Key formation

Information

  • Patent Grant
  • 9411751
  • Patent Number
    9,411,751
  • Date Filed
    Monday, May 14, 2012
    12 years ago
  • Date Issued
    Tuesday, August 9, 2016
    8 years ago
Abstract
Key formation techniques are described. In one or more implementations, an input device includes a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device, a connection portion configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device, and an outer layer that is configured to cover the plurality of keys of the key assembly, the outer layer having a plurality of areas that are embossed thereon that indicate one or more borders of respective said keys.
Description
BACKGROUND

Mobile computing devices have been developed to increase the functionality that is made available to users in a mobile setting. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on. However, traditional mobile computing devices often employed a virtual keyboard that was accessed using touchscreen functionality of the device. This was generally employed to maximize an amount of display area of the computing device.


Use of the virtual keyboard, however, could be frustrating to a user that desired to provide a significant amount of inputs, such as to enter a significant amount of text to compose a long email, document, and so forth. Thus, conventional mobile computing devices were often perceived to have limited usefulness for such tasks, especially in comparison with ease at which users could enter text using a conventional keyboard, e.g., of a conventional desktop computer. Use of the conventional keyboards, though, with the mobile computing device could decrease the mobility of the mobile computing device and thus could make the mobile computing device less suited for its intended use in mobile settings.


SUMMARY

Key formation techniques are described. In one or more implementations, an input device includes a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device, a connection portion configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device, and an outer layer that is configured to cover the plurality of keys of the key assembly, the outer layer having a plurality of areas that are embossed thereon to indicate one or more borders of respective keys.


In one or more implementations, a keyboard includes a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device, a connection portion configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device, and an outer layer that is configured to cover the plurality of keys of the key assembly, the outer layer having an outer skin and a middle layer that is disposed beneath the outer skin, a portion of the outer skin is removed to expose the middle layer to form at least part of an indication of a function of a respective key.


In one or more implementations, an outer skin of an outer layer is embossed that is usable to cover a plurality of keys of a key assembly to indicate a border of respective said keys. A portion of the outer skin is removed to expose a middle layer of the outer layer that is disposed beneath the outer skin, the portion removed to form at least part of an indication of a function of the respective key. The key assembly is covered with the outer layer having the indication of the border and the indication of the function of the respective key.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.



FIG. 1 is an illustration of an environment in an example implementation that is operable to employ the techniques described herein.



FIG. 2 depicts an example implementation of an input device of FIG. 1 as showing a flexible hinge in greater detail.



FIG. 3 depicts an example implementation showing a perspective view of a connecting portion of FIG. 2 that includes mechanical coupling protrusions and a plurality of communication contacts.



FIG. 4 depicts a plurality of layers of the input device of FIG. 2 in a perspective exploded view.



FIG. 5 depicts an example of a cross-sectional view of a pressure sensitive key of a keyboard of the input device of FIG. 2.



FIG. 6 depicts an example of a pressure sensitive key of FIG. 5 as having pressure applied at a first location of a flexible contact layer to cause contact with a corresponding first location of a sensor substrate.



FIG. 7 depicts an example of the pressure sensitive key of FIG. 5 as having pressure applied at a second location of the flexible contact layer to cause contact with a corresponding second location of the sensor substrate.



FIG. 8 illustrates an example of the flexible contact layer of a single pressure sensitive key that is configured to normalize outputs generated at a plurality of locations of the switch.



FIG. 9 depicts an example of a pressure sensitive key of FIG. 5 that includes a plurality of sensors to detect pressure at different locations.



FIG. 10 depicts an example of conductors of a sensor substrate of a pressure sensitive key that is configured to normalize signals generated at different locations of the pressure sensitive key.



FIG. 11 depicts an example of a pressure sensitive key of FIG. 5 as employing a force concentrator layer.



FIG. 12 an example of the pressure sensitive key of FIG. 11 as having pressure applied at a plurality of different locations of the force concentrator layer to cause a flexible contact layer to contact a sensor substrate.



FIG. 13 illustrates an example of a view of a cross section of a keyboard that includes a plurality of pressure sensitive keys that employ the force concentrator layer.



FIG. 14 depicts an example implementation showing a support layer that is configured to support operation of the flexible hinge as well as protect components of the input device during this operation.



FIG. 15 depicts a bottom view of a pressure sensitive key of FIG. 5 as having a flexible contact layer secured at a plurality of locations along edges of the key.



FIG. 16 depicts another version of FIG. 15 in which a securing portion is moved to a different location along an edge of the key.



FIG. 17A depicts an example of an adhesive layer applied as part of a keyboard having a plurality of keys in which different arrangements of adhesive are used for different keys.



FIG. 17B depicts another example implementation of a layer incorporating a matric that may be used to reduce air entrapment.



FIG. 18 depicts an example of surface mount hardware elements that may be used to support functionality of the input device of FIG. 1.



FIG. 19 illustrates an example implementation in which the surface mount hardware element of FIG. 18 is depicted as being nested in one or more layers of the input device.



FIG. 20 depicts an example implementation showing a top view of an outer surface of the input device of FIG. 1 that includes a plurality of keys.



