microarray analysis (CMA) and the module of Multiplex ligation-dependent probe amplification (MLPA) to perform a supplementary detection when TSC1 and TSC2 genes are detected to be negative or there is only a one-hit mutated locus; requesting the module of Sanger sequencing to verify the undefined locus when a locus is detected to be an undefined locus originated from either a somatic mutation or a germline mutation; and then analyzing and judging detection results from the detection modules, to draw a joint detection result of LAM.


In one example, the Panel covers genes as follows: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.


In one example, in the module of Target Sequencing based Hybridization capture, probe sequences for the TSC1 and TSC2 genes include SEQ ID NO: 1 to SEQ ID NO: 276.


It should be understood, that the above-mentioned joint detection system can be a combination of equipments, instruments, or agents that can perform Target Sequencing based Hybridization capture, CMA, MPLA, and Sanger sequencing, as long as the functions of the system can be achieved. For example, the conventional equipments and instruments can be used with specific Panel of the present disclosure, to achieve the purpose of obtaining the whole coding regions sequences of TSC1 and TSC2 genes and the hotspot region sequences of the core genes related to the occurrence and development of the tumor, and performing supplementary detections and result verifications in the methods, such as CMA, MLPA, Sanger sequencing, etc. at the same time.


Compared with the conventional art, the present disclosure has the following benefits:


The present disclosure provides a joint detection method for lymphangioleio-myomatosis. In the method, a probe capture method is firstly used to obtain coding regions sequences of TSC1/TSC2 genes and hotspot regions sequences of the core gene related to the occurrence and development of the tumor; and then paired-end sequencing is conducted on Illumina sequencing platform to detect sequence variant in the targeted region of samples; meanwhile supplementary detections and result verifications are performed in the methods, such as CMA, MLPA and Sanger, to improve the positive variant detection rate of LAM patients. Further, auxiliary diagnosis and pre-conception genetic counseling can be performed according to the detection results.


In addition, for poor-quality FFPE samples, TSC1 and TSC2 genes and the hotspot regions of the core gene related to solid tumor can be perfectly obtained and sequenced in a single experiment, by using a 2×100 bp probe design scheme, combined with a liquid-phase hybridization capture method.


The present disclosure provides a joint detection kit for LAM, which can be used for detecting coding regions sequences of TSC1 and TSC2 genes and hotspot regions sequences of the core gene related to the occurrence and development of the tumor. The joint detection kit also includes an agent for CMA reagent and/or multiplex ligation-dependent probes for MLPA, etc., which can be selected according to the requirements. And meanwhile, supplementary detections and result verifications can be performed with the methods, such as CMA, MLPA, and Sanger sequencing to improve the positive mutation detection rate of LAM patients. Further, auxiliary diagnosis and pre-conception genetic counseling can be performed according to the detection results.


The present disclosure provides a joint detection system for LAM, comprising a detection module and an analysis module, wherein the detection module comprises a module of Target Sequencing based Hybridization capture, a module of chromosomal microarray analysis (CMA), a module of Multiplex ligation-dependent probe amplification (MLPA) and a module of Sanger sequencing, etc. The system can be used for detecting coding regions sequences of TSC1 and TSC2 genes and hotspot regions sequences of the core genes related to the occurrence and development of the tumor. In the system, methods, such as CMA, MLPA and Sanger, etc. can be selected according to the requirements, and meanwhile, supplementary detections and result verification can be performed with the methods, such as CMA, MLPA and Sanger, etc. to improve the positive mutation detection rate of LAM patients. Further, auxiliary diagnosis and pre-conception genetic counseling can be performed according to the detection results.





BRIEF DESCRIPTION

Some of examples will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:



FIG. 1 shows a flow diagram of a multi-method joint detection scheme for LAM;



FIG. 2 shows a design of targeted probes for the TSC1 and TSC2 genes;



FIG. 3 shows a pie chart of the proportion of variants detected by different detection methods;



FIG. 4 shows a detection advantage of the joint detection method over the single method; and



FIG. 5 shows LOH phenomena of patients with TSC2 gene detected by CMA.





DETAILED DESCRIPTION

For better understanding of the present disclosure, the present disclosure will be fully described below with reference to the relevant accompanying figures. Preferred embodiments are shown in the figures. However, the present disclosure can be implemented in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided for the purpose of making the disclosed contents of the present disclosure more thorough and complete.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those normally understood by one skilled in the art in the technical field of the present disclosure. The terms used in the description of the present disclosure herein are only for the purpose of describing embodiments, and are not intended to limit the present disclosure. The term “and/or” used herein comprises anyone or all combinations of one or more corresponding items listed herein.


Example 1

LAM samples were detected as follows, according to a multi-method joint detection scheme for LAM, shown in FIG. 1.


I. Performing Target Sequencing Based Hybridization Capture, a Next-Generation Sequencing (NGS), with Probes:


1. Panel Design


The whole coding regions of TSC1 and TSC2 genes, which are basically highly related to LAM, were designed in a shingled form to ensure that the target regions of these two genes were covered at least 2 times, with each probe length of 100 bp, wherein the probes for TSC1 and TSC2 genes were designed as shown in FIG. 2.


At the same time, with reference to databases, such as COSMIC, TCGA, etc., in combination with the latest guidelines/consensus of NCCN, proto-oncogenes and tumor suppressor genes that were closely related to the occurrence and development of solid tumors were screened out, while probes were designed according to conventional method, that is, the probes were connected to the target region in an end-to-end manner at 1-fold coverage. The gene panel was listed as follows:









