The present invention relates generally to heavy equipment and more specifically to a joystick having increased control functionality, which allows more functions to be performed by a single hand.
It appears that the prior art does not disclose a joystick having increased control functionality, which allows more functions to be performed by one hand. U.S. Pat. No. 5,223,776 to Radke et al. discloses a six-degree virtual pivot controller. U.S. Pat. No. 7,113,836 to Hornig discloses a control device for maneuvering an apparatus.
Accordingly, there is clearly felt need in the art for a joystick having increased control functionality, which includes a unique moving structure, and which allows more functions to be performed by a single hand.
The present invention provides a joystick having increased control functionality, which allows more functions to be performed by a single hand. The joystick having increased control functionality (improved joystick) preferably includes a state-of-the art joystick base for heavy equipment (industrial joystick base), which includes two axis functionality and a rotary upper handle. The rotary upper handle preferably includes an outer base ring, a rotatable ring, a position sensor and a base portion. The base portion extends downward from a bottom of the outer base ring. A bottom of the base portion is engaged with a top of the industrial joystick base. The detachable ring is secured to one side of the outer base ring with any suitable attachment method, such as fasteners, a bonding agent, a snap arrangement or any other suitable attachment method. The outer base ring preferably includes a detachable retention ring. A base groove is formed in the outer base ring and a ring groove is formed in the detachable retention ring. The base and grooves prevent axial movement of the rotatable ring relative to the outer base ring. The detachable retention ring is secured to one side of the outer base ring with any suitable attachment method, such as fasteners, a bonding agent, a snap arrangement or any other suitable attachment method.
A sensor cavity is formed in an inner perimeter of the outer base ring, below the grooves for receiving the rotatable ring. The position sensor is preferably a PCAP (projective capacitive) touch sensor. However, other types of sensors may also be used. The rotatable ring preferably includes a ring portion and a rotatable cylinder bar. The ring portion preferably includes two halves. A pair of opposing bosses preferably extend inward from an inner perimeter of the ring portion. A through hole is formed through the pair of opposing bosses. The rotatable cylinder bar includes an inner diameter. The inner diameter of the rotatable cylinder bar is sized to rotatably receive an outer diameter of the pair of opposing bosses. A contact plug is preferably pressed into the inner diameter of the rotatable cylinder bar. However, the contact plug may be molded into the inner perimeter of the rotatable cylinder bar. The contact plug includes a biased center conductive contact and a biased peripheral conductive contact. The heights of the center and peripheral conductive contacts are equal. It is preferable to use a compression spring to bias the center and peripheral conductive contacts outward to contact the position sensor. The ring portion with the rotatable cylinder bar retained therein is inserted into the inner perimeter of the outer base ring. The detachable ring is secured to one side of the outer base ring. The center and peripheral conductive contacts must make physical contact with the position sensor.
The wiring from the position sensor may be run down a side of the outer base ring or molded into rotary upper handle. The wiring is connected to a suitable ring controller for determining the location of the rotatable cylinder bar and the rotatable ring. The position sensor includes a grid arrangement, which allows a rotational position and an angular position of the two-spring loaded conductive contacts to be determined. When the rotatable cylinder bar is rotated in either a clockwise or counterclockwise direction, the center conductive contact will remain relatively stationary, while the peripheral conductive contact will rotate about the center conductive contact. The rotational motion of the rotatable cylinder bar will be picked-up by the ring controller and could be used to control curling or dumping of a bucket. When the rotatable ring is rotated in either a clockwise or counterclockwise direction the angular motion will be picked-up by the ring controller and could be used to control boom-up or boom-down.
Accordingly, it is an object of the present invention to provide a joystick having increased control functionality having a unique moving structure, which allows more functions to be performed by one hand.
These and additional objects, advantages, features and benefits of the present invention will become apparent from the following specification.