FIG. 21 depicts a cross section view of the outer layer of FIGS. 4 and 20.



FIG. 22 depicts a cross section view of an outer layer of FIG. 4.



FIG. 23 depicts a cross section view of an outer layer of FIG. 21 in which a border of a key is formed in an outer skin.



FIG. 24 depicts an example implementation in which first and second depressions of FIG. 23 are formed in an outer skin of an outer layer.



FIG. 25 depicts an example implementation in which a portion of an outer skin is removed to expose a middle layer to form an indication of a function of a key or other indication.



FIG. 26 depicts an example implementation in which removal of a portion of an outer skin causes a middle layer to expand through an opening formed in the outer skin.



FIG. 27 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to the other figures to implement embodiments of the techniques described herein.





DETAILED DESCRIPTION

Overview


Input devices may be configured to support a thin form factor, such as approximately three and a half millimeters and smaller. However, because of this form factor it may be difficult using conventional configurations for a user to locate particular keys of the input device, such as to type using a QWERTY keyboard.


Key formation techniques are described. In one or more implementations, keys of an input device are formed to support a thin form factor. An input device, for instance, may be formed to include an outer surface formed from a substantially continuous piece of material such that the material covers a plurality of keys of the input device.


The outer surface may have embossed thereon indications of one or more borders of particular keys and other input elements. This embossing may be performed such that the borders have sharp edges that may be readily felt tactilely by a user. In this way, a depth of the embossing of the borders may be made shallow (e.g., approximately 0.2 mm) yet still support user feedback, thus supporting material thicknesses that are thinner than conventional thicknesses, e.g., a thickness of 0.65 mm as opposed to conventional thicknesses of over a millimeter.


Additionally, indications of functions of respective keys (e.g., letters, numbers, punctuation, and so on) may also be configured to support this form factor. For example, a layer may be disposed beneath the outer surface described above. The indications may then be formed by using a laser to cut through the outer surface to expose an underlying layer, e.g., which may have a different color than a color of the outer surface. Further, due to the thickness of the outer layer the material removal performed by the laser (e.g., the cuts of the indications) may be performed quickly and cleanly, thereby supporting an efficient manufacturing process. Further discussion of these techniques may be found in relation to the following sections beginning at FIG. 20.


In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures.


Example Environment



FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ the techniques described herein. The illustrated environment 100 includes an example of a computing device 102 that is physically and communicatively coupled to an input device 104 via a flexible hinge 106. The computing device 102 may be configured in a variety of ways. For example, the computing device 102 may be configured for mobile use, such as a mobile phone, a tablet computer as illustrated, and so on. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing device 102 may also relate to software that causes the computing device 102 to perform one or more operations.


The computing device 102, for instance, is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by the display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.


In the illustrated example, the input device 104 is configured as a keyboard having a QWERTY arrangement of keys although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, configuration to mimic a musical instrument, and so forth. Thus, the input device 104 and keys incorporated by the input device 104 may assume a variety of different configurations to support a variety of different functionality.


As previously described, the input device 104 is physically and communicatively coupled to the computing device 102 in this example through use of a flexible hinge 106. The flexible hinge 106 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one direction (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the input device 104 in relation to the computing device 102. This may be used to support consistent alignment of the input device 104 in relation to the computing device 102, such as to align sensors used to change power states, application states, and so on.


The flexible hinge 106, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on. The flexible hinge 106 may be configured in a variety of ways, further discussion of which may be found in relation to the following figure.



FIG. 2 depicts an example implementation 200 of the input device 104 of FIG. 1 as showing the flexible hinge 106 in greater detail. In this example, a connection portion 202 of the input device is shown that is configured to provide a communicative and physical connection between the input device 104 and the computing device 102. In this example, the connection portion 202 has a height and cross section configured to be received in a channel in the housing of the computing device 102, although this arrangement may also be reversed without departing from the spirit and scope thereof.


The connection portion 202 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 202 is physically connected to the computing device the combination of the connection portion 202 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge of a book.


For example, rotational movement may be supported by the flexible hinge 106 such that the input device 104 may be placed against the display device 110 of the computing device 102 and thereby act as a cover. The input device 104 may also be rotated so as to be disposed against a back of the computing device 102, e.g., against a rear housing of the computing device 102 that is disposed opposite the display device 110 on the computing device 102.


Naturally, a variety of other orientations are also supported. For instance, the computing device 102 and input device 104 may assume an arrangement such that both are laid flat against a surface as shown in FIG. 1. In another instance, a typing arrangement may be supported in which the input device 104 is laid flat against a surface and the computing device 102 is disposed at an angle to permit viewing of the display device 110, e.g., such as through use of a kickstand disposed on a rear surface of the computing device 102. Other instances are also contemplated, such as a tripod arrangement, meeting arrangement, presentation arrangement, and so forth.


The connecting portion 202 is illustrated in this example as including magnetic coupling devices 204, 206, mechanical coupling protrusions 208, 210, and a plurality of communication contacts 212. The magnetic coupling devices 204, 206 are configured to magnetically couple to complementary magnetic coupling devices of the computing device 102 through use of one or more magnets. In this way, the input device 104 may be physically secured to the computing device 102 through use of magnetic attraction.