TABLE 1







Panel's Gene List








Coverage
Gene list
















Whole Coding
ALDH1
EGFR
FLT3
MYC
PTEN
SDHD


Regions
AQP9
ERBB2
HRAS
MYCN
RET
TP53


(40 genes)
AR
ESR1
KIT
NF1
RICTOR
TSC1



ATRX
FGFR1
KRAS
NRAS
RUNX1
TSC2



BCL2
FGFR2
MDM2
PDGFRA
SDHA
VHL



BRAF
FGFR3
MAP2K1
PGR
SDHB



CCND1
FGFR4
MET
POLE
SDHC


Hotspot
ABL1
CDKN2A
FBXW7
IDH2
NOTCH1
SMAD4


mutations
AKT1
CSF1R
GNA11
JAK2
NPM1
SMARCB1


(36 genes)
ALK
CTNNB1
GNAQ
JAK3
PIK3CA
SMO



APC
DDR2
GNAS
KDR
PTPN11
SRC



ATM
ERBB4
HNF1A
MLH1
RB1
STK11



CDH1
EZH2
IDH1
MPL
ROS1
TET2
















TABLE 2







Design Table of Probes for TSC1 and TSC2 Genes












SEQ







ID







NO:
sequences
Chr
Start
Stop
Group





  1
GTCCCCATTCCTGTTTCGTTTGCACAGAGGGGTTTTCTGGTGCGT
16
20985
2098
TSC2



CCTGGTCCACCATGGCCAAACCAACAAGCAAAGATTCAGGCTTG

   60
 660




AAGGAGAAGTT









  2
TCCACCATGGCCAAACCAACAAGCAAAGATTCAGGCTTGAAGG
16
20986
2098
TSC2



AGAAGTTTAAGATTCTGTTGGGACTGGGAACACCGAGGCCAAAT

   10
 710




CCCAGGTCTGCAG









  3
TAAGATTCTGTTGGGACTGGGAACACCGAGGCCAAATCCCAGGT
16
20986
2098
TSC2



CTGCAGAGGGTAAACAGACGGAGTTTATCATCACCGCGGAAAT

   60
 760




ACTGAGAGTGAGT









  4
AGGGTAAACAGACGGAGTTTATCATCACCGCGGAAATACTGAG
16
20987
2098
TSC2



AGTGAGTGAGCTACCTGTGTCTTTGCTAGGCTAGAGGGAAATGC

   10
 810




AGAGAAGGCTGGG









  5
TTAAGGAGACCGTGGCCTGAGCACTGGCCCCTTTTTCTTCTTTCA
16
21003
2100
TSC2



TCTCTCTCCAGGAACTGAGCATGGAATGTGGCCTCAACAATCGC

   44
 444




ATCCGGATGAT









  6
CTCCAGGAACTGAGCATGGAATGTGGCCTCAACAATCGCATCCG
16
21003
2100
TSC2



GATGATAGGGCAGATTTGTGAAGTCGCAAAAACCAAGAAATTT

   94
 494




GAAGAGGTAGGTT









  7
AGGGCAGATTTGTGAAGTCGCAAAAACCAAGAAATTTGAAGAG
16
21004
2100
TSC2



GTAGGTTTATCCAGTTGAGCTACTAGAGAGAGGCACGTAGACTA

   44
 544




TTCAGAGCCTGAG









  8
TGCTCCAGTTGCCGGGGCCAGGGTTCTTGGAGAGCACATCCTCA
16
21032
2103
TSC2



CCGCTGTCCCCTCTGCTGGTGACAGCACGCAGTGGAAGCACTCT

   73
 373




GGAAGGCGGTCG









  9
TCCCCTCTGCTGGTGACAGCACGCAGTGGAAGCACTCTGGAAGG
16
21033
2103
TSC2



CGGTCGCGGATCTGTTGCAGCCGGAGCGGCCGCTGGAGGCCCGG

   23
 423




CACGCGGTGCTG









 10
CGGATCTGTTGCAGCCGGAGCGGCCGCTGGAGGCCCGGCACGC
16
21033
2103
TSC2



GGTGCTGGCTCTGCTGAAGGCCATCGTGCAGGGGCAGGTAAGGC

   73
 473




CCAGGGCGACGCT









 11
GCTCTGCTGAAGGCCATCGTGCAGGGGCAGGTAAGGCCCAGGG
16
21034
2103
TSC2



CGACGCTGGGATGGGTGACGTCAGGCTGCCCACTGACTGTCCTG

   23
 523




TCCCTGCTGGGCC









 12
CCGTGTGGGCGACGCTGGCAGGCTCTGCTGATCCTGTGGCTTTT
16
21042
2104
TSC2



GTCTTTAGGGCGAGCGTTTGGGGGTCCTCAGAGCCCTCTTCTTTA

   44
 344




AGGTCATCAAG









 13
AGGGCGAGCGTTTGGGGGTCCTCAGAGCCCTCTTCTTTAAGGTC
16
21042
2104
TSC2



ATCAAGGATTACCCTTCCAACGAAGACCTTCACGAAAGGCTGGA

   94
 394




GGTTTTCAAGGC









 14
GATTACCCTTCCAACGAAGACCTTCACGAAAGGCTGGAGGTTTT
16
21043
2104
TSC2



CAAGGCCCTCACAGACAATGGGAGACACATCACCTACTTGGAG

   44
 444




GAAGAGCTGGGTG









 15
CCTCACAGACAATGGGAGACACATCACCTACTTGGAGGAAGAG
16
21043
2104
TSC2



CTGGGTGGGTGCCACCTTGGGTTGGAGGTTTCTCTGGCCTTGAC

   94
 494




GATCAAGTGTAAC









 16
GGAGGGGGAGGTGAGTGGGAGATGTAGATTCGGCGTCCTCGCA
16
21053
2105
TSC2



AACTGCCGCCGCTTCTCCCCCAGCTGACTTTGTCCTGCAGTGGAT

   36
 436




GGATGTTGGCTT









 17
GCCGCTTCTCCCCCAGCTGACTTTGTCCTGCAGTGGATGGATGTT
16
21053
2105
TSC2



GGCTTGTCCTCGGAATTCCTTCTGGTGCTGGTGAACTTGGTCAAA

   86
 486




TTCAATAGCT









 18
GTCCTCGGAATTCCTTCTGGTGCTGGTGAACTTGGTCAAATTCAA
16
21054
2105
TSC2



TAGCTGTTACCTCGACGAGTACATCGCAAGGATGGTTCAGTAAG

   36
 536




AAAAGAATTGA









 19
GTTACCTCGACGAGTACATCGCAAGGATGGTTCAGTAAGAAAAG
16
21054
2105
TSC2



AATTGAGATCCTGTTCTGATAATGGTCCTAAGTTCAGCTCCGCA

   86
 586




GTGAATAAAGTT









 20
CTCGGCCATCCAGGCAGTGCTGCCGGGACTGAGCTCGGTGCTCC
16
21061
2106
TSC2



CTGCAGGATGATCTGTCTGCTGTGCGTCCGGACCGCGTCCTCTGT

   46
 246




GGACATAGAGG









 21
GATGATCTGTCTGCTGTGCGTCCGGACCGCGTCCTCTGTGGACAT
16
21061
2106
TSC2



AGAGGTCAGTGCCTCCCCTCCCCAGGGCCGGCCCATTTCACCCT

   96
 296




GGTTTCTGGGA









 22
TGTCCTCTCCTGTGGGGAGGAGCTGGGGTAGGACGGGCGTGAGC
16
21065
2106
TSC2



CGTCTCCCTCTCCACCAGGTCTCCCTGCAGGTGCTGGACGCCGTG

   82
 682




GTCTGCTACAA









 23
CCTCTCCACCAGGTCTCCCTGCAGGTGCTGGACGCCGTGGTCTG
16
21066
2106
TSC2



CTACAACTGCCTGCCGGCTGAGAGCCTCCCGCTGTTCATCGTTAC

   32
 732




CCTCTGTCGCA









 24
CTGCCTGCCGGCTGAGAGCCTCCCGCTGTTCATCGTTACCCTCTG
16
21066
2106
TSC2



TCGCACCATCAACGTCAAGGAGCTCTGCGAGCCTTGCTGGAAGG

   82
 782




TGGGGTTTCTG









 25
CCATCAACGTCAAGGAGCTCTGCGAGCCTTGCTGGAAGGTGGGG
16
21067
2106
TSC2



TTTCTGAAACTGCTCTGGAAGGTTCCTGAGAGCACATGGATGGG

   32
 832




ACAAGGGCCATC









 26
CGGGACTGGGGCTGGGGGCAGGGCTTATGCCTGCCAGCCCCTGA
16
21070
2107
TSC2



CACGCATTGTGTCTCGCAGCTGATGCGGAACCTCCTTGGCACCC

   42
 142




ACCTGGGCCACA









 27
TTGTGTCTCGCAGCTGATGCGGAACCTCCTTGGCACCCACCTGG
16
21070
2107
TSC2



GCCACAGCGCCATCTACAACATGTGCCACCTCATGGAGGACAGG

   92
 192




TGAGTGTGGTGG









 28
GCGCCATCTACAACATGTGCCACCTCATGGAGGACAGGTGAGTG
16
21071
2107
TSC2



TGGTGGGTGGGGCGCAGGGCAGTGGAGGCCAGCACAGCCCTCG

   42
 242




GGGCAGCTCCAGT









 29
CCATGGCGGACCCTGGGACAGGGCCCTGCTCACATTCCGTCTCT
16
21086
2108
TSC2



CTGGGGAACACTTTTAGAGCCTACATGGAGGACGCGCCCCTGCT

   86
 786




GAGAGGAGCCGT









 30
AACACTTTTAGAGCCTACATGGAGGACGCGCCCCTGCTGAGAGG
16
21087
2108
TSC2



AGCCGTGTTTTTTGTGGGCATGGCTCTCTGGGGAGCCCACCGGC

   36
 836




TCTATTCTCTCA









 31
GTTTTTTGTGGGCATGGCTCTCTGGGGAGCCCACCGGCTCTATTC
16
21087
2108
TSC2



TCTCAGGAACTCGCCGACATCTGTGTTGCCATCATTTTACCAGGT

   86
 886




AAGGCGGTTT









 32
GGAACTCGCCGACATCTGTGTTGCCATCATTTTACCAGGTAAGG
16
21088
2108
TSC2



CGGTTTCTGTGTGCAGTGAGCTGGCAGGAACGGGAGAGCTCCCC

   36
 936




TCACGCCTGCCC









 33
CACAGCAAGCAAGCAGCTCTGACCCTGTGTGCTGGCCGGGCTCG
16
21106
2110
TSC2



TGTTCCAGGCCATGGCATGTCCGAACGAGGTGGTGTCCTATGAG

   18
 718




ATCGTCCTGTCC









 34
AGGCCATGGCATGTCCGAACGAGGTGGTGTCCTATGAGATCGTC
16
21106
2110
TSC2



CTGTCCATCACCAGGCTCATCAAGAAGTATAGGAAGGAGCTCCA

   68
 768




GGTGGTGGCGTG









 35
ATCACCAGGCTCATCAAGAAGTATAGGAAGGAGCTCCAGGTGG
16
21107
2110
TSC2



TGGCGTGGGACATTCTGCTGAACATCATCGAACGGCTCCTTCAG

   18
 818




CAGCTCCAGGTGG









 36
GGACATTCTGCTGAACATCATCGAACGGCTCCTTCAGCAGCTCC
16
21107
2110
TSC2



AGGTGGGGTGGGGGCAGGAGCTCCGGGGAGCACCGGGAACCCA

   68
 868




GACAGGCAGGCTC









 37
GCCAAGTCCATGTGGGGAGTGGAAGTCAGCCTGTGTCATCGTGC
16
21118
2111
TSC2



CTGGTACTGCAGACCTTGGACAGCCCGGAGCTCAGGACCATCGT

   15
 915




CCATGACCTGTT









 38
CTGCAGACCTTGGACAGCCCGGAGCTCAGGACCATCGTCCATGA
16
21118
2111
TSC2



CCTGTTGACCACGGTGGAGGAGCTGTGTGACCAGAACGAGTTCC

   65
 965




ACGGGTCTCAGG









 39
GACCACGGTGGAGGAGCTGTGTGACCAGAACGAGTTCCACGGG
16
21119
2112
TSC2



TCTCAGGAGAGATACTTTGAACTGGTGGAGAGATGTGCGGACCA

   15
 015




GAGGCCTGTGAGA









 40
AGAGATACTTTGAACTGGTGGAGAGATGTGCGGACCAGAGGCC
16
21119
2112
TSC2



TGTGAGACCCCCTCCTGGGTGGGGCCTTTGGGCTTTGGCTGGTG

   65
 065




GGGAGGGGCCGGG









 41
GACCAGCAGCCCAGTGTGGAGAAGGAGAGCGCCGGAGGGGCAG
16
21124
2112
TSC2



AGGGGCAACACCGGCTCTTCTTTTGACAGGAGTCCTCCCTCCTG

   25
 525




AACCTGATCTCCT









 42
ACACCGGCTCTTCTTTTGACAGGAGTCCTCCCTCCTGAACCTGAT
16
21124
2112
TSC2



CTCCTATAGAGCGCAGTCCATCCACCCGGCCAAGGACGGCTGGA

   75
 575




TTCAGAACCTG









 43
ATAGAGCGCAGTCCATCCACCCGGCCAAGGACGGCTGGATTCAG
16
21125
2112
TSC2



AACCTGCAGGCGCTGATGGAGAGATTCTTCAGGTAGGGGGTCCT

   25
 625




CTGTAGCCTTGC









 44
CAGGCGCTGATGGAGAGATTCTTCAGGTAGGGGGTCCTCTGTAG
16
21125
2112
TSC2



CCTTGCCTGGCACCTGGAGCCTGGCCCTGTCTCTGTCTGGGGCCC

   75
 675




ACCCGGGCTGG









 45
CTGGTGTGGGGCTGTGGCCGGGCACTCCCCACCCGCCCCAGCAG
16
21129
2113
TSC2



GCTGCCGTCCCGCAGGAGCGAGTCCCGAGGCGCCGTGCGCATCA

   13
 013




AGGTGCTGGACG









 46
GTCCCGCAGGAGCGAGTCCCGAGGCGCCGTGCGCATCAAGGTG
16
21129
2113
TSC2



CTGGACGTGCTGTCCTTTGTGCTGCTCATCAACAGGCAGTTCTAT

   63
 063




GAGGTGCGTGTC









 47
TGCTGTCCTTTGTGCTGCTCATCAACAGGCAGTTCTATGAGGTGC
16
21130
2113
TSC2



GTGTCCAGGCGGCCGCAGCTGGGGGCTCAGGGCTATTTCTCCGT

   13
 113




GGGCGGGCTGT









 48
GGAATTGGAAGTGTCACGAGATGTGGCCCTCGTTGGGCTGGCGC
16
21142
2114
TSC2



TCATTGGCCTCCCTTGTGCCTGTGCAGGAGGAGCTGATTAACTC

   01
 301




AGTGGTCATCTC









 49
GCCTCCCTTGTGCCTGTGCAGGAGGAGCTGATTAACTCAGTGGT
16
21142
2114
TSC2



CATCTCGCAGCTCTCCCACATCCCCGAGGATAAAGACCACCAGG

   51
 351




TCCGAAAGCTGG









 50
GCAGCTCTCCCACATCCCCGAGGATAAAGACCACCAGGTCCGAA
16
21143
2114
TSC2



AGCTGGCCACCCAGTTGCTGGTGGACCTGGCAGAGGGCTGCCAC

   01
 401




ACACACCACTTC









 51
CCACCCAGTTGCTGGTGGACCTGGCAGAGGGCTGCCACACACAC
16
21143
2114
TSC2



CACTTCAACAGCCTGCTGGACATCATCGAGAAGGTGAGAGCCGT

   51
 451




TGTACCCGGGGC









 52
AACAGCCTGCTGGACATCATCGAGAAGGTGAGAGCCGTTGTACC
16
21144
2114
TSC2



CGGGGCCGGGTGCTAGCGTGCCAGAGCTCCGTGGGCAGCAATG

   01
 501




GCCTCTGGGCCCT









 53
AGTGTTCTCACGGCTGCTGACTCAGAACCATGAGCCTGTGTGTA
16
21154
2115
TSC2



AGTCCTGGCCTTCTCTTCAAAGGTGATGGCCCGCTCCCTCTCCCC

   53
 553




ACCCCCGGAGC









 54
GGCCTTCTCTTCAAAGGTGATGGCCCGCTCCCTCTCCCCACCCCC
16
21155
2115
TSC2



GGAGCTGGAAGAAAGGGATGTGGCCGCATACTCGGCCTCCTTGG

   03
 603




AGGATGTGAAG









 55
TGGAAGAAAGGGATGTGGCCGCATACTCGGCCTCCTTGGAGGAT
16
21155
2115
TSC2



GTGAAGACAGCCGTCCTGGGGCTTCTGGTCATCCTTCAGGTGGG

   53
 653




TGTTCTGCACGA









 56
ACAGCCGTCCTGGGGCTTCTGGTCATCCTTCAGGTGGGTGTTCTG
16
21156
2115
TSC2



CACGAGGCCTCTGCTCCCGGGGCGCGCATGGCTAGCGTCCACCA

   03
 703




GCTGCATCTGC









 57
GTGCTGTCTTAGGACTGCGTTTTCACCTCCTGCGCCGTGGTGAGC
16
21203
2120
TSC2