With reference now to the drawings, and particularly to
With reference to
A sensor cavity 25 is formed in an inner perimeter of the outer base ring 12 and below a bottom of the pair of opposing grooves 20 for receiving the position sensor 16. The position sensor 16 is preferably a PCAP (projective capacitive) touch sensor. However, other types of sensors may also be used. The position sensor 16 must be curved along a lengthwise axis or be flexible to conform to an inner perimeter of the sensor cavity 25. The rotatable ring 14 preferably includes a ring portion 24 and a rotatable cylinder bar 26. A pair of opposing bosses 30 preferably extend inward from an inner perimeter of the ring portion 24. A through hole 32 is formed through the pair of opposing bosses 30.
The ring portion 24 preferably includes first and second halves 27, 29. Each end of the first half 27 includes an attachment area 31 for attaching an opposing half. Each end of the second half 29 includes an attachment area 33 for attaching an opposing half. The first and second halves 27, 29 may be attached to each other with fasteners, adhesive, snaps or any other suitable attachment method. A pair of opposing bosses 30 preferably extend inward from an inner perimeter of the ring portion 24. A through hole 32 is formed through the pair of opposing bosses 30. The rotatable cylinder bar 26 includes an inner diameter 34. The inner diameter 34 of the rotatable cylinder bar 26 is sized to rotatably receive an outer diameter of the pair of opposing bosses 30. A contact plug 36 is preferably pressed into the inner diameter 34 of the rotatable cylinder bar 26. However, the contact plug 36 may be molded into the inner perimeter of the rotatable cylinder bar 26. The contact plug 36 preferably includes a biased center conductive contact 38 and a biased peripheral conductive contact 40. However, the contact plug 36 may only include a center conductive contact 38, if an electrical output from the rotatable cylinder bar 26 is not needed. A compression spring 44 and set screw 46 are preferably used to bias the center and peripheral conductive contacts 38, 40 against the position sensor 16. The heights of the center and peripheral conductive contacts 38, 40 are equal. The center and peripheral contacts 38, 40 extend beyond an outer perimeter of the rotatable ring 14.
The ring portion 24 with the rotatable cylinder bar 26 retained therein is inserted into the inner perimeter of the outer base ring 12. The detachable ring 22 is secured to one side of the outer base ring 12 with the plurality of fasteners 23. Sensor wiring (not shown) from the position sensor 16 is run down a side of the outer base ring 12 or molded into the rotary upper handle 10. However, the ring portion 24 may not rotate relative to the outer base ring 12 for some applications. The rotatable cylinder bar 26 would rotate with the center and peripheral conductive contacts 38, 40. The sensor wiring is connected to a suitable ring controller 42 for determining the location of the rotatable cylinder bar 26 and the rotatable ring portion 24. The position sensor 16 includes a grid arrangement, which allows a rotational position and an angular position of the ring portion 24 and the rotatable cylinder bar 26 to be determined. When the rotatable cylinder bar 26 is rotated in either a clockwise or counterclockwise direction, the center conductive contact 38 will remain relatively stationary, while the peripheral conductive contact 40 will rotate about the center conductive contact 38. The rotational motion of the rotatable cylinder bar 26 will be picked-up by the ring controller 42 and could be used to control curling or dumping of a bucket. When the rotatable ring 14 is rotated in either a clockwise or counterclockwise direction the angular motion will be processed by the ring controller 42 and could be used to control boom-up or boom-down. Movement of the rotary upper handle 10 in the X-axis and the Y-axis will also be processed by the ring controller 42 and used to operate the appropriate attachment. Buttons, toggle switches, thumb wheels and other control devices may also be added to the rotary upper handle 10.
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3028126 | Holleman | Apr 1962 | A |
3260826 | Johnson | Jul 1966 | A |
5193963 | McAffee | Mar 1993 | A |
5223776 | Radke et al. | Jun 1993 | A |
5619195 | Allen | Apr 1997 | A |
6880855 | Chernoff | Apr 2005 | B2 |
7113836 | Hornig | Sep 2006 | B2 |
7148819 | Kim | Dec 2006 | B2 |
20150060185 | Feguri | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
19802983 | Jul 1999 | DE |
102014012282 | Feb 2016 | DE |
102014012283 | Feb 2016 | DE |
102014012284 | Feb 2016 | DE |
2283079 | Apr 1995 | GB |