The connecting portion 202 also includes mechanical coupling protrusions 208, 210 to form a mechanical physical connection between the input device 104 and the computing device 102. The mechanical coupling protrusions 208, 210 are shown in greater detail in the following figure.



FIG. 3 depicts an example implementation 300 shown a perspective view of the connecting portion 202 of FIG. 2 that includes the mechanical coupling protrusions 208, 210 and the plurality of communication contacts 212. As illustrated, the mechanical coupling protrusions 208, 210 are configured to extend away from a surface of the connecting portion 202, which in this case is perpendicular although other angles are also contemplated.


The mechanical coupling protrusions 208, 210 are configured to be received within complimentary cavities within the channel of the computing device 102. When so received, the mechanical coupling protrusions 208, 210 promote a mechanical binding between the devices when forces are applied that are not aligned with an axis that is defined as correspond to the height of the protrusions and the depth of the cavity.


For example, when a force is applied that does coincide with the longitudinal axis described previously that follows the height of the protrusions and the depth of the cavities, a user overcomes the force applied by the magnets solely to separate the input device 104 from the computing device 102. However, at other angles the mechanical coupling protrusion 208, 210 are configured to mechanically bind within the cavities, thereby creating a force to resist removal of the input device 104 from the computing device 102 in addition to the magnetic force of the magnetic coupling devices 204, 206. In this way, the mechanical coupling protrusions 208, 210 may bias the removal of the input device 104 from the computing device 102 to mimic tearing a page from a book and restrict other attempts to separate the devices.


The connecting portion 202 is also illustrated as including a plurality of communication contacts 212. The plurality of communication contacts 212 is configured to contact corresponding communication contacts of the computing device 102 to form a communicative coupling between the devices. The communication contacts 212 may be configured in a variety of ways, such as through formation using a plurality of spring loaded pins that are configured to provide a consistent communication contact between the input device 104 and the computing device 102. Therefore, the communication contact may be configured to remain during minor movement of jostling of the devices. A variety of other examples are also contemplated, including placement of the pins on the computing device 102 and contacts on the input device 104.



FIG. 4 depicts a plurality of layers of the input device 104 in a perspective exploded view 400. At top, an outer layer 402 is shown which may be configured using an embossed fabric (e.g., 0.6 millimeter polyurethane) in which the embossing is used to provide indications of underlying keys as well as indications of respective functions of the keys.


A force concentrator 404 is disposed beneath the outer layer 402. The force concentrator 402 may be configured to provide a mechanical filter, force direction, and to hide witness lines of underlying components as further described in the “Force Concentrator” section below.


Below the force concentrator 404 in this example is a pressure sensitive key assembly 406. The pressure sensitive key assembly 406 may include layers used to implement pressure sensitive keys, as further described in the “Pressure Sensitive Key” section below.


A support layer 408 is illustrated below the pressures sensitive key 406 assembly. The support layer 408 is configured to support the flexible hinge 106 and conductors included therein from damage. Further discussion of the support layer 408 may be found in relation to the “Support Layer” section.


An adhesive layer 410 is illustrated as disposed beneath the support layer 408 and above a support board 412 which is configured to add mechanical stiffness to an input portion of the input device 104. The adhesive layer 410 may be configured in a variety of ways to secure the support board 412 to the support layer 408. The adhesive layer 410, for instance, may be configured to include a dot matrix of adhesive on both sides of the layer. Therefore, air is permitted to escape as the layers are rolled together, thereby reducing wrinkles and air bubbles between the layers. In the illustrated example, the adhesive layer 410 also includes a nesting channel configured to support flexible printed circuit routing, e.g., between controllers, sensors, or other modules and the pressure sensitive keys and/or communication contacts of the connection portion 202. Beneath the support board 412 is a backer layer 414 with PSA and an outer surface 416. The outer surface 416 may be formed from a material that is the same as or different from the other outer surface 402.


Pressure Sensitive Key Assembly



FIG. 5 depicts an example of a cross-sectional view of a pressure sensitive key 500 of a keyboard of the input device 104 of FIG. 2 that forms the pressure sensitive key assembly 406. The pressure sensitive key 500 in this example is illustrated as being formed using a flexible contact layer 502 (e.g., Mylar) that is spaced apart from the sensor substrate 504 using a spacer layer 508, 408, which may be formed as another layer of Mylar, formed on the sensor substrate 504, and so on. In this example, the flexible contact layer 502 does not contact the sensor substrate 504 absent application of pressure against the flexible contact layer 502.


The flexible contact layer 502 in this example includes a force sensitive ink 510 disposed on a surface of the flexible contact layer 502 that is configured to contact the sensor substrate 504. The force sensitive ink 510 is configured such that an amount of resistance of the ink varies directly in relation to an amount of pressure applied. The force sensitive ink 510, for instance, may be configured with a relatively rough surface that is compressed against the sensor substrate 504 upon an application of pressure against the flexible contact layer 502. The greater the amount of pressure, the more the force sensitive ink 510 is compressed, thereby increasing conductivity and decreasing resistance of the force sensitive ink 510. Other conductors may also be disposed on the flexible contact layer 502 without departing form the spirit and scope therefore, including other types of pressure sensitive and non-pressure sensitive conductors.