TGCGTCCTCTCTCTGCAGACCAAGCTGTACACCCTGCCTGCAAG

   93
 493




CCACGCCACGC









 58
CCTCTCTCTGCAGACCAAGCTGTACACCCTGCCTGCAAGCCACG
16
21204
2120
TSC2



CCACGCGTGTGTATGAGATGCTGGTCAGCCACATTCAGCTCCAC

   43
 543




TACAAGCACAGC









 59
GTGTGTATGAGATGCTGGTCAGCCACATTCAGCTCCACTACAAG
16
21204
2120
TSC2



CACAGCTACACCCTGCCAATCGCGAGCAGCATCCGGCTGCAGGT

   93
 593




ATGGTGGCTGGG









 60
TACACCCTGCCAATCGCGAGCAGCATCCGGCTGCAGGTATGGTG
16
21205
2120
TSC2



GCTGGGGTTGCGCAGCCAGTTCCTGGGGGCCCAGCCAGGTATCC

   43
 643




CCGTCTCGGCAG









 61
GCAGGTGGGACGCCGCCTGTCCTGGGCCTGCACGAGCTTGGCTC
16
21214
2121
TSC2



TGGCTTTCACCATCCTCTTCCTGACAGGCCTTTGACTTCCTGTTG

   39
 539




CTGCTGCGGGC









 62
TCACCATCCTCTTCCTGACAGGCCTTTGACTTCCTGTTGCTGCTG
16
21214
2121
TSC2



CGGGCCGACTCACTGCACCGCCTGGGCCTGCCCAACAAGGATGG

   89
 589




AGTCGTGCGGT









 63
CGACTCACTGCACCGCCTGGGCCTGCCCAACAAGGATGGAGTCG
16
21215
2121
TSC2



TGCGGTTCAGCCCCTACTGCGTCTGCGACTACATGTACGCGGGA

   39
 639




CCTCGCCCACGG









 64
TCAGCCCCTACTGCGTCTGCGACTACATGTACGCGGGACCTCGC
16
21215
2121
TSC2



CCACGGCCCATGAGGCTCAGGGCGTCAGAGGCGCTGGGGCTGT

   89
 689




GGTGGCGCTGTTT









 65
GGGTTGGGAAGAGCCAAGTCTGTTCCGTTCCTGCTGCGGGGACT
16
21217
2121
TSC2



TGGCCTCAGCTGCTTCTCTTGCTTCTGCAGGGAGCCAGAGAGAG

   10
 810




GCTCTGAGAAGA









 66
CAGCTGCTTCTCTTGCTTCTGCAGGGAGCCAGAGAGAGGCTCTG
16
21217
2121
TSC2



AGAAGAAGACCAGCGGCCCCCTTTCTCCTCCCACAGGGCCTCCT

   60
 860




GGCCCGGCGCCT









 67
AGACCAGCGGCCCCCTTTCTCCTCCCACAGGGCCTCCTGGCCCG
16
21218
2121
TSC2



GCGCCTGCAGGCCCCGCCGTGCGGCTGGGGTCCGTGCCCTACTC

   10
 910




CCTGCTCTTCCG









 68
GCAGGCCCCGCCGTGCGGCTGGGGTCCGTGCCCTACTCCCTGCT
16
21218
2121
TSC2



CTTCCGCGTCCTGCTGCAGTGCTTGAAGCAGGTGAGTGGGGCCG

   60
 960




GGCAGGGACCAT









 69
CGTCCTGCTGCAGTGCTTGAAGCAGGTGAGTGGGGCCGGGCAGG
16
21219
2122
TSC2



GACCATCCGTCCCACGTTGGGCCAGGAGGACAGGGAGCTGCCA

   10
 010




CCTGCCTGCTGGG









 70
CTAGCTTCCGCCTCTGTCTCTAGGGTCCAGAAGGCCCTGTCCTGA
16
21221
2122
TSC2



CGCCTCCTCTCCTCGCAGGAGTCTGACTGGAAGGTGCTGAAGCT

   78
 278




GGTTCTGGGCA









 71
CCTCTCCTCGCAGGAGTCTGACTGGAAGGTGCTGAAGCTGGTTC
16
21222
2122
TSC2



TGGGCAGGCTGCCTGAGTCCCTGCGCTATAAAGTGCTCATCTTT

   28
 328




ACTTCCCCTTGC









 72
GGCTGCCTGAGTCCCTGCGCTATAAAGTGCTCATCTTTACTTCCC
16
21222
2122
TSC2



CTTGCAGTGTGGACCAGCTGTGCTCTGCTCTCTGCTCCATGGTAC

   78
 378




CATGGCCGGC









 73
AGTGTGGACCAGCTGTGCTCTGCTCTCTGCTCCATGGTACCATGG
16
21223
2122
TSC2



CCGGCCTGGGGTTGGGGTGGGGGACCCAGTAGGGTTTTTCCCCA

   28
 428




AAAGACTGCGA









 74
GGCTACCCCGTGACCTGGCCGCTGGGGAGAGGTTTCATGCCTGG
16
21227
2122
TSC2



ATTTGGTCATCAGCTTTCAGGCCCAAAGACACTGGAGCGGCTCC

   92
 892




GAGGCGCCCCAG









 75
TCATCAGCTTTCAGGCCCAAAGACACTGGAGCGGCTCCGAGGCG
16
21228
2122
TSC2



CCCCAGAAGGCTTCTCCAGAACTGACTTGCACCTGGCCGTGGTT

   42
 942




CCAGTGCTGACA









 76
AAGGCTTCTCCAGAACTGACTTGCACCTGGCCGTGGTTCCAGTG
16
21228
2122
TSC2



CTGACAGCATTAATCTCTTACCATAACTACCTGGACAAAACCAA

   92
 992




ACAGGTAGGAGG









 77
GCATTAATCTCTTACCATAACTACCTGGACAAAACCAAACAGGT
16
21229
2123
TSC2



AGGAGGTCAGAGCAGGACAGGCGAGCTTGATGGGGCCTGGGAT

   42
 042




TCGAGGGCCTGGC









 78
GCGAGGCTGCCTCTGCTGCAAGCGGGTGGGGCCTGAGGTGTCCT
16
21241
2124
TSC2



GTCTCCTGCAGCGCGAGATGGTCTACTGCCTGGAGCAGGGCCTC

   45
 245




ATCCACCGCTGT









 79
TGCAGCGCGAGATGGTCTACTGCCTGGAGCAGGGCCTCATCCAC
16
21241
2124
TSC2



CGCTGTGCCAGCCAGTGCGTCGTGGCCTTGTCCATCTGCAGCGT

   95
 295




GGAGATGCCTGA









 80
GCCAGCCAGTGCGTCGTGGCCTTGTCCATCTGCAGCGTGGAGAT
16
21242
2124
TSC2



GCCTGACATCATCATCAAGGCGCTGCCTGTTCTGGTGGTGAAGC

   45
 345




TCACGCACATCT









 81
CATCATCATCAAGGCGCTGCCTGTTCTGGTGGTGAAGCTCACGC
16
21242
2124
TSC2



ACATCTCAGCCACAGCCAGCATGGCCGTCCCACTGCTGGAGTTC

   95
 395




CTGTCCAGTGAG









 82
CAGCCACAGCCAGCATGGCCGTCCCACTGCTGGAGTTCCTGTCC
16
21243
2124
TSC2



AGTGAGTCCCCGCCCTGCCTGCGCATGCACCCGAGAGGTTCGGG

   45
 445




CTGTGTAACCTG









 83
AGAGGCGCTGCACGGGACCCCGGCTCCCCTGACCACCCTCTCCA
16
21257
2125
TSC2



TTACCGCAGCTCTGGCCAGGCTGCCGCACCTCTACAGGAACTTT

   46
 846




GCCGCGGAGCAG









 84
CAGCTCTGGCCAGGCTGCCGCACCTCTACAGGAACTTTGCCGCG
16
21257
2125
TSC2



GAGCAGTATGCCAGTGTGTTCGCCATCTCCCTGCCGTACACCAA

   96
 896




CCCCTCCAAGTG









 85
TATGCCAGTGTGTTCGCCATCTCCCTGCCGTACACCAACCCCTCC
16
21258
2125
TSC2



AAGTGAGTGGTCGCCCCAGGCCCTGTGCCTCCCAGCCGTGGCCC

   46
 946




CCGCTAGGCCT









 86
GTTTTTTGCACTTCATGCCCTGGGGATGTTTCCCTGCTGCCAGGA
16
21259
2126
TSC2



TGGAGTGCCAGCCCCCTTCTCATCTCAGGTTTAATCAGTACATCG

   95
 095




TGTGTCTGGC









 87
TGCCAGCCCCCTTCTCATCTCAGGTTTAATCAGTACATCGTGTGT
16
21260
2126
TSC2



CTGGCCCATCACGTCATAGCCATGTGGTTCATCAGGTGCCGCCT

   45
 145




GCCCTTCCGGA









 88
CCATCACGTCATAGCCATGTGGTTCATCAGGTGCCGCCTGCCCTT
16
21260
2126
TSC2



CCGGAAGGATTTTGTCCCTTTCATCACTAAGGTGGGCTCAGGGC

   95
 195




CGGTGAAGGCT









 89
AGGATTTTGTCCCTTTCATCACTAAGGTGGGCTCAGGGCCGGTG
16
21261
2126
TSC2



AAGGCTGTGTCTCTCGGTAGGCCAGGGCTTGCTTTGCCCTTGGCT

   45
 245




GTCCATGGTCG









 90
CCTCCAGCCCCCATTGCCACCCCTCACTGTCTGGGTGTGCTCACT
16
21264
2126
TSC2



CTGCCAGGGCCTGCGGTCCAATGTCCTCTTGTCTTTTGATGACAC

   39
 539




CCCCGAGAAG









 91
AGGGCCTGCGGTCCAATGTCCTCTTGTCTTTTGATGACACCCCCG
16
21264
2126
TSC2



AGAAGGACAGCTTCAGGGCCCGGAGTACTAGTCTCAACGAGAG

   89
 589




ACCCAAGAGGTA









 92
GACAGCTTCAGGGCCCGGAGTACTAGTCTCAACGAGAGACCCA
16
21265
2126
TSC2



AGAGGTACGGCCTGCGGGGGTGTGCCTGGAGTCGGTGTGGGGT

   39
 639




GGGGAAGGACATGG









 93
TTCTCCCCTTCCCGGGAGCTGGGCTCTCTGGGGCGTTGGGGCTCC
16
21275
2127
TSC2



TTCCTCACCCGATAGTCTGAGGATAGCCAGACCCCCCAAACAAG

   38
 638




GCTTGAATAAC









 94
CACCCGATAGTCTGAGGATAGCCAGACCCCCCAAACAAGGCTTG
16
21275
2127
TSC2



AATAACTCTCCACCCGTGAAAGAATTCAAGGAGAGCTCTGCAGC

   88
 688




CGAGGCCTTCCG









 95
TCTCCACCCGTGAAAGAATTCAAGGAGAGCTCTGCAGCCGAGGC
16
21276
2127
TSC2



CTTCCGGTGCCGCAGCATCAGTGTGTCTGAACATGTGGTCCGCA

   38
 738




GGTAGCGGGACT









 96
GTGCCGCAGCATCAGTGTGTCTGAACATGTGGTCCGCAGGTAGC
16
21276
2127
TSC2



GGGACTGTCGGGTGGGGGGCACGGACCCTGGAGCTTGGCCCCGT

   88
 788




GAGCACCTGGGT









 97
CTTGGTGATAGGTGGCTCGGCCCGCCCTACCTGGCACCCTGACC
16
21289
2129
TSC2



CTGGTCACGGCCTCTCCCTCCAGCAGGATACAGACGTCCCTCAC

   65
 065




CAGTGCCAGCTT









 98
ACGGCCTCTCCCTCCAGCAGGATACAGACGTCCCTCACCAGTGC
16
21290
2129
TSC2



CAGCTTGGGGTCTGCAGATGAGAACTCCGTGGCCCAGGCTGACG

   15
 115




ATAGCCTGAAAA









 99
GGGGTCTGCAGATGAGAACTCCGTGGCCCAGGCTGACGATAGCC
16
21290
2129
TSC2



TGAAAAACCTCCACCTGGAGCTCACGGAAACCTGTCTGGACATG

   65
 165




ATGGCTCGATAC









100
ACCTCCACCTGGAGCTCACGGAAACCTGTCTGGACATGATGGCT
16
21291
2129
TSC2



CGATACGTCTTCTCCAACTTCACGGCTGTCCCGAAGAGGTCCAG

   15
 215




GCGGCACTACAG









101
GTCTTCTCCAACTTCACGGCTGTCCCGAAGAGGTCCAGGCGGCA
16
21291
2129
TSC2



CTACAGGGCTGGGCGGGCCTGCGGGAGCTCCACGGGCAAGCTG

   65
 265




GGTTTCACGCTCC









102
GCGGCACTACAGGGCTGGGCGGGCCTGCGGGAGCTCCACGGGC
16
21292
2129
TSC2



AAGCTGGGTTTCACGCTCCCTGTCTTCTAGGTCTCCTGTGGGCGA

   03
 303




GTTCCTCCTAGC









103
GTTTCACGCTCCCTGTCTTCTAGGTCTCCTGTGGGCGAGTTCCTC
16
21292
2129
TSC2



CTAGCGGGTGGCAGGACCAAAACCTGGCTGGTTGGGAACAAGC

   53
 353




TTGTCACTGTGA









104
GGGTGGCAGGACCAAAACCTGGCTGGTTGGGAACAAGCTTGTC
16
21293
2129
TSC2



ACTGTGACGACAAGCGTGGGAACCGGGACCCGGTCGTTACTAG

   03
 403




GCCTGGACTCGGGG









105
CGACAAGCGTGGGAACCGGGACCCGGTCGTTACTAGGCCTGGA
16
21293
2129
TSC2



CTCGGGGGAGCTGCAGTCCGGCCCGGAGTCGAGGTGACTGCACC

   53
 453




TTCCTTTCCTCCG









106
GAGCTGCAGTCCGGCCCGGAGTCGAGGTGACTGCACCTTCCTTT
16
21294
2129
TSC2



CCTCCGCGCCTGCCAGCCTCGACACCGGCTGTCCCGAGCCCAGG

   03
 503




CCCACGTGGCAC









107
GGCCCACGTGGCACCCTCGTACCAGCCTGGGGACTAAGTCCACC
16
21294
2129
TSC2



CTGTGCGTGGGATTCTCTTCTCAGCTCCAGCCCCGGGGTGCATGT

   89
 589




GAGACAGACCA









108
GTGGGATTCTCTTCTCAGCTCCAGCCCCGGGGTGCATGTGAGAC
16
21295
2129
TSC2



AGACCAAGGAGGCGCCGGCCAAGCTGGAGTCCCAGGCTGGGCA

   39
 639




GCAGGTGTCCCGT









109
AGGAGGCGCCGGCCAAGCTGGAGTCCCAGGCTGGGCAGCAGGT
16
21295
2129
TSC2



GTCCCGTGGGGCCCGGGATCGGGTCCGTTCCATGTCGGGTGAGC

   89
 689




CTTGGCCCCAGCC









110
GGGGCCCGGGATCGGGTCCGTTCCATGTCGGGTGAGCCTTGGCC
16
21296
2129
TSC2



CCAGCCACCTCCACACAGGCACCGGGGCTCCCTCAGTTGCTGCT

   39
 739




GGTCCCAGTGTT









111
TTCAGCTTGAGGCTGGTGGTTTTGCATCAGGTAAGTGGTGGTCA
16
21300
2130
TSC2



CCAGTCCTCTGCCCTCTTCTTCAGGGGGCCATGGTCTTCGAGTTG

   97
 197




GCGCCCTGGAC









112
CTCTGCCCTCTTCTTCAGGGGGCCATGGTCTTCGAGTTGGCGCCC
16
21301
2130
TSC2



TGGACGTGCCGGCCTCCCAGTTCCTGGGCAGTGCCACTTCTCCA

   47
 247




GGACCACGGAC









113
GTGCCGGCCTCCCAGTTCCTGGGCAGTGCCACTTCTCCAGGACC
16
21301
2130
TSC2



ACGGACTGCACCAGCCGCGAAACCTGAGAAGGCCTCAGCTGGC

   97
 297




ACCCGGGTTCCTG









114
TGCACCAGCCGCGAAACCTGAGAAGGCCTCAGCTGGCACCCGG
16
21302
2130
TSC2



GTTCCTGTGCAGGAGAAGACGAACCTGGCGGCCTATGTGCCCCT

   47
 347




GCTGACCCAGGGC









115
TGCAGGAGAAGACGAACCTGGCGGCCTATGTGCCCCTGCTGACC
16
21302
2130
TSC2



CAGGGCTGGGCGGAGATCCTGGTCCGGAGGCCCACAGGTACTG

   97
 397




GGCGGGGCTGGCC









116
TGGGCGGAGATCCTGGTCCGGAGGCCCACAGGTACTGGGCGGG
16
21303
2130
TSC2



GCTGGCCTGAGCGCCATCTTTCTGCCAGTCACCCACAGAGCTGT

   47
 447




GGACACTCAGGGG









117
AGGCCCCTGGGGGGCCAGAGATGGGTAAGGGGAGGTACTGGCC
16
21315
2131
TSC2



TCAGGCCAAAGGTGCTGCCGCCTCCGCAGGGAACACCAGCTGGC

   23
 623




TGATGAGCCTGGA









118
AAAGGTGCTGCCGCCTCCGCAGGGAACACCAGCTGGCTGATGA
16
21315
2131
TSC2



GCCTGGAGAACCCGCTCAGCCCTTTCTCCTCGGACATCAACAAC