The sensor substrate 504 includes one or more conductors 512 disposed thereon that are configured to be contacted by the force sensitive ink 510 of the flexible contact layer 502. When contacted, an analog signal may be generated for processing by the input device 104 and/or the computing device 102, e.g., to recognize whether the signal is likely intended by a user to provide an input for the computing device 102. A variety of different types of conductors 512 may be disposed on the sensor substrate 504, such as formed from a variety of conductive materials (e.g., silver, copper), disposed in a variety of different configurations as further described in relation to FIG. 9, and so on.



FIG. 6 depicts an example 600 of the pressure sensitive key 500 of FIG. 5 as having pressure applied at a first location of the flexible contact layer 502 to cause contact of the force sensitive ink 510 with a corresponding first location of the sensor substrate 504. The pressure is illustrated through use of an arrow in FIG. 6 and may be applied in a variety of ways, such as by a finger of a user's hand, stylus, pen, and so on. In this example, the first location at which pressure is applied as indicated by the arrow is located generally near a center region of the flexible contact layer 502 that is disposed between the spacer layers 506, 508. Due to this location, the flexible contact layer 502 may be considered generally flexible and thus responsive to the pressure.


This flexibility permits a relatively large area of the flexible contact layer 502, and thus the force sensitive ink 510, to contact the conductors 512 of the sensor substrate 504. Thus, a relatively strong signal may be generated. Further, because the flexibility of the flexible contact layer 502 is relatively high at this location, a relatively large amount of the force may be transferred through the flexible contact layer 502, thereby applying this pressure to the force sensitive ink 510. As previously described, this increase in pressure may cause a corresponding increase in conductivity of the force sensitive ink and decrease in resistance of the ink. Thus, the relatively high amount of flexibility of the flexible contact layer at the first location may cause a relatively stronger signal to be generated in comparison with other locations of the flexible contact layer 502 that located closer to an edge of the key, an example of which is described in relation to the following figure.



FIG. 7 depicts an example 700 of the pressure sensitive key 500 of FIG. 5 as having pressure applied at a second location of the flexible contact layer 502 to cause contact with a corresponding second location of the sensor substrate 504. In this example, the second location of FIG. 6 at which pressure is applied is located closer to an edge of the pressure sensitive key (e.g., closer to an edge of the spacer layer 508) than the first location of FIG. 5. Due to this location, the flexible contact layer 502 has reduced flexibility when compared with the first location and thus less responsive to pressure.


This reduced flexibility may cause a reduction in an area of the flexible contact layer 502, and thus the force sensitive ink 510, that contacts the conductors 512 of the sensor substrate 504. Thus, a signal produced at the second location may be weaker than a signal produced at the first location of FIG. 6.


Further, because the flexibility of the flexible contact layer 502 is relatively low at this location, a relatively low amount of the force may be transferred through the flexible contact layer 502, thereby reducing the amount of pressure transmitted to the force sensitive ink 510. As previously described, this decrease in pressure may cause a corresponding decrease in conductivity of the force sensitive ink and increase in resistance of the ink in comparison with the first location of FIG. 5. Thus, the reduced flexibility of the flexible contact layer 502 at the second location in comparison with the first location may cause a relatively weaker signal to be generated. Further, this situation may be exacerbated by a partial hit in which a smaller portion of the user's finger is able to apply pressure at the second location of FIG. 7 in comparison with the first location of FIG. 6.


However, as previously described techniques may be employed to normalize outputs produced by the switch at the first and second locations. This may be performed in a variety of ways, such as through configuration of the flexible contact layer 502 as described in relation to FIG. 8, use of a plurality of sensors as described in relation to FIG. 9, configuration of the sensor substrate 504 as described in relation to FIG. 10, use of a force concentrator layer as described in relation to FIGS. 11-13, use of securing as described in relation to FIGS. 14-16, and combinations thereof as further described in relation to the following sections.


Flexible Contact Layer



FIG. 8 illustrates an example 800 of the flexible contact layer of a single pressure sensitive key that is configured to normalize outputs generated at a plurality of locations of the switch. In this example, a view of the “bottom” or “underside” of the flexible contact layer 502 of FIG. 5 is shown that is configured to contact the conductors 512 of the sensor substrate 504.


The flexible contact layer 502 is illustrated as having first and second sensing areas 802, 804. The first sensing area 802 in this example corresponds generally to the first location at which pressure was applied in FIG. 6 and the second sensing area 804 corresponds generally to the second location at which pressure was applied in FIG. 7.


As previously described, flexing of the flexible contact layer 502 due to changes in distances from an edge of the switch may cause relatively stronger signals to be generated as distances increase from an edge of the key. Therefore, in this example the first and second sensing areas 802, 804 are configured to normalize the signals 806 generated at the different locations. This may be done in a variety of ways, such as by having a higher conductivity and less resistance at the second sensing area 804 in comparison with the first sensing area 802.


The differences in conductivity and/or resistance may be achieved using a variety of techniques. For example, one or more initial layers of a force sensitive ink may be applied to the flexible contact layer 502 that covers the first and second sensing areas 804, 802, such as through use of a silk screen, printing process, or other process by which the ink may be disposed against the surface. One or more additional layers may then be applied to the second sensing area 704 and not the first sensing area 802.


This causes the second sensing area 804 to have a greater amount (e.g., thickness) of the force sensitive ink than the first sensing area 802 for a given area, which causes a corresponding increase in conductivity and decrease in resistance. Therefore, this technique may serve to at least partially counteract the differences in flexibility of the flexible contact layer 502 at different locations. In this example, an increased height of the force sensitive ink at the second sensing area 804 may also act to reduce an amount of flexing involved in generating contact with the conductors 512 of the sensor substrate 504, which may also help to normalize the signals.


The differences in conductivity and/or resistance at the first and second sensing areas 802, 804 may be achieved in a variety of other ways. For example, a first force sensitive ink may be applied at the first sensing area 802 and a second force sensitive ink having a higher conductivity and/or resistance may be applied at the second sensing area 804. Further, although an arrangement of first and second sensing areas 802, 804 as concentric square is shown in FIG. 8, a variety of other arrangements may also be employed, such as to further increase sensitivity at the corners of the switch, employ more than two sensing areas having different sensitivities to pressure, use of a gradient of conductivities, and so forth. Other examples are also contemplated, such as to support use of a plurality of sensors for a single key, an example of which is described in relation to the following figure.



FIG. 9 depicts an example 900 of a pressure sensitive key 500 of FIG. 5 that includes a plurality of sensors to detect pressure at different locations. As previously described, miss hits and limitations of flexibility may cause reduced performance at edges of a pressure sensitive key.


Accordingly, in this example a first sensor 902 and a second sensor 904 are employed to provide respective first and second sensor signals 906, 908, respectively. Further, the second sensor 904 is configured to have increased sensitivity (e.g., higher conductivity and/or lower resistance) that the first sensor 902. This may be achieved in a variety of ways, such as through different conductors and configurations of the conductors to act as sensors as part of the sensor substrate 504. Other configurations of the sensor substrate 504 may also be made to normalize signals generated by the pressure sensitive key at different locations of the key, an example of which is described in relation to the discussion of the following figure.


Sensor Substrate



FIG. 10 depicts an example of conductors 512 of a sensor substrate 504 that are configured to normalize signals generated at different locations of a pressure sensitive key. In this example, conductors 512 of the sensor substrate 504 are configured in first and second portions 1002, 1004 of inter-digitated trace fingers. Surface area, amount of conductors, and gaps between the conductors are used in this example to adjust sensitivity at different locations of the sensor substrate 504.


For example, pressure may be applied to a first location 1006 may cause a relatively larger area of the force sensitive ink 510 of the flexible contact layer 502 to contact the conductors in comparison with a second location 1008 of the sensor substrate 504. As shown in the illustrated example, an amount of conductor contacted at the first location 1006 is normalized by an amount of conductor contacted at the second portion 1006 through use of gap spacing and conductor size. In this way, by using smaller conductors (e.g., thinner fingers) and larger gaps at the center of the key as opposed to the edge of the key specific performance characteristics for the keys may be adjusted to suite typical user input scenarios. Further, these techniques for configuring the sensor substrate 504 may be combined with the techniques described for configuring the flexible contact layer 502 to further promote normalization and desired user input scenarios.


Returning again to FIG. 2, these techniques may also be leveraged to normalize and support desired configuration of different keys, such as to normalize a signal generated by a first key of a keyboard of the input device 104 with a signal generated by a second key of the keyboard. As shown in the QWERTY arrangement of FIG. 2 (although this is equally applicable to other arrangements), users are more likely to apply greater typing pressure to a home row of keys located at a center of the input device 104 than keys located closer to the edges of the device. This may include initiation using fingernails of a user's hand for the shift key row as well as an increased distance to reach for the numbers, different strengths of different fingers (index versus pinky finger), and so on.


Accordingly, the techniques described above may also be applied to normalize signals between these keys, such as to increase sensitivity of number keys in relation to home row keys, increase sensitivity of “pinky” keys (e.g., the letter “a” and semicolon key) as opposed to index finger keys (e.g., the letters “f,” “g,” “h,” and “j”), and so forth. A variety of other examples are also contemplated involving changes to sensitivity, such as to make keys having a smaller surface area (e.g., the delete button in the figure) more sensitive in comparison with larger keys, such as the shift keys, spacebar, and so forth.


Force Concentrator



FIG. 11 depicts an example 1100 of a pressure sensitive key of FIG. 4 as employing a force concentrator 404 of FIG. 4. The force concentrator 404 includes a force concentrator layer 1102 and a pad 1104. The force concentrator layer 1102 may be configured from a variety of materials, such as a flexible material (e.g., Mylar) that is capable of flexing against the flexible contact layer 502. The force concentrator 404 may be employed to improve consistency of the contact of the flexible contact layer 502 with the sensor substrate 504 as well as other features.