   73
 673




ATGCCCCTGCAGG









119
GAACCCGCTCAGCCCTTTCTCCTCGGACATCAACAACATGCCCC
16
21316
2131
TSC2



TGCAGGAGCTGTCTAACGCCCTCATGGCGGCTGAGCGCTTCAAG

   23
 723




GAGCACCGGGAC









120
AGCTGTCTAACGCCCTCATGGCGGCTGAGCGCTTCAAGGAGCAC
16
21316
2131
TSC2



CGGGACACAGCCCTGTACAAGTCACTGTCGGTGCCGGCAGCCAG

   73
 773




CACGGCCAAACC









121
ACAGCCCTGTACAAGTCACTGTCGGTGCCGGCAGCCAGCACGGC
16
21317
2131
TSC2



CAAACCCCCTCCTCTGCCTCGCTCCAACACAGGTGAGTGGCATG

   23
 823




GCGGGCCTTGGC









122
CCCTCCTCTGCCTCGCTCCAACACAGGTGAGTGGCATGGCGGGC
16
21317
2131
TSC2



CTTGGCACGGGCTCTGCTCCCACTGGCCTGGTGCTCCCGGTGAC

   73
 873




GGCAATGTGGCT









123
CTCTGCTCGACCTGTGTGTAGCCCCTCCTCCTGCTGACGTGGCCG
16
21323
2132
TSC2



CACACGGCCTTCCCTTGCAGTGGCCTCTTTCTCCTCCCTGTACCA

   71
 471




GTCCAGCTGC









124
GGCCTTCCCTTGCAGTGGCCTCTTTCTCCTCCCTGTACCAGTCCA
16
21324
2132
TSC2



GCTGCCAAGGACAGCTGCACAGGAGCGTTTCCTGGGCAGGTATC

   21
 521




GCCTCTCAGAG









125
CAAGGACAGCTGCACAGGAGCGTTTCCTGGGCAGGTATCGCCTC
16
21324
2132
TSC2



TCAGAGGGAAGCGGTTGGCTGCAGAGCGCCACTCTGCCTCATAG

   71
 571




GTGCTGTGCTCG









126
GGCCACGTCAGGGCCAGGGCCTGGCCCAGCCCCACATCCAGCA
16
21336
2133
TSC2



GCCCCGTCTGTGTCCTCCCAGACTCCGCCGTGGTCATGGAGGAG

   31
 731




GGAAGTCCGGGCG









127
CTGTGTCCTCCCAGACTCCGCCGTGGTCATGGAGGAGGGAAGTC
16
21336
2133
TSC2



CGGGCGAGGTTCCTGTGCTGGTGGAGCCCCCAGGGTTGGAGGAC

   81
 781




GTTGAGGCAGCG









128
AGGTTCCTGTGCTGGTGGAGCCCCCAGGGTTGGAGGACGTTGAG
16
21337
2133
TSC2



GCAGCGCTAGGCATGGACAGGCGCACGGATGCCTACAGCAGGG

   31
 831




TGAGTGTGGCTCA









129
CTAGGCATGGACAGGCGCACGGATGCCTACAGCAGGGTGAGTG
16
21337
2133
TSC2



TGGCTCAGAGCCTGGACCCTGCTGACCTCGGGGGGCTCCTTAGG

   81
 881




GGAGGCAGGGCTC









130
GGTGGGCTCGAGGGTGCCTGCTGACAGGGGTTCTCTTTGGGATG
16
21341
2134
TSC2



GTCCTTTCTAGTCGTCCTCAGTCTCCAGCCAGGAGGAGAAGTCG

   73
 273




CTCCACGCGGAG









131
TCTAGTCGTCCTCAGTCTCCAGCCAGGAGGAGAAGTCGCTCCAC
16
21342
2134
TSC2



GCGGAGGAGCTGGTTGGCAGGGGCATCCCCATCGAGCGAGTCG

   23
 323




TCTCCTCGGAGGG









132
GAGCTGGTTGGCAGGGGCATCCCCATCGAGCGAGTCGTCTCCTC
16
21342
2134
TSC2



GGAGGGTGGCCGGCCCTCTGTGGACCTCTCCTTCCAGCCCTCGC

   73
 373




AGCCCCTGAGCA









133
TGGCCGGCCCTCTGTGGACCTCTCCTTCCAGCCCTCGCAGCCCCT
16
21343
2134
TSC2



GAGCAAGTCCAGCTCCTCTCCCGAGCTGCAGACTCTGCAGGACA

   23
 423




TCCTCGGGGAC









134
AGTCCAGCTCCTCTCCCGAGCTGCAGACTCTGCAGGACATCCTC
16
21343
2134
TSC2



GGGGACCCTGGGGACAAGGCCGACGTGGGCCGGCTGAGCCCTG

   73
 473




AGGTTAAGGCCCG









135
CCTGGGGACAAGGCCGACGTGGGCCGGCTGAGCCCTGAGGTTA
16
21344
2134
TSC2



AGGCCCGGTCACAGTCAGGGACCCTGGACGGGGAAAGTGCTGC

   23
 523




CTGGTCGGCCTCGG









136
GTCACAGTCAGGGACCCTGGACGGGGAAAGTGCTGCCTGGTCG
16
21344
2134
TSC2



GCCTCGGGCGAAGACAGTCGGGGCCAGCCCGAGGGTCCCTTGCC

   73
 573




TTCCAGCTCCCCC









137
GCGAAGACAGTCGGGGCCAGCCCGAGGGTCCCTTGCCTTCCAGC
16
21345
2134
TSC2



TCCCCCCGCTCGCCCAGTGGCCTCCGGCCCCGAGGTTACACCAT

   23
 623




CTCCGACTCGGC









138
CGCTCGCCCAGTGGCCTCCGGCCCCGAGGTTACACCATCTCCGA
16
21345
2134
TSC2



CTCGGCCCCATCACGCAGGGGCAAGAGAGTAGAGAGGGACGCC

   73
 673




TTAAAGAGCAGAG









139
CCCATCACGCAGGGGCAAGAGAGTAGAGAGGGACGCCTTAAAG
16
21346
2134
TSC2



AGCAGAGCCACAGCCTCCAATGCAGAGAAAGTGCCAGGCATCA

   23
 723




ACCCCAGGTGGGCC









140
CCACAGCCTCCAATGCAGAGAAAGTGCCAGGCATCAACCCCAG
16
21346
2134
TSC2



GTGGGCCTCTTGCTTCCGGGCGGGGCTCCTGACACCTCTCCTGCG

   73
 773




GGAACCTGGTGC









141
TGGGCTGTGGCTGCCCTGGCCAGGCCCTCACCTGGGTGCCCACC
16
21348
2134
TSC2



ATCCCCTCCCTGTGCAGTTTCGTGTTCCTGCAGCTCTACCATTCC

   90
 990




CCCTTCTTTGG









142
TCCCTGTGCAGTTTCGTGTTCCTGCAGCTCTACCATTCCCCCTTCT
16
21349
2135
TSC2



TTGGCGACGAGTCAAACAAGCCAATCCTGCTGCCCAATGAGGTA

   40
 040




GGCGTGGCCT









143
CGACGAGTCAAACAAGCCAATCCTGCTGCCCAATGAGGTAGGC
16
21349
2135
TSC2



GTGGCCTCCCTCTCCTGCATCCGCTGGAGCTGTGTGGCTCGGGTG

   90
 090




AATGGTGGGGGG









144
CGGCCTCCTGTGGACGGGCGTCTGGGGCTCAGGCAGGGCTCTGT
16
21351
2135
TSC2



GTGCCACAGTCACAGTCCTTTGAGCGGTCGGTGCAGCTCCTCGA

   77
 277




CCAGATCCCATC









145
CAGTCACAGTCCTTTGAGCGGTCGGTGCAGCTCCTCGACCAGAT
16
21352
2135
TSC2



CCCATCATACGACACCCACAAGATCGCCGTCCTGTATGTTGGAG

   27
 327




AAGGCCAGGTGA









146
ATACGACACCCACAAGATCGCCGTCCTGTATGTTGGAGAAGGCC
16
21352
2135
TSC2



AGGTGAGGCTGCGGGGCCGGCCTAGGTGCCTGGACAGGGCCAG

   77
 377




CTGGGCCTCAGCC









147
CGGGGCAGGGCCCGGCCCGGGAGTGATGCCACCCTGCCTCTCCC
16
21361
2136
TSC2



CTCTCCCCACAGAGCAACAGCGAGCTCGCCATCCTGTCCAATGA

   37
 237




GCATGGCTCCTA









148
CCACAGAGCAACAGCGAGCTCGCCATCCTGTCCAATGAGCATGG
16
21361
2136
TSC2



CTCCTACAGGTACACGGAGTTCCTGACGGGCCTGGGCCGGCTCA

   87
 287




TCGAGCTGAAGG









149
CAGGTACACGGAGTTCCTGACGGGCCTGGGCCGGCTCATCGAGC
16
21362
2136
TSC2



TGAAGGACTGCCAGCCGGACAAGGTGTACCTGGGAGGCCTGGA

   37
 337




CGTGTGTGGTGAG









150
ACTGCCAGCCGGACAAGGTGTACCTGGGAGGCCTGGACGTGTGT
16
21362
2136
TSC2



GGTGAGGACGGCCAGTTCACCTACTGCTGGCACGATGACATCAT

   87
 387




GCAAGGTACGGC









151
GACGGCCAGTTCACCTACTGCTGGCACGATGACATCATGCAAGG
16
21363
2136
TSC2



TACGGCCTGGCGCCTACCCGCTCCTGCTGCCCCAGGCCTCAGGG

   37
 437




CACGGCTCCCAT









152
ACAGAGGGCCTCAGCACTGGCCCCACAAACCCATCCGGCCCTGC
16
21366
2136
TSC2



TCACCCTCAGCCGTCTTCCACATCGCCACCCTGATGCCCACCAA

7   8
 778




GGACGTGGACAA









153
TCAGCCGTCTTCCACATCGCCACCCTGATGCCCACCAAGGACGT
16
21367
2136
TSC2



GGACAAGCACCGCTGCGACAAGAAGCGCCACCTGGGCAACGAC

   28
 828




TTTGTGTCCATTG









154
GCACCGCTGCGACAAGAAGCGCCACCTGGGCAACGACTTTGTGT
16
21367
2136
TSC2



CCATTGTCTACAATGACTCCGGTGAGGACTTCAAGCTTGGCACC

   78
 878




ATCAAGGTGAGT









155
TCTACAATGACTCCGGTGAGGACTTCAAGCTTGGCACCATCAAG
16
21368
2136
TSC2



GTGAGTGAGGGGCCGTCAGTGAGGCTGGGCCCCAGGCAGGTGC

   28
 928




CCACTGCTGTGTC









156
CCGAGATCAGCCTTCAGCACACGCTGTGTGCGGGGATGACCCTT
16
21378
2137
TSC2



TCTCTTGTCCGGGCAGGGCCAGTTCAACTTTGTCCACGTGATCGT

   03
 903




CACCCCGCTGG









157
GTCCGGGCAGGGCCAGTTCAACTTTGTCCACGTGATCGTCACCC
16
21378
2137
TSC2



CGCTGGACTACGAGTGCAACCTGGTGTCCCTGCAGTGCAGGAAA

   53
 953




GGTAGGGCCGGG









158
ACTACGAGTGCAACCTGGTGTCCCTGCAGTGCAGGAAAGGTAGG
16
21379
2138
TSC2



GCCGGGTGGGGCCCTGCAGTGCAGGAAAGGTAGGGCCGGGTGG

   03
 003




GGCCCTGCAGTGT









159
TGCAGTGTGGCGCCAAGAGCCCTGGGCCTGGCGTGACCACCAAG
16
21379
2138
TSC2



TCTCCCCAGACATGGAGGGCCTTGTGGACACCAGCGTGGCCAAG

   95
 095




ATCGTGTCTGAC









160
CAGACATGGAGGGCCTTGTGGACACCAGCGTGGCCAAGATCGT
16
21380
2138
TSC2



GTCTGACCGCAACCTGCCCTTCGTGGCCCGCCAGATGGCCCTGC

   45
 145




ACGCAAATGTGAG









161
CGCAACCTGCCCTTCGTGGCCCGCCAGATGGCCCTGCACGCAAA
16
21380
2138
TSC2



TGTGAGTGGGGGTGGGTCCAGGCGTGAGCTGGTGGGACAGGCC

   95
 195




CAGGTGCCACCTG









162
AGGCCCAGGTGCCACCTGATAGTGAGCTCACCCCCTGCCTACGT
16
21381
2138
TSC2



CCCCAGATGGCCTCACAGGTGCATCATAGCCGCTCCAACCCCAC

   77
 277




CGATATCTACCC









163
ATGGCCTCACAGGTGCATCATAGCCGCTCCAACCCCACCGATAT
16
21382
2138
TSC2



CTACCCCTCCAAGTGGATTGCCCGGCTCCGCCACATCAAGCGGC

   27
 327




TCCGCCAGCGGG









164
CTCCAAGTGGATTGCCCGGCTCCGCCACATCAAGCGGCTCCGCC
16
21382
2138
TSC2



AGCGGGTAGGGAATATGGGGCTCCCTCAGCGGGGTGTGCTGGCT

   77
 377




GCCCAAGCTGTG









165
GCGGGTGTGTGGGCAGAGCGGTTGCCACGCCTCCCAGACTTACT
16
21383
2138
TSC2



GCCCAAGCCGCCTCTGCCTTCAGATCTGCGAGGAAGCCGCCTAC

   79
 479




TCCAACCCCAGC









166
GCCGCCTCTGCCTTCAGATCTGCGAGGAAGCCGCCTACTCCAAC
16
21384
2138
TSC2



CCCAGCCTACCTCTGGTGCACCCTCCGTCCCATAGCAAAGCCCC

   29
 529




TGCACAGACTCC









167
CTACCTCTGGTGCACCCTCCGTCCCATAGCAAAGCCCCTGCACA
16
21384
2138
TSC2



GACTCCAGCCGAGCCCACACCTGGCTATGAGGTGGGCCAGCGG

   79
 579




AAGCGCCTCATCT









168
AGCCGAGCCCACACCTGGCTATGAGGTGGGCCAGCGGAAGCGC
16
21385
2138
TSC2



CTCATCTCCTCGGTGGAGGACTTCACCGAGTTTGTGTGAGGCCG

   29
 629




GGGCCCTCCCTCC









169
CCTCGGTGGAGGACTTCACCGAGTTTGTGTGAGGCCGGGGCCCT
16
21385
2138
TSC2



CCCTCCTGCACTGGCCTTGGACGGTATTGCCTGTCAGTGAAATA

   79
 679




AATAAAGTCCTG









170
GTGCATTCACACCTCCTGTTCTGTGCCAACAATATGCAAGTTAAC
 9
13577
1357
TSC1



ACTGATTGACCATCATTCCTTAGCTGTGTTCATGATGAGTCTCAT

 1557
7165




TGTAGTCCAT


   7






171
TTGACCATCATTCCTTAGCTGTGTTCATGATGAGTCTCATTGTAG
 9
13577
1357
TSC1



TCCATGATATGTAGCTGTCCAACACTGTCCGGGGTCGGGGGAGA

 1607
7170




CGGGTGAGGGC


   7






172
GATATGTAGCTGTCCAACACTGTCCGGGGTCGGGGGAGACGGGT
 9
13577
1357
TSC1



GAGGGCCATCTAGGTTCAGGGGAATCTTGGCTTCCACACCCAAG

 1657
7175




TCTTTGCCCAGT


   7






173
CATCTAGGTTCAGGGGAATCTTGGCTTCCACACCCAAGTCTTTGC
 9
13577
1357
TSC1



CCAGTTCTGTCTTTAGGCTCTCAGAAAGGCTACTGGTCATGCCGT

 1707
7180




CCTCATCACA


   7






174
TCTGTCTTTAGGCTCTCAGAAAGGCTACTGGTCATGCCGTCCTCA
 9
13577
1357
TSC1



TCACACTGGCTCTCGCTCTTATTACGAAATAACTCTCGAGCCTTC

 1757
7185




ATACCCAGGA


   7






175
CTGGCTCTCGCTCTTATTACGAAATAACTCTCGAGCCTTCATACC
 9
13577
1357
TSC1



CAGGAAGCTTTTTGAACTGGGAAGTGAGCCCACAGTGGTGGGG

 1807
7190




ATGCTGGCAGAC


   7






176
AGCTTTTTGAACTGGGAAGTGAGCCCACAGTGGTGGGGATGCTG
 9
13577
1357
TSC1



GCAGACGCTTCTCCCATAGTCGTCTCCCACCGACTGCTGAATGG

 1857
7195




GCCTGCCCTCTG


   7






177
GCTTCTCCCATAGTCGTCTCCCACCGACTGCTGAATGGGCCTGCC
 9
13577
1357
TSC1



CTCTGGTGTGGGGGTTTCTCTGGGGTAGAAAGCTCGCTGCTGCT

 1907
7200




GCTGCTGCTGC


   7






178
GTGTGGGGGTTTCTCTGGGGTAGAAAGCTCGCTGCTGCTGCTGC
 9
13577
1357
TSC1



TGCTGCCTCCACCACCTCTGCTTCCACTACTGCCCCGGGCGCTGC

 1957
7205




TGGGCCTGGGG


   7






179
CTCCACCACCTCTGCTTCCACTACTGCCCCGGGCGCTGCTGGGCC
 9
13577
1357
TSC1