As described above, the force concentrator layer 1102 in this instance includes a pad 1104 disposed thereon that is raised from a surface of the force concentrator layer 1102. Thus, the pad 1104 is configured as a protrusion to contact the flexible contact layer 502. The pad 1104 may be formed in a variety of ways, such as formation as a layer (e.g., printing, deposition, forming, etc.) on a substrate of the force concentrator layer 1102 (e.g., Mylar), as an integral part of the substrate itself, and so on.



FIG. 12 an example 1200 of the pressure sensitive key of FIG. 11 as having pressure applied at a plurality of different locations of the force concentrator layer 1102 to cause the flexible contact layer 502 to contact the sensor substrate 504. The pressure is again illustrated through use of arrow, which in this instance include first, second, and third locations 1202, 1204, 1206 which are positioned at distances that are respectively closer to an edge of the key, e.g., an edge defined by the spacer layer 508, 508.


As illustrated, the pad 1104 is sized so as to permit the flexible contact layer 502 to flex between the spacer layer 508, 508. The pad 1104 is configured to provide increased mechanical stiffness and thus improved resistance to bending and flexing, e.g., as in comparison with a substrate (e.g., Mylar) of the force concentrator layer 1102. Therefore, when the pad 1104 is pressed against the flexible contact layer 502, the flexible contact layer 502 has a decreased bend radius as illustrated through comparison of FIG. 12 with FIGS. 6 and 7.


Thus, the bending of the flexible contact layer 502 around the pad 1104 may promote a relatively consistent contact area between the force sensitive ink 510 and the conductors 512 of the sensor substrate 504. This may promote normalization of a signal produced by the key.


The pad 1104 may also act to spread a contact area of a source of the pressure. A user, for example, my press against the force concentrator layer 1102 using a fingernail, a tip of a stylus, pen, or other object that has a relatively small contact area. As previously described this could result in correspondingly small contact area of the flexible contact layer 502 that contacts the sensor substrate 504, and thus a corresponding decrease in signal strength.


However, due to the mechanical stiffness of the pad 1104, this pressure may be spread across an area of the pad 1104 that contacts the flexible contact layer 502, which is then spread across an area of the flexible contact layer 502 that correspondingly bends around the pad 1104 to contact the sensor substrate 504. In this way, the pad 1104 may be used to normalize a contact area between the flexible contact layer 502 and the sensor substrate 504 that is used to generate a signal by the pressure sensitive key.


The pad 1104 may also act to channel pressure, even if this pressure is applied “off center.” As previously described in relation to FIGS. 6 and 7, the flexibility of the flexible contact layer 502 may depend at least partially on a distance from an edge of the pressure sensitive key, e.g., an edge defined by the spacer layer 508, 508 in this instance.


The pad 1104, however, may be used to channel pressure to the flexible contact layer 502 to promote relatively consistent contact. For example, pressure applied at a first location 1202 that is positioned at a general center region of the force concentrator layer 1102 may cause contact that is similar to contact achieved when pressure applied at a second location 1204 that is positioned at an edge of the pad 1104. Pressures applied outside of a region of the force concentrator layer 1102 defined by the pad 1104 may also be channeled through use of the pad 1104, such as a third position 1206 that is located outside of the region defined by the pad 1104 but within an edge of the key. A position that is located outside of a region of the force concentrator layer 1102 defined by the spacer layer 508, 508 may also be channeled to cause the flexible contact layer 502 to contact the sensor substrate 504, an example of which is defined in relation to the following figure.



FIG. 13 illustrates an example of a view of a cross section of a keyboard 1300 that includes a plurality of pressure sensitive keys that employ the force concentrator. The keyboard 1300 in this example includes first and second pressure sensitive keys 1302, 1304. The pressure sensitive keys 1302, 1304 share a force concentrator layer 1102, a flexible contact layer 502, a sensor substrate 504, and a spacer layer 508 as before. Each of the pressure sensitive keys 1302, 1304 in this example has a respective pad 1306, 1308 that is configured to channel pressure to cause contact between a respective portion of the flexible contact layer 502 and sensor substrate 504.


As previously described, limited flexibility at the edges of conventional pressure sensitive keys could result in an inability of the keys to recognize pressure applied at the edges of the keys. This could cause “dead zones” in which the input device 104 could not recognize applied pressures. However, through use of the force concentrator layer 1102 and channeling of pressure supported by the pads 1306, 1308 the existence of dead zones may be reduced and even eliminated.


For example, a location 1310 is illustrated through use of an arrow that is disposed between the first and second pressure sensitive keys 1302, 1304. In this instance, the location 1310 is disposed over the spacer layer 508 and closer to the first pressure sensitive key 1302 than the second pressure sensitive key 1304.


Accordingly, the pad 1306 of the first pressure sensitive key 1302 may channel a greater amount of the pressure than the pad 1308 of the second pressure sensitive key 1304. This may result in a stronger signal being produce by the first pressure sensitive key 1302 than the second pressure sensitive key 1304, a signal being generated at just the first pressures sensitive key 1302 and not the second pressure sensitive key 1304, and so forth. Regardless, modules of the input device 104 and/or the computing device 102 may then determine a likely intent of a user regarding which of the keys is to be employed by processing the signals generated by the keys. In this way, the force concentrator layer 1102 may mitigate against dead zones located between the keys by increasing an area that may be used to activate the key through channeling.