TGGGGGTCTTGGTCTCACCGTTGTGGCCAGATGCCTCTTCATTGT

 2007
7210




GCCCTACCAT


   7






180
GTCTTGGTCTCACCGTTGTGGCCAGATGCCTCTTCATTGTGCCCT
 9
13577
1357
TSC1



ACCATGGAATCTGAGCACCCGTCATTACAACAGTCAAGCCTGTA

 2057
7215




AGAAAGCCGGG


   7






181
GGAATCTGAGCACCCGTCATTACAACAGTCAAGCCTGTAAGAAA
 9
13577
1357
TSC1



GCCGGGGAGGAAAAAAGGAGCTGGTGATTGGACTGTCCACATT

 2107
7220




CGGAGGATGTGGA


   7






182
CGTGACACAGTCCTTATGCTGGAATTGGCAGCTTAGTCCCAAGG
 9
13577
1357
TSC1



TCATGAATCAGTTCTTTGTTCCTACCTTTCTTCTGCTGCTTCAGCT

 2501
7260




GCTTCTGCTT


   1






183
ATCAGTTCTTTGTTCCTACCTTTCTTCTGCTGCTTCAGCTGCTTCT
 9
13577
1357
TSC1



GCTTTTTCTTCTTCAAGTTTTTTCAGGAGGCCATCTTTCTCCAACC

 2551
7265




TGCCATAT


   1






184
TTTCTTCTTCAAGTTTTTTCAGGAGGCCATCTTTCTCCAACCTGCC
 9
13577
1357
TSC1



ATATAAATCTAAGATCTCCAATTCAAACACCTGGGTTATCCTTTT

 2601
7270




CTGAGCCTC


   1






185
AAATCTAAGATCTCCAATTCAAACACCTGGGTTATCCTTTTCTGA
 9
13577
1357
TSC1



GCCTCATACCTGCTCTCTGCGGCCTGCAGCTGTCCTCTGAAAGAT

 2651
7275




ACAGACCAGC


   1






186
ATACCTGCTCTCTGCGGCCTGCAGCTGTCCTCTGAAAGATACAG
 9
13577
1357
TSC1



ACCAGCCAGAATATAGGAAGTTCCACTTAATAAAAACACAAAA

 2701
7280




GCCTTTCCTGATG


   1






187
AATATAGGAAGTTCCACTTAATAAAAACACAAAAGCCTTTCCTG
 9
13577
1357
TSC1



ATGAAAGTTACCTTGCCTGGAGTTTGACATCCTCTAGATATTTCT

 2754
7285




TCTGTTCCAAA


   4






188
GTTACCTTGCCTGGAGTTTGACATCCTCTAGATATTTCTTCTGTT
 9
13577
1357
TSC1



CCAAAAGAAGGTGGTCTTTCTTGGCCAGGTGAGATTCCAGTTCC

 2804
7290




AAAATCCGTTT


   4






189
AGAAGGTGGTCTTTCTTGGCCAGGTGAGATTCCAGTTCCAAAAT
 9
13577
1357
TSC1



CCGTTTTTGGGAGGTATCAAGCCTCTGAGTCTGCTGGAGAACAT

 2854
7295




GGCTTCTGTTTT


   4






190
TTGGGAGGTATCAAGCCTCTGAGTCTGCTGGAGAACATGGCTTC
 9
13577
1357
TSC1



TGTTTTTTTCTAGCTCTTTCCGATAGGCGGCTTTCATCATTTCTAC

 2904
7300




TTCCTGAAAA


   4






191
TTTCTAGCTCTTTCCGATAGGCGGCTTTCATCATTTCTACTTCCTG
 9
13577
1357
TSC1



AAAAAAAAAAAAAAAAAAGACTGGAATTAGTACTTATAAAAAA

 2954
7305




TAAACATGCTG


   4






192
GACATACTGTCTGGGTCTGAAACGCTTTCCCCACTAAGGTCTGG
 9
13577
1357
TSC1



CTCCCGAGCCCTGGCATACCTTTGTGGTATCTGAGTGCTTGTTCT

 6038
7613




GCAGTTGTTCC


   8






193
AGCCCTGGCATACCTTTGTGGTATCTGAGTGCTTGTTCTGCAGTT
 9
13577
1357
TSC1



GTTCCAAATAGAGCTCGTTGACCTCCCCAAGAACCAACAGCTGC

 6088
7618




CTGTTCAAGAA


   8






194
AAATAGAGCTCGTTGACCTCCCCAAGAACCAACAGCTGCCTGTT
 9
13577
1357
TSC1



CAAGAACTCCATCTGCTGCTGGACCGACTCACTGTTTGAGAGCT

 6138
7623




AACCAAAAAACA


   8






195
CTCCATCTGCTGCTGGACCGACTCACTGTTTGAGAGCTAACCAA
 9
13577
1357
TSC1



AAAACATGAGCAAAGTGAAAAATCCGACGACATAAAACTAGCA

 6188
7628




CATAGACGTCATT


   8






196
ACCTGTCTGAAGGAAGAATGTTAGCAAATGGTGTTTCAGCAGAT
 9
13577
1357
TSC1



TCAGGTCTGCCTCATTTCTTCTTACCTTTTGGGAAACCTGACTGA

 6906
7700




GCAGCAGCTCA


   6






197
CTGCCTCATTTCTTCTTACCTTTTGGGAAACCTGACTGAGCAGCA
 9
13577
1357
TSC1



GCTCAGTGTGACACACCTTGTTGTTGGCCTTCTTCAGTTCTATCC

 6956
7705




GCAGCTCCGC


   6






198
GTGTGACACACCTTGTTGTTGGCCTTCTTCAGTTCTATCCGCAGC
 9
13577
1357
TSC1



TCCGCAATCATGTTCCTGCAGTCCTCCAGCTTCGTCTGCCCAAAG

 7006
7710




AGACGTGGAC


   6






199
AATCATGTTCCTGCAGTCCTCCAGCTTCGTCTGCCCAAAGAGAC
 9
13577
1357
TSC1



GTGGACATGAAGTTTGAGGAACACCAACAGGCCAGATCACAGG

 7056
7715




CCTACCTAGCCAC


   6






200
CTCCCCACTGCTCTCCGGCATTCTCGCAGTTGGCTTTGCCTGGTG
 9
13577
1357
TSC1



CTGCAGTTTATACCTGTAATTCCTGGCTCTGGTTGTAGAATTCCT

 7933
7803




CTCGGTCATG


   3






201
GTTTATACCTGTAATTCCTGGCTCTGGTTGTAGAATTCCTCTCGG
 9
13577
1357
TSC1



TCATGCTGCAGCTGTCTGATCTGGCTGTGGAGCTTGGTTACCATA

 7983
7808




GTGTCACGCT


   3






202
CTGCAGCTGTCTGATCTGGCTGTGGAGCTTGGTTACCATAGTGTC
 9
13577
1357
TSC1



ACGCTGCTCCTGGAGCTGATTGTATCTAGCTTGTTCTTTCTGCAG

 8033
7813




ACTAACCTTC


   3






203
GCTCCTGGAGCTGATTGTATCTAGCTTGTTCTTTCTGCAGACTAA
 9
13577
1357
TSC1



CCTTCCACATCTGGATGTCCTTCTCTTGTAACTTCAACTGATCTTT

 8083
7818




CTAGCAGAG


   3






204 
CACATCTGGATGTCCTTCTCTTGTAACTTCAACTGATCTTTCTAG
 9
13577
1357
TSC1



CAGAGACCAGAAATGTCATCATTTTAGCTGTCTTCCAACACAGG

 8133
7823




CAATTTAACAC


   3






205
AAGCTATCATGCTGACCCAAAACAAAACAAAAAGCAAGCTCCA
 9
13577
1357
TSC1



CCTGTCCCCTCCCCAGTCCTCACCATGGCAGCATTATGTTCCTCC

 8971
7907




AGAGCTGCTGCT


   1






206
CCTCCCCAGTCCTCACCATGGCAGCATTATGTTCCTCCAGAGCTG
 9
13577
1357
TSC1



CTGCTTTGATCACCTTGCGGAGGAGCCGCCTGTTCCGGAGGGCA

 9021
7912




TGCTGCTGCCT


   1






207
TTGATCACCTTGCGGAGGAGCCGCCTGTTCCGGAGGGCATGCTG
 9
13577
1357
TSC1



CTGCCTCTTAAAACGCTCATAGAGTAACTGGTTGTGCAGTAAAA

 9071
7917




GCAACTGGTCTC


   1






208
CTTAAAACGCTCATAGAGTAACTGGTTGTGCAGTAAAAGCAACT
 9
13577
1357
TSC1



GGTCTCGGAGGGTGCGGATCTCATCTGAAGGAGGAGAGCCTGAT

 9121
7922




TGTAAAGCAGAG


   1






209
GGAGGGTGCGGATCTCATCTGAAGGAGGAGAGCCTGATTGTAA
 9
13577
1357
TSC1



AGCAGAGGGAGGGTGGCAGAAATGCCTTTTACAGATGGTTCAAT

 9171
7927




CAAGCCCCCTTCC


   1






210
AAGCAAGCAGGAACCATGTGGGCTGGATTTGGAGCTAAAGTAA
 9
13577
1357
TSC1



CAACTTTACCTCCAAAGTGGGTCCAGTCGACAGACTTGCTGGGT

 9745
7984




AAAGGCAACCTAG


   5






211
ACCTCCAAAGTGGGTCCAGTCGACAGACTTGCTGGGTAAAGGCA
 9
13577
1357
TSC1



ACCTAGGAAGAAAGTTTTTGAGTAACAAAGTTACCGATCTTACC

 9795
7989




AAGAAAAAAACG


   5






212
CTCTTACACTTTCTGTACTTCACAATAAAATGGACCATTTAACAC
 9
13578
1357
TSC1



AGAAGAGAGTGCCCCAGTCCCTTACTTGTTCAGCTCCTTGCTGTG

 0897
8099




CGCGTCTGCT


   7






213
AGAGTGCCCCAGTCCCTTACTTGTTCAGCTCCTTGCTGTGCGCGT
 9
13578
1357
TSC1



CTGCTCCCTGCTGTATCAGTCTGTCCAGCACTTCCATTGGGGAGG

 0947
8104




TAGAGGGCAC


   7






214
CCCTGCTGTATCAGTCTGTCCAGCACTTCCATTGGGGAGGTAGA
 9
13578
1357
TSC1



GGGCACACCATCTTCCTCTGTGTTTCCTTTTGCTTTCTTTAACAGC

 0997
8109




TCCTCAGTCT


   7






215
ACCATCTTCCTCTGTGTTTCCTTTTGCTTTCTTTAACAGCTCCTCA
 9
13578
1357
TSC1



GTCTTCCTGATGACAAAATGATGGGCTGTCTTTGGCAATGCCAC

 1047
8114




CTCAAAAAGA


   7






216
TCCTGATGACAAAATGATGGGCTGTCTTTGGCAATGCCACCTCA
 9
13578
1357
TSC1



AAAAGATGATCATACGGGGGAGGCTGCCCGCTTCCAAAGCCCA

 1097
8119




CTCTCGTCGGAGG


   7






217
TGATCATACGGGGGAGGCTGCCCGCTTCCAAAGCCCACTCTCGT
 9
13578
1357
TSC1



CGGAGGTGGAATTTTACAAGGACTGGGAGTGAAGATACTGGTCT

 1147
8124




CCAAAGAAGTCT


   7






218
TGGAATTTTACAAGGACTGGGAGTGAAGATACTGGTCTCCAAAG
 9
13578
1357
TSC1



AAGTCTGGCATTCCCTGTCTCCCGCAGGGCTTTCATCAGCACTGC

 1197
8129




CGCAGGGCAGG


   7






219
GGCATTCCCTGTCTCCCGCAGGGCTTTCATCAGCACTGCCGCAG
 9
13578
1357
TSC1



GGCAGGTCTATGGGAGTAAAGGCTTGCTTTGGTGTGTCAGGCCC

 1247
8134




AAGCTTGTCCAG


   7






220
TCTATGGGAGTAAAGGCTTGCTTTGGTGTGTCAGGCCCAAGCTT
 9
13578
1357
TSC1



GTCCAGGGAGGAGTGTAAAGGCTCAGGGTTCACGCTGGCGCCCT

 1297
8139




GAGAACTGGAGG


   7






221
GGAGGAGTGTAAAGGCTCAGGGTTCACGCTGGCGCCCTGAGAA
 9
13578
1357
TSC1



CTGGAGGCTGCCGAGTGGGTCTTCCGCTGAGAACCTGGGAGACT

 1347
8144




GTCTCGGTAAAAG


   7






222
CTGCCGAGTGGGTCTTCCGCTGAGAACCTGGGAGACTGTCTCGG
 9
13578
1357
TSC1



TAAAAGGGAGAGTCAAAGCCTCCTCGAGGAACCACAGGCTCTG

 1397
8149




CCTCTGCTGTGGT


   7






223
GGAGAGTCAAAGCCTCCTCGAGGAACCACAGGCTCTGCCTCTGC
 9
13578
1357
TSC1



TGTGGTGATCTCAGAAAGTTCTCTAGATATTGCAGCTGAGAGGA

 1447
8154




AGAGAGGAAACA


   7






224
GATCTCAGAAAGTTCTCTAGATATTGCAGCTGAGAGGAAGAGAG
 9
13578
1357
TSC1



GAAACAAAAGAAATGGCAGTCGGTATTCCACCTGGGAAAGACT

 1497
8159




AGGCAGTTTGGGT


   7






225
GCACAAAATCCCAGATTTATAGCAGAGCGAGGGTCAGGTTTTAT
 9
13578
1357
TSC1



CAACTCATAGCAATCCCACATACATTACCTTCTTCTTTATCTTTTT

 2045
8214




CAATACTATC


   5






226
ATAGCAATCCCACATACATTACCTTCTTCTTTATCTTTTTCAATA
 9
13578
1357
TSC1



CTATCTTCTTCAGAGGCCAGATCACCTAAAAACCCTGGAAGATC

 2095
8219




ACTTAGAGTGA


   5






227
TTCTTCAGAGGCCAGATCACCTAAAAACCCTGGAAGATCACTTA
 9
13578
1357
TSC1



GAGTGACAGAACCTTTGCTGCCAGGTGGCTCTTCTGAAGAGAAA

 2145
8224




CAAAGACAACTG


   5






228
CAGAACCTTTGCTGCCAGGTGGCTCTTCTGAAGAGAAACAAAGA
 9
13578
1357
TSC1



CAACTGAAGTCAAAGAAATACAGTGTAATCCCTGTAAGTGTAAA

 2195
8229




ACTGCTTACACT


   5






229
TTCTTAAACACATATAACCCAATTAGAAGAGGCAAGCAAGGCCT
 9
13578
1357
TSC1



GTAGTAACGCAGAAATTTTACCTGATCCTCTGTCATTCAGAAGA

 2622
8272




TGGTGTTGTCTG


   2






230
ACGCAGAAATTTTACCTGATCCTCTGTCATTCAGAAGATGGTGTT
 9
13578
1357
TSC1



GTCTGTGTAGACATGGTCTTGCAGAATCCATTCTCTCTTCCTGAA

 2672
8277




AAGATAAGTA


   2






231
TGTAGACATGGTCTTGCAGAATCCATTCTCTCTTCCTGAAAAGAT
 9
13578
1357
TSC1



AAGTATCATTTATATCACAAGACGAAAAATGTTGCACATGTTCT

 2722
8282




CGAGCATATTG


   2






232
ATCACACCTTGAGAGCAGCTTGTTAGTCCATTTTCAATTATTCTG
 9
13578
1357
TSC1



ATTCAAACCCATTGCATTTTAGGTCAGAATTCTATCTGGCATAAT

 5792
8589




TAGGCTTCTC


   2






233
AACCCATTGCATTTTAGGTCAGAATTCTATCTGGCATAATTAGGC
 9
13578
1357
TSC1



TTCTCAAAGTGAGGCTTGCAAGTGAGTCACTGTGCCTGGGCAGA

 5842
8594




GGGATAGCAGA


   2






234
AAAGTGAGGCTTGCAAGTGAGTCACTGTGCCTGGGCAGAGGGA
 9
13578
1357
TSC1



TAGCAGACGAGCTGGATCGCACCTTCCTGGGGGGTGTGACTGTG

 5892
8599




GCCTGGGGGAGTG


   2






235
CGAGCTGGATCGCACCTTCCTGGGGGGTGTGACTGTGGCCTGGG
 9
13578
1357
TSC1



GGAGTGAAATGTGCACGTAGTCATCCGAATGACAGAGTGGGGC

 5942
8604




TGGAGGAGGAGAG


   2






236
AAATGTGCACGTAGTCATCCGAATGACAGAGTGGGGCTGGAGG
 9
13578
1357
TSC1



AGGAGAGGTTGCTGGGGTTCCCAGAGGAGTTCCTTTTCCACCTG

 5992
8609




CTTAGAGACAAGG


   2






237
GTTGCTGGGGTTCCCAGAGGAGTTCCTTTTCCACCTGCTTAGAGA
 9
13578
1357
TSC1



CAAGGGCAGAACATATATGAACACTGAGCCCAACTATTAGAAA

 6042
8614




AACTGCCGATTT


   2






238
GAGAGCTCCTCCTGCCATTAAAGGCAGGCCAAAACCAACTAATC
 9
13578
1357
TSC1



AAATCCAACCTAAGACATACATACCAGTTGTACCAAAGACTTTA

 6320
8642




CTGTAAGGGTGT


   0






239
AACCTAAGACATACATACCAGTTGTACCAAAGACTTTACTGTAA
 9
13578
1357
TSC1



GGGTGTGACAGATCAGGTGGGACATTTCCAGGAGAAGTTGGAG

 6370
8647




GAGTGGTCATACC


   0






240
GACAGATCAGGTGGGACATTTCCAGGAGAAGTTGGAGGAGTGG
 9
13578
1357
TSC1



TCATACCACAAACCATAGATGGGCTCCAAAGAGTAGCCTGGGA

 6420
8652




AGTTAATAAAGTAC


   0






241
ACAAACCATAGATGGGCTCCAAAGAGTAGCCTGGGAAGTTAAT
 9
13578
1357
TSC1



AAAGTACATCAGCAGTGGCAAAGGAATGCTAAGTCATCCACGA

 6470
8657




GGTTTATATCCATG


   0






242
GGATCCTTAAAAGTGACTCCTGAAATGAGCAGTGTGAAATTTTC
 9
13578
1357
TSC1



CCAACCACATACTAAATCTGACCCAAAGGGTCAGCTTCACCAGA

 6712
8681




AAGCAGAGGAGA


   2






243
ACATACTAAATCTGACCCAAAGGGTCAGCTTCACCAGAAAGCAG
 9
13578
1357
TSC1



AGGAGAGAGCAGGCACACTAGTTGACACCATACTTGTGGTGGTT

 6762
8686




CAGTTATCAGCC


   2






244
GAGCAGGCACACTAGTTGACACCATACTTGTGGTGGTTCAGTTA
 9
13578
1357
TSC1



TCAGCCGTGTCGATGGGGAACTCAGAGTCTGAGGTAGCTGCCCT

 6812
8691




GGCATATTTAAC


   2






245
GTGTCGATGGGGAACTCAGAGTCTGAGGTAGCTGCCCTGGCATA
 9
13578
1357
TSC1



TTTAACAACATCAGCCGAGACGTGGAGTAAGGGGTAGAAGTAG

 6862
8696




CACACCCTAAAAT


   2






246
AACATCAGCCGAGACGTGGAGTAAGGGGTAGAAGTAGCACACC
 9
13578
1357
TSC1



CTAAAATGGAAGAGAAGAACACAGGGGGTTAGTGTGTGGTTTT

 6912
8701




AGGTTATTCTGGTT


   2






247
ACAAATAATGTTTTCCAGAGACAAAGTTGCAAAACAGATAAGTA
 9
13578
1357
TSC1



CCAAAGACACTTTTTACCATAGCTATTCTGTGTGTCAGCATAAG

 7607
8770




GGCTGGTGGTGA


   7






248
ACACTTTTTACCATAGCTATTCTGTGTGTCAGCATAAGGGCTGGT
 9
13578
1357
TSC1



GGTGACATCGGCTGAACGATGAGGAAAGCGGGCTGAGATTTGG

 7657
8775




TGAGACACAGAA


   7






249
CATCGGCTGAACGATGAGGAAAGCGGGCTGAGATTTGGTGAGA
 9
13578
1357
TSC1



CACAGAATAGCCATCTTCATATGAGGCTTCTGTGGGATCCAGAG

 7707
8780




AGATTTTGGCACA


   7






250
TAGCCATCTTCATATGAGGCTTCTGTGGGATCCAGAGAGATTTT
 9
13578
1357
TSC1



GGCACACTCGATCACAACATCATGAGTTTCTAATCTCTTCCACCT

 7757
8785




GTAAAATGCAA


   7






251
CTCGATCACAACATCATGAGTTTCTAATCTCTTCCACCTGTAAAA
 9
13578
1357
TSC1



TGCAATGAAAGTCAAGAAATGCAAACTGTAATCAACTGAATTAA

 7807
8790




ATACTTCAGAG


   7






252
CTCCTAGATCACATTTTCAATCTCTCGAAAGATTCTTTAAAATTT
 9
13579
1357
TSC1



TGACACTAGTTTCTATACCTTCGAGGGTCCAGTTCATGGTCCTTG

 6686
9678




GATCCAGTCA


   6






253
CTAGTTTCTATACCTTCGAGGGTCCAGTTCATGGTCCTTGGATCC
 9
13579
1357
TSC1



AGTCACTAATTCCGGATGAATTCGCACATGCTCCATCATTGGCT

 6736
9683




AGAAGAGTTGG


   6






254
CTAATTCCGGATGAATTCGCACATGCTCCATCATTGGCTAGAAG
 9
13579
1357
TSC1



AGTTGGGTTGACAAATTATAAAGGGCTGAATGTTTGTGGAACAT

 6786
9688




CCAAATGATGGA


   6






255
ATACAAAAGGTATAAATGCAGCCTATCTAAACAGTATACTAAGT
 9
13579
1357
TSC1



AGCAAACAAACAAGCAGTTTCAATTTACCTTGACCACTTCTTCA

 7133
9723




AAAGTCTCCAGG


   3






256
CAAACAAGCAGTTTCAATTTACCTTGACCACTTCTTCAAAAGTCT
 9
13579
1357
TSC1



CCAGGTTTTCTTTCATACTGTAATGAGAACGCAAAAAGGAGACG

 7183
9728




AAGTTGCAAGG


   3






257
TTTTCTTTCATACTGTAATGAGAACGCAAAAAGGAGACGAAGTT
 9
13579
1357
TSC1



GCAAGGGTACATTCCATAAAGGCGATGAAAGAGTGCGTACACA

 7233
9733




CTGGCATGGAGAT


   3






258
GTACATTCCATAAAGGCGATGAAAGAGTGCGTACACACTGGCAT
 9
13579
1357
TSC1



GGAGATGGACGAGATAGACTTCCGCCACGTGGCCTAGAAAAGG

 7283
9738




AACCCGTTGAGAA


   3






259
GGACGAGATAGACTTCCGCCACGTGGCCTAGAAAAGGAACCCG
 9
13579
1357
TSC1



TTGAGAAGAGCCTCTTAGTTGGAGACAGATTGAGGAGTGCAAA

 7333
9743




ACAGCTATAAACAA


   3






260
AATGAAAGCATTCACCTCACAGGGCCCAACAGGTATATGAGGA
 9
13579
1357
TSC1



GATCTGTACCTGGTTTCTTCAGGCACCATGATGACAGACGGCCA

 8682
9878




AAAATGTCAAAGA


   2






261
ACCTGGTTTCTTCAGGCACCATGATGACAGACGGCCAAAAATGT
 9
13579
1357
TSC1



CAAAGAAATCAAGAAGATGCTGTTTCCCAGACTGTGGAATCATT

 8732
9883




GGTAGCATGGTT


   2






262
AATCAAGAAGATGCTGTTTCCCAGACTGTGGAATCATTGGTAGC
 9
13579
1357
TSC1



ATGGTTATCAACACCAAGACGCCTGTTGTGAGGACAACGACGTC

 8782
9888




AGTGTCCATCTG


   2






263
ATCAACACCAAGACGCCTGTTGTGAGGACAACGACGTCAGTGTC
 9
13579
1357
TSC1



CATCTGCAGGAGAAAAGGTCAAACAGGAAACGTCTGTCAGGCA

 8832
9893




CTGGCACCAGGAT


   2






264
GCTTTAAGTTGCCTAAAATTTCAGAAACTATACTCATAAAACCA
 9
13580
1358
TSC1



TTTCATTCAAATCCTTACAAACATCCTACCTTGAGACATTTTAGT

 0900
0100




AAAGAAGGCAA


   0






265
TCAAATCCTTACAAACATCCTACCTTGAGACATTTTAGTAAAGA
 9
13580
1358
TSC1



AGGCAAAAGAGGTGCTTGAGAGAGCTTATGCTTCCAAGATGGCT

 0950
0105




GCAGTCTTATGA


   0






266
AAGAGGTGCTTGAGAGAGCTTATGCTTCCAAGATGGCTGCAGTC
 9
13580
1358
TSC1



TTATGACATGACCCAGTAACGAGAGGATGGATAAACGAGTGGC

 1000
0110




GGCTTTGCCCACA


   0






267
CATGACCCAGTAACGAGAGGATGGATAAACGAGTGGCGGCTTT
 9
13580
1358
TSC1



GCCCACATATTCGTTAATCCTGTCCAAGAGGTGCTGAAAATGTA

 1050
0115




AAAGAACAAGGGC


   0






268
TATTCGTTAATCCTGTCCAAGAGGTGCTGAAAATGTAAAAGAAC
 9
13580
1358
TSC1



AAGGGCAGTCCTCACATGAATGTATGAAGTTAACACAAATAAA

 1100
0120




GACAGCAATGATG


   0






269
ACAGTGGCCGTGCACAGAAGCTGTTGTACTCATGAAGAACATAT
 9
13580
1358
TSC1



GAAATGCCTATGATATTTCAGCCATTACCTTGTCATGTGGCTCTT

 2515
0261




GCAAGGTGGTC


   5






270
CCTATGATATTTCAGCCATTACCTTGTCATGTGGCTCTTGCAAGG
 9
13580
1358
TSC1



TGGTCAGGATGTGCAATGCCGGCTGAGAGCTGGTTTCCAGGTAA

 2565
0266




TAATCCACCAA


   5






271
AGGATGTGCAATGCCGGCTGAGAGCTGGTTTCCAGGTAATAATC
 9
13580
1358
TSC1



CACCAAGGTGTTTACAAGCATAGGGCCACGGTCTAAATCAAGAA

 2615
0271




AAGGGCAATGGA


   5






272
GGTGTTTACAAGCATAGGGCCACGGTCTAAATCAAGAAAAGGG
 9
13580
1358
TSC1



CAATGGATGATACTTATTCCCCTTAACATCCTAAATTTACCTTAC

 2665
0276




ACAGCTTCCTGT


   5






273
AGGATTCTAGTGGCTCTAAAGTCAATCTCTTCTTTCTAGAAGATA
 9
13580
1358
TSC1



AGCTAAAAAGGATATTATTTTGCTAACCAGAATTGAGGTTCTCT

 4081
0418




TTAAAGACAGC


   1






274
AAAAGGATATTATTTTGCTAACCAGAATTGAGGTTCTCTTTAAA
 9
13580
1358
TSC1



GACAGCTGTCACGTCGTCCCGCACACCCAGCATGGGGGAGTCCA

 4131
0423




GCATGGCAAGAA


   1






275
TGTCACGTCGTCCCGCACACCCAGCATGGGGGAGTCCAGCATGG
 9
13580
1358
TSC1



CAAGAAGCTCCCCGACATTTGCTTGTTGGGCCATTCTCTCGCTCG

 4181
0428




AAGGCGCTGTG


   1






276
GCTCCCCGACATTTGCTTGTTGGGCCATTCTCTCGCTCGAAGGCG
 9
13580
1358
TSC1



CTGTGCTGGCTCCAGGACGTGTGCTACAGGTTCTGAAGGTTCTTC

 4231
0433




ATTGGGGCCA


   1









2. Construction of gDNA Library


The library was constructed according to the conventional method:


1) Sampling.


a) DNA concentration of each sample was detected and recorded by Qubit2.0;


b) 50 ng of the sample was taken and placed in a 0.2 ml PCR tube,


2) DNA Fragmentation


a) Samples in the PCR tubes were fragmented according to the following table
















Components
volume (μL)



















Input Double-stranded DNA
35



KAPA Frag Buffer (10X)
5



KAPA Frag Enzyme
10



Total
50










b) Fragmentation reaction was performed according to the following procedures:


















Temperature

Time
Heated-lid temperature





















4° C.
30
S
50° C.



37° C. 
20
min*











4° C.
Hold










3) End Repair and A-Tailing


a) The fragmented samples in the PCR tubes were processed according to the following table
















Components
volume (μL)



















Fragmented DNA
50



End Repair & A-Tailing Buffer
7



End Repair & A-Tailing Enzyme Mix
3



Total
60










b) The reaction was performed according to the following procedures:














Temperature
Time
Heated-lid temperature







65° C.
30 min
85° C.


 4° C.
Hold









4) Adapter Connection


a) The repaired and a-tailed samples in the PCR tubes were processed according to the following table:
















Components
volume (μL)



















End repair and A-tailing product
60



Index Adapter
2.5



PCR-grade water
7.5



Ligation Buffer
30



DNA Ligase
10



Total
110










b) The reaction was performed according to following procedures:














Temperature
Time
Heated-lid temperature







20° C.
20 min
85° C.


 4° C.
Hold









5) Purification of Ligation Product and Screening Fragment


a) The ligation product was taken out, transferred to a 1.5 mL EP tube containing 88 μL of Ampure xp Beads, mixed well, micro-centrifuged, placed at room temperature for 5 min, and then it was placed on a magnetic stand until the solution became clear to remove the supernatant;


b) 200 μL of freshly prepared 80% ethanol was added to the EP tube which was then rotated several times and the supernatant was removed after the solution became clear, and the tube was slightly dried at room temperature;


c) 50.0 μL of ddH2O was added to the tube and mixed well, micro-centrifuged, placed at room temperature for 5 minutes, and then the tube was placed on a magnetic stand until the solution became clear. Then, the supernatant was transferred to a 1.5 mL EP tube containing 50 μL of Ampure xp Beads, mixed well, micro-centrifuged, and placed at room temperature for 5 minutes, followed by putting the EP tube on the magnetic stand until the solution was clear to remove the supernatant;


d) 200 μL of freshly prepared 80% ethanol was added to the EP tube which was then rotated several times, and the supernatant was removed after the solution was clear;


e) 200 μL of freshly prepared 80% ethanol was added to the EP tube which was then several times, and the supernatant was removed after the solution was clear, and the tube was slightly dried at room temperature;


f) 21 μL ddH2O Elute was used for eluting, and then for later use in the next PCR step.


6) PCR Reaction


a) A new PCR tube was taken to prepare a PCR system according to the following table:
















Components
volume (μL)



















Adapter-ligated library
20