The force concentrator layer 1102 may also be used to perform mechanical filtering of pressures applied against the keys. A user, for instance, when typing a document may choose to rest one or more fingers of a hand against a surface of the keys but not wish to activate the key. Without the force concentrator layer 1102, therefore, processing of inputs from the pressure sensitive keys may be complicated by determining whether an amount and/or duration of pressure applied to the key is likely intended to activate the key.


However, in this example the force concentrator layer 1102 may be configured for use with the flexible contact layer to mechanically filter inputs that are not likely to be intended by a user to activate the key. The force concentrator layer 1102, for instance, may be configured to employ a threshold that in combination with the flexible contact layer 502 defines an amount of pressure to be employed to actuate the key. This may include an amount of pressure that is sufficient to cause the flexible contact layer 502 and the force sensitive ink 510 disposed thereon to contact conductors 512 of the sensor substrate to generate a signal that is recognizable as an input by the input device 104 and/or computing device 102.


In an implementation, this threshold is set such that a pressure of approximately fifty grams or less is not sufficient to cause the force concentrator layer 1102 and the flexible contact layer 502 to initiate the signal whereas pressures above that threshold are recognizable as inputs. A variety of other implementations and thresholds are also contemplated that may be configured to differentiate against a resting pressure and a key strike.


The force concentrator layer 1102 may also be configured to provide a variety of other functionality. The input device 104, for instance, may include the outer layer 402 (e.g., fabric) which as previously described in relation to FIG. 4 may include indications of operations of respective keys, e.g., letters, numbers, and other operations such as “shift,” “return,” navigation, and so on. The force concentrator layer 1102 may be disposed beneath this layer. Further, a side of the force concentrator layer 1102 that is exposed towards the outer layer 402 may be configured to be substantially smooth, thereby reducing and even eliminating witness lines that could result from underlying components of the input device 104.


In this way, a surface of the outer layer 402 may be made with increased uniformity and thus provided a better typing experience with increased accuracy, e.g., by promoting a smooth tactile feel without interference from underlying components. The force concentrator layer 1102 may also be configured to protect against electrostatic discharge (ESD) to underlying components of the input device 104. For example, the input device 104 may include a track pad as illustrated in FIGS. 1 and 2 and thus movement across the track pad may generate static. The force concentrator layer 1102, however, may protect components of the input device 104 that are exposed beneath the layer from this potential ESD. A variety of other examples of such protection are also contemplated without departing from the spirit and scope thereof.


Support Layer



FIG. 14 depicts an example implementation 1400 showing the support layer 408 that is configured to support operation of the flexible hinge 106 as well as protect components of the input device 104 during this operation. As previously described, the flexible hinge 106 may be configured to support various degrees of bending to assume the different configurations. However, materials chosen to form the flexible hinge 106, such as to form the outer layers 402, 416 of the flexible hinge 106 may be chosen to support a desired “look and feel” and therefore may not provide desired resiliency against tearing and stretching.


Therefore, in such an instance this could have an effect on operability of conductors 1402 that are used to communicatively couple keys and other components of the input device 104 with the computing device 102. For example, a user may grasp the input device 104 with one hand to pull it away from the computing device 102 by disengaging the protrusions 208 and magnetic attraction supported by the magnets. Therefore, this could result in an amount of force being applied to the conductors that is sufficient to break them absent sufficient support from the first or second outer layers 402, 416 or other structure.


Accordingly, the input device 104 may include a support layer 408 that may be configured to protect the flexible hinge 106 and other components of the input device 104. For example, the support layer 408 may be formed of a material that has a higher resistance to tearing and stretching than a material used to form the outer layers 402, 416, e.g., biaxially-oriented polyethylene terephthalate (BoPET) which is also known as Mylar.


Support provided by the support layer 408 may thus help protect the material used to form the outer layers 402, 416 of the flexible hinge 106. The support layer 408 may also help protect components disposed through the hinge, such as the conductors 1402 used to communicatively couple the connection portion 202 with the keys.


In the illustrated example, the support layer 408 includes a portion 1404 configured to be disposed as part of the input portion 914 of the input device 104 that includes the keys, track pad, and so on as shown in FIG. 1. The support layer 408 also includes first and second tabs 1406, 1408 that are configured to extend from the portion 1404 through the flexible hinge 106 to be secured to the connection portion 202. The tabs may be secured in a variety of ways, such as to include one or more holes as illustrated through which a protrusion (e.g., screw, pin, and so on) may be inserted to secure the tabs to the connection portion 202.


The first and second tabs 1406, 1408 are illustrated in this example as being configured to connect at approximate opposing ends of the connection portion 202. In this way, undesirable rotational movement may be restricted, e.g., that is perpendicular to a longitudinal axis defined by the connection portion 202. Thus, the conductors 1402 disposed at a relative midpoint of the flexible hinge 106 and connection portion 202 may also be protected from tearing, stretching, and other forces


The support layer 408 in this illustrated example also includes a mid-spine portion 1410 that is configured to form part of a mid-spine to increase the mechanical stiffness of the mid-spine and support a minimum bend radius. Although first and second tabs 1406, 1408 are illustrated, it should be readily apparent that more or fewer tabs may also be employed by the support layer 408 to support the functionality described.