KAPA HiFi HotStart ReadyMix (2X)
25



Library Amplification Primer Mix (10X)
5



Total
50










b) Amplification was done according to the following reaction procedure:


98° C., 45 s→(98° C., 15 s, 60° C., 30 s, 72° C., 30 s) 8 cycles→72° C., 1 min→4° C., ∞.


7) Purification of PCR Product


a) The PCR product was taken out, transferred to a 1.5 mL EP tube containing 50 μL of Ampure xp Beads, mixed well, micro-centrifuged, placed at room temperature for 10 to 15 min, and then the tube was placed on a magnetic stand until the solution became clear to remove the supernatant;


b) 200 μL of freshly prepared 80% ethanol was added to the EP tube which was then rotated several times, and the supernatant was removed after the solution was clear;


c) 200 μL of freshly prepared 80% ethanol was added to the EP tube which was then rotated several times, and the supernatant was removed after the solution was clear, and the tube was slightly dried at room temperature;


d) 21 μL ddH2O was added to elute the library;


e) The library concentration of each sample was detected and recorded by Qubit2.0;


f) The library fragment size of each sample (Optional) was detected by a 2100 chip analyzer.


3. Hybrid Capture


1) Probe Hybridization


a) DNA library Pooling: According to the concentration measured by Qubit2.0, samples, with an amount of 100 ng for each sample, were mixed in a PCR tube, and 5 samples were subjected to one hybridization reaction;


b) Blocking Oligos were added to the PCR tube of the pooled library,
















Components
volume (μL)









Pooled Library (Illumina)
500 ng



Cot-1 DNA
 5 μg



xGen ® Universal Blockers-TS Mix
2










c) After well mixing by repetitive pipetting, the mixed solution was dried by a vacuum filtration system (the temperature was set to 60° C.);


d) The following hybridization buffer was added to the dried PCR tube, mixed well by repetitive pipetting, and the tube was placed at room temperature for 5 to 10 minutes:
















Components
Volume (μL)



















xGen 2X Hybridization Buffer
8.5



xGen Hybridization Buffer Enhancer
2.7



Nuclease-Free Water
1.8










e) The PCR tube was placed on a PCR machine, incubated at 95° C. for 10 minutes to denature;


f) The PCR tube was taken out immediately after the denaturation, and then it was placed on a pre-cooled metal plate, and 4 μL of xGen Lockdown Probe pool (probe) was immediately added;


g) Hybridization was performed according to the following procedure:














Temperature
Time
Heated-lid temperature







65° C.
>14 h
75° C.









2) Capture Elution


a) Each wash Buffer was diluted in the following proportions (each one is satisfied with the amount of one capture elution):
















volume(μl)

total volume



of Stock
volume(μl)
of 1X


Reagent Name
solution
of ddH2O
Buffer (μl)


















xGen 10X Wash Buffer I
30
270
300


xGen 10X Wash Buffer II
20
180
200


xGen 10X Wash Buffer III
20
180
200


xGen 10X Stringent Wash
40
360
400


Buffer


xGen 2X Bead Wash Buffer
250
250
500









b) 400 μl of 1×Stringent Wash Buffer was pre-heated in a 65° C. metal warm bath;


c) 100 μl of 1×Wash Buffer I was aliquoted and placed in the 65° C. warm bath to preheat, and the remaining 20010 of 1×Wash Buffer I was placed at room temperature for use;


d) Dynabeads® M-270 Streptavidin beads were taken out from 4° C. and warmed to room temperature. After enough shaking, 100 μl of the solution was pipetted into a 1.5 ml centrifuge tube, which was then placed on a magnetic stand to remove the supernatant after the solution was clear;


e) The centrifuge tube was taken out from the magnetic stand, 20010 of 1×Bead Wash Buffer was added into the centrifuge tube, which was shaken for 10 s, put back on the magnetic stand after microcentrifugation, and then the supernatant was removed after the solution was clear;


f) The above steps were repeated once;


g) 100 μl of 1×Bead Wash Buffer was added for resuspending Dynabeads® M-270 Streptavidin beads, transferred to a new 20010 PCR tube, the tube was placed on the magnetic stand, the supernatant was removed for later use after the solution became clear;


h) The samples that were hybridized overnight (the program of the PCR instrument was maintained at 65° C. and the heated lid was kept at 75° C.) were taken out, all the liquid was transferred to the Dynabeads®M-270 Streptavidin beads washed in the previous step, mixed well by repetitive pipetting, and placed back to the PCR machine again after micro-centrifugation;


i) After a 12 min-reaction, the samples were taken out and mixed 3 times;


j) After the reaction was completed, the PCR tube was taken out, 10010 of 1×Wash Buffer I (preheated at 65° C.) was added, fully shaken for 10 s, and then the liquid was transferred to a 1.5 ml centrifuge tube, which was placed on the magnetic stand, and the supernatant was removed after the solution became clear;


k) The centrifuge tube was taken out from the magnetic stand, 20010 of 1×Stringent Buffer (preheated at 65° C.) was added and mixed well, and the tube was quickly put back into the 65° C. water bath, and warmed for 5 minutes;


l) The step k) was repeated once;


m) After warming in the warm bath, the tube was placed on the magnetic stand, and the supernatant was removed after the solution became clear;


n) The centrifuge tube was taken out from the magnetic stand, 20010 of 1×Wash Buffer I (room temperature) was added, shaken for 2 minutes, placed on the magnetic frame after microcentrifugation, and the supernatant was removed after the solution became clear;


o) The centrifuge tube was taken out from the magnetic stand, 20010 of 1×Wash Buffer II was added, shaken for 1 min, placed on the magnetic stand after microcentrifugation, and the supernatant was removed after the solution became clear;


p) The centrifuge tube was taken out from the magnetic stand, 20010 of 1×Wash Buffer III was added, shaken for 30 s, and placed on the magnetic stand after microcentrifugation, and the supernatant was removed after the solution became clear;


q) 20 μl of ddH2O was added to resuspend and elute Dynabeads® M-270 Streptavidin beads for PCR.


3) Second PCR (Post-PCR)


a) A new PCR tube was taken to prepare a PCR system according to the following table:
















System Components
Volume (μl)



















Capture elution product from the previous step
20



KAPA HiFi HotStart ReadyMix
25



10 μM Illumina P5 primer
2.5



10 μM Illumina P7 primer
2.5



Total volume
50










b) The library was amplified according to the following reaction procedure:


98° C., 45 s→(98° C., 15 s, 60° C., 30 s, 72° C., 30 s) 11 cycles→72° C., 1 min→4° C., ∞.


4) Purification for PCR Product


a) The PCR product was taken out, transferred to a 1.5 mL EP tube containing 750, of Ampure xp Beads, mixed well, micro-centrifuged, and placed at room temperature for 10 to 15 min, and then the EP tube was placed on the magnetic stand until the solution became clear to remove the supernatant;


b) 200 μL of freshly prepared 80% ethanol was added to the EP tube, rotated several times, and the supernatant was removed after the solution became clear;


c) 200 μL of freshly prepared 80% ethanol was added to the EP tube, rotated several times, and the supernatant was removed after the solution became clear, and the tube was dried at room temperature;


d) 21.0 μL of ddH2O was added to elute the library.


5) Quality Control for Library


a) The concentration of the final library was measured by Qubit 2.0;


b) Library fragment sizes (Optional) were detected by Agilent 2100 Bioanalyzer;


6) Sequencing on the machine


Illumina Nextseq500 was used.


II. Sorting.


The above sequencing data were processed and analyzed by bioinformatics. If TSC1 and TSC2 genes 0 were detected to be negative or there was only one-hit mutated locus, a supplementary detection was performed by the chromosomal microarray analysis and the Multiplex ligation-dependent probe amplification. When a locus was detected to be an undefined locus originated from either somatic mutation or the germline mutation, the locus can be verified by Sanger sequencing.


III. Performing Chromosomal Microarray Analysis and Multiplex Ligation-Dependent Probe Amplification.


If TSC1 and TSC2 genes were detected to be negative or there was only a one-hit mutated locus (that is, gene mutation, or fragment deletion/insertion, or copy number variations, etc. only occurred in one of the TSC1 gene and TSC2 gene), a supplementary detection was performed in the chromosome microarray analysis and Multiplex ligation-dependent probe amplification. The agents used were as follows.















Analysis


Article


method
Name of Agents
manufacture
Number







CMA
OncoScan ® CNV FFPE
Affymetrix
902695



Assay Kit


MLPA
TSC1&TSC2 Probe
MRC-Holland
P124&P046









IV. Performing Sanger Sequencing.


If a locus was detected to be an undefined locus derived from either a somatic mutation or a germline mutation, specifically, the undefined locus derived from either a somatic mutation or a germline mutation was referred to a variant with a mutation frequency of about 50%. The patients leukocyte specimen (ABI 3730XL) was verified by Sanger sequencing, and it can be identified whether the patient belonged to S-LAM or TSC-LAM through the validation results.


If the leukocytes of the patient also had the above mutations, it can be indicated that the patient belongs to TSC-LAM; otherwise, it can be indicated that the patient belongs to S-LAM.


Example 2

The joint detection for LAM was studied with the method of Example 1.


1. Comparison of Single Detection Method and Joint Detection Method.


In this study, a total of 61 LAM patients were employed in a group, and a single detection method and the method of Example 1 were used for detection at the same time.


The single detection method was a method that only used NGS, a Target Sequencing based Hybridization capture.


The results were shown in FIGS. 3 to 4. FIG. 3 showed the detection ratio of variants by using different detection methods, wherein NGS meant Target Sequencing based Hybridization capture, CMA meant chromosome microarray analysis, and MLPA meant multiplex ligation-dependent probe amplification detection. The above results showed that, SNV, INDEL, CNV, LOH and other variant types 0 can be comprehensively detected for LAM patient samples by the multi-method joint detection method, while 12.8% of the variants would be lost when only single NGS detection method was used.


When a single detection method was used, the overall positive detection rates for TSC1 and TSC2 genes were 72.13%, and there were 15 patients detected with 1-hit, and 29 patients with 2-hits, respectively. When the joint detection scheme was used, the overall positive detection rate was 75.41%, and 1-hit was 5 detected in 8 patients, and 2-hits were detected in 38 patients, respectively. The results were shown in FIG. 4.


The joint detection scheme not only improves the detection rate of positive mutations in LAM patients, but more importantly, the detection results are more in line with Knudson's “double hit” theory.


2. Research Findings.


When the joint detection method of Example 1 was used, 30 new mutations were found in 61 LAM patients employed in the group, as follows:


















Mutation


Gene HGVS(cDNA)
HGVS(protein)
Exon
type







TSC2 NM_000548.4: c.2220 + 2_2220 + 9del
N/A
splice
Deletion


TSC1 NM_000368.4: c.979C > T
p.Pro327Ser
exon10
SNV


TSC2 NM_000548.4: c.3059_3063del
p.Leu1020Profs*146
exon27
Deletion


TSC2 NM_000548.4: c.430A > T
p.Lys144*
exon5
SNV


TSC2 NM_000548.4: c.1808C > G
p.Thr603Ser
exon17
SNV


TSC2 NM_000548.4: c.1221C > G
p.Tyr407*
exon12
SNV


TSC2 NM_000548.4: c.5106delC
p.Ile1702Metfs*124
exon40
Deletion


TSC2 NM_000548.4: c.781C > G
p.Arg261Gly
exon9
SNV


TSC2 NM_000548.4: c.5004delT
p.Phe1668Leufs*4
exon39
Deletion


TSC2 NM_000548.4: c.1118A > G
p.Gln373Arg
exon11
SNV


TSC2 NM_000548.4: c.4933_4937delinsACAATGTCTACAATGTCTACA
p.Phe1645Thrfs*13
exon38
Insertion


TSC2 NM_000548.4: c.2220 + 2_2220 + 9del
N/A
splice
Deletion


TSC2 NM_000548.4: c.3755C > T
p.Ser1252Leu
exon31
SNV


TSC2 NM_000548.4: c.151delG
p.Glu51Asnfs*10
exon3
Deletion


TSC2 NM_000548.4: c.l714delC
p.Gln572Argfs*126
exon16
Deletion


TSC2 NM_000548.4: c.460_461del
p.Thr154Leufs*8
exon5
Deletion


TSC2 NM_000548.4: c.2098-1G > C
N/A
splice
SNV


TSC2 NM_000548.4: c.25T > C
p.Ser9Pro
exon2
SNV


TSC2 NM_000548.4: c.400G > T
p.Glu134*
exon5
SNV


TSC2 NM_000548.4: c.219_223del
p.Phe73Leufs*51
exon3
Deletion


TSC2 NM_000548.4: c.4682delT
p.Ile1561Thrfs*15
exon37
Deletion


TSC2 NM_000548.4: c.3500_3507del
p.Glu1167Valfs*64
exon30
Deletion


TSC2 NM_000548.4: c.788delT
p.Leu263Profs*30
exon9
Deletion


TSC2 NM_000548.4: c.2267delG
p.Gly756Alafs*15
exon21
Deletion


TSC2 NM_000548.4: c.3132delG
p.Arg1044Serfs*9
exon28
Deletion


TSC2 NM_000548.4: c.1829T > A
p.Ile610Asn
exon17
SNV


TSC2 NM_000548.4: c.5116_5119dupCGCA
p.Asn1707Thrfs*23
exon40
Insertion


TSC2 NM_000548.4: c.2153_2154del
p.Arg718Leufs*2
exon20
Deletion


TSC2 NM_000548.4: c.2018C > G
p.Ala673Gly
exon19
SNV


TSC1 NM_000368.4: c.1450A > G
p.Arg484Gly
exon15
SNV









These new mutations will greatly enrich the genetic database of LAM, a rare disease, and have important clinical value in promoting the research progress and treatment guidance of the disease.


Example 3

An example of the joint detection for LAM was conducted with the method of Example 1.


I. Sample Source

The samples were obtained from fixed tissue samples from the Department of Respiratory Medicine of a tertiary hospital in Guangzhou, and they were clinically diagnosed as S-LAM.


II. Detection Methods and Results

1. Target Sequencing Based Hybridization Capture (Target Capture Sequencing, a NGS) was Performed with Probes


The sequencing results showed that the sample had a single mutated locus, which is TSC2: NM_000548.4:c.3412C>T (p.Arg1138*), and the variant frequency was 50.9%.


2. Chromosome Microarray Analysis and Multiplex Ligation-Dependent Probe Amplification


According to the method of Example 1, a supplementary detection was performed by the chromosome microarray analysis. The results showed that there was a loss of heterozygosity (LOH) variation in the TSC2 gene of the patient: arr<GRCh37>16p13.3p11.2(83886_30809063)x2 mos hmz. The size of the variant was 30.73 Mb, and its LOH fragment was shown in FIG. 5; the detection result was negative when the multiplex ligation probe amplification was used.


3. Sanger Sequencing


Since the variant frequency of the locus detected by NGS was 50.9%, it was impossible to determine whether the locus was derived from a somatic mutation or a germline mutation. Therefore, primers were designed for such locus and the leukocyte samples of the patient were sequenced. The verification results showed that there was no above-mentioned mutation in leukocytes of the patient, and therefore the mutation was a somatic mutation, that is, sporadic LAM (S-LAM).


III. Conclusion

The detection results of the patient showed that a premature stop codon was created at codon 1138 of the TSC2 gene, with a mutation frequency of 50.9%. It was determined by the Sanger method that the mutation did not exist in leukocytes and was a somatic mutation, leading to normal protein disfunction. In the past, this mutation had been reported for more than 50 times in individuals with LAM, and it was a pathogenic mutation. The detection results of the supplementary detection showed that the patient also had the LOH phenomenon of the TSC2 gene. Studies have shown that LOH can lead to the inactivation of the suppressor genes, thereby affecting the occurrence and development of the tumor. The pathogenesis of the patient can be completely known through this joint detection scheme, and according to the results, sporadic LAM is diagnosed, without hereditary.


Although the present invention has been disclosed in the form of preferred embodiments and variations thereon, it will be understood that numerous additional modifications and variations could be made thereto without departing from the scope of the invention.


For the sake of clarity, it is to be understood that the use of ‘a’ or ‘an’ throughout this application does not exclude a plurality, and ‘comprising’ does not exclude other steps or elements.

Claims
  • 1. A joint detection method for lymphangioleio-myomatosis, comprising: performing Target Sequencing based Hybridization capture, wherein a Panel is configured for whole coding regions of TSC1 genes and TSC2 genes highly related to lymphangioleio-myomatosis and mutation genes closely related to solid tumors to construct a Genomic DNA library, a gDNA library, and sequencing is performed on a machine after a hybrid capture;sorting, wherein data obtained from the Target Sequencing based Hybridization capture is processed and analyzed through bioinformatics; when the TSC1 and TSC2 genes are detected to be negative or there is only a one-hit mutated locus, a supplementary detection is performed by chromosomal microarray analysis and Multiplex ligation-dependent probe amplification; when a locus is detected to be an undefined locus originated from either a somatic mutation or a germline mutation, the locus is verified by Sanger sequencing;performing chromosomal microarray analysis to obtain loss of heterozygosity and copy number variations;performing multiplex ligation-dependent probe amplification to obtain large fragment insertions and deletions; andperforming Sanger sequencing to test a leukocyte sample corresponding to a sample to be tested after taking the leukocyte sample, and then determining whether the sample is S-LAM or TSC-LAM.
  • 2. The joint detection method for lymphangioleio-myomatosis of claim 1, wherein in the step of performing Target Sequencing based Hybridization capture, the Panel is configured to cover following genes: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.
  • 3. The joint detection method for lymphangioleio-myomatosis of claim 1, wherein in the step of performing Target Sequencing based Hybridization capture, probe sequences for the TSC1 and TSC2 genes comprises SEQ ID NO: 1 to SEQ ID NO: 276.
  • 4. The joint detection method for lymphangioleio-myomatosis of claim 1, wherein in the step of performing Target Sequencing based Hybridization capture, a sequencing depth is more than 1000×.
  • 5. A method of investigating a pathogenesis of Lymphangioleio-myomatosis and/or diagnosing and treating Lymphangioleio-myomatosis, comprising applying the joint detection method for Lymphangioleio-myomatosis of claim 1.
  • 6. The method of claim 5, wherein a specific detection reagent in the detection method is applied in a preparation of a diagnostic reagent or a diagnostic equipment for jointly detecting Lymphangioleio-myomatosis.
  • 7. A joint detection kit for Lymphangioleio-myomatosis, comprising a Panel covering genes selected from a group consisting of: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, 0 SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.
  • 8. The joint detection kit for Lymphangioleio-myomatosis of claim 7, wherein probe sequences of the panel include SEQ ID NO. 1 to SEQ ID NO 276.
  • 9. The joint detection kit for Lymphangioleio-myomatosis of claim 7, wherein the joint detection kit further comprises an agent for chromosomal microarray analysis.
  • 10. The joint detection kit for Lymphangioleio-myomatosis of claim 7, wherein the joint detection kit further comprises multiplex ligation-dependent probes for Multiplex ligation-dependent probe amplification.
  • 11. A joint detection system for Lymphangioleio-myomatosis, comprising: a detection module, comprising a module of Target Sequencing based Hybridization capture, a module of chromosomal microarray analysis, a module of Multiplex ligation-dependent probe amplification, and a module of Sanger sequencing, wherein the module of the Target Sequencing based Hybridization capture comprises a Panel configured for whole coding regions of TSC1 and TSC2 genes highly related to Lymphangioleio-myomatosis and mutated genes closely related to a solid tumor; andan analysis module, configured for obtaining a detection result of the Target Sequencing based Hybridization capture; requesting the module of chromosomal microarray analysis and the module of Multiplex ligation-dependent probe amplification to perform a supplementary detection, when TSC1 and TSC2 genes are detected to be negative or there is only a one-hit mutated locus; requesting the module of Sanger sequencing to verify the undefined locus, when a locus is detected to be an undefined locus originated from either a somatic mutation or a germline mutation; and then analyzing and judging detection results from the detection modules, to draw a joint detection result of Lymphangioleio-myomatosis.
  • 12. The joint detection system for Lymphangioleio-myomatosis of claim 11, wherein the Panel covers following genes: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF 5 gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.
  • 13. The joint detection system for Lymphangioleio-myomatosis of claim 11, wherein in the module of the Target Sequencing based Hybridization capture, probe sequences for the TSC1 and TSC2 genes comprise SEQ ID NO: 1 to SEQ ID NO: 276.
  • 14. The method of claim 5, wherein in the step of performing Target Sequencing based Hybridization capture, the Panel is configured to cover following genes: ALDH1 gene, EGFR gene, FLT3 gene, MYC gene, PTEN gene, SDHD gene, AQP9 gene, ERBB2 gene, HRAS gene, MYCN gene, RET gene, TP53 gene, AR gene, ESR1 gene, KIT gene, NF1 gene, RICTOR gene, TSC1 gene, ATRX gene, FGFR1 gene, KRAS gene, NRAS gene, RUNX1 gene, TSC2 gene, BCL2 gene, FGFR2 gene, MDM2 gene, PDGFRA gene, SDHA gene, VHL gene, BRAF gene, FGFR3 gene, MAP2K1 gene, PGR gene, SDHB gene, CCND1 gene, FGFR4 gene, MET gene, POLE gene, SDHC gene; ABL1 gene, CDKN2A gene, FBXW7 gene, IDH2 gene, NOTCH1 gene, SMAD4 gene, AKT1 gene, CSF1R gene, GNA11 gene, JAK2 gene, NPM1 gene, SMARCB1 gene, ALK gene, CTNNB1 gene, GNAQ gene, JAK3 gene, PIK3CA gene, SMO gene, APC gene, DDR2 gene, GNAS gene, KDR gene, PTPN11 gene, SRC gene, ATM gene, ERBB4 gene, HNF1A gene, MLH1 gene, RB1 gene, STK11 gene, CDH1 gene, EZH2 gene, IDH1 gene, MPL gene, ROS1 gene, and TET2 gene.
  • 15. The method of claim 5, wherein in the step of performing Target Sequencing based Hybridization capture, probe sequences for the TSC1 and TSC2 genes comprises SEQ ID NO: 1 to SEQ ID NO: 276.
  • 16. The method of claim 5, wherein in the step of performing Target Sequencing based Hybridization capture, a sequencing depth is more than 1000×.
Priority Claims (1)
Number Date Country Kind
201911281998.6 Dec 2019 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to PCT Application No. PCT/CN2019/129173, having a filing date of Dec. 27, 2019, which is based on Chinese Application No. 201911281998.6, having a filing date of Dec. 13, 2019, the entire contents both of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/CN2019/129173 12/27/2019 WO