Adhesive



FIG. 15 depicts a bottom view 1500 of a pressure sensitive key of FIG. 5 as having the flexible contact layer 502 secured at a plurality of locations along edges of the key. First, second, third, and fourth edges 1502, 1504, 1506, 1508 are illustrated in this example as defining an opening 1510 of a spacer layer 508 of a pressure sensitive key. The opening 1510 as described in relation to FIGS. 5-7 permits the flexible contact layer 502 to flex (e.g., bend and/or stretch) through the opening 1510 to contact the one or more conductors 512 of the sensor substrate 504.


In the illustrated example, a first securing portion 1512 is illustrated as disposed proximal to the first edge 1512 of the opening 1510. Likewise, second, third, and fourth securing portions 1514, 1516, 1518 are illustrated as disposed proximal to respective second, third, and fourth edges 1504, 1506, 1508 of the opening 1510. The securing portions may be configured in a variety of ways, such as through use of an adhesive, mechanical securing device (e.g., pins), and so on. For example, the adhesive may be applied as a series of dots or other shapes to the spacer layer 508 which is then contacted (e.g., pressed) to the flexible contact layer 502.


Regardless of the technique used to secure the flexible contact layer 502 to the spacer layer 508, flexibility may be configured as desired by permitting portions of the flexible contact layer 502 along the edge of the opening to remain unsecured. For instance, the first and second securing portions 1514, 1516 may define sole areas at which the flexible contact layer 502 is secured to the spacer layer 508 along the respective first and second edges 1502, 1504. Therefore, flexibility of the flexible contact layer 502 may decrease as a distance between a point of contact of the pressure and a securing portion decreases similar to the edge discussion of FIGS. 6 and 7, such as due to sliding of the flexible contact layer over the edge, permit increased stretching, and so forth.


However, the reverse is also true in that flexibility increases the further away pressure is applied from the securing portions. Thus, flexibility along the edges of the opening 1510 may be increased by including portions along an edge at which the flexible contact layer 502 is not secured (proximally) to the spacer layer 508. Thus, different arrangements of how the flexible contact layer 502 is secured to the spacer layer 404 may be used to support different amounts of flexibility at different locations of the flexible contact layer 502.


For example, as illustrated the first and second securing portions 1512, 1514 are located closer together than the first and third securing portions 1512, 1516. Accordingly, points (e.g., a midpoint) between the first and third securing portions 1512, 1516 may have greater flexibility than corresponding points (e.g., a midpoint) between the first and second securing portions 1512, 1514. In this way, a designer may configure the flexible contact layer 502 to increase or decrease flexibility at particular locations as desired.


In the example 1600 of FIG. 16, for instance, the second securing portion 1514 is moved from one end of the second edge 1504 to an opposing end of the second edge 1504. Thus, flexibility is increased on the left upper portion of the key in this example and decreased in the upper right portion of the key. A variety of other examples are also contemplated, examples of which are shown in relation to a keyboard in the following example.



FIG. 17A depicts an example of an adhesive layer 1700 applied as part of a keyboard having a plurality of keys in which different arrangements of adhesive are used for different keys. Securing portions in this example are illustrated in black lines and dots of adhesive that are used to secured the flexible contact layer 502 with the spacer layer 506. As shown, different arrangements of the securing portions may be used to address differences in how corresponding keys are likely to be pressed.


For example, as shown the arrangements of adhesive for respective keys in the home row (e.g., keys 43-55) is different than arrangements of adhesive for a row of keys in the next lower row, e.g., keys 56-67. This may be performed to address “where” a key is likely to be pressed, such as at a center or particular one of the four sides of the key. This may also be performed to address “how” a key a likely to be pressed, such as using a pad of a finger as opposed to a user's fingernail, which finger of a user is likely to press the key, and so on. Thus, as illustrated in the example adhesive layer 1700 of FIG. 17, different arrangements may be used for different rows of keys as well as for different columns of the keys.


The adhesive layer 1700 in this example is also illustrated as forming first and second pressure equalization devices 1702, 1704. In this example, adhesive is disposed to leave channels formed between the adhesive. Thus, the adhesive defines the channels that form the device. The channels are configured to connect openings 1510 formed as part of the pressure sensitive keys between the flexible contact layer 502 and the sensor substrate 504 to an outside environment of the input device 104.


In this way, air may move between the outside environment and the openings through the channels to generally equalize the air pressure, which may help prevent damage to the input device 104, e.g., when faced with reduced air pressure in an airplane. In one or more implementations, the channels may be formed as a labyrinth having a plurality of bends to protect against outside contaminants from passing through the pressure equalization devices 1702, 1704 to the openings 1510. In the illustrated example, the pressure equalization devices 1702, 1704 are disposed as part of a palm rest of the spacer layer to leverage available space to form longer channels and thus further protect against contamination. Naturally, a wide variety of other examples and locations are also contemplated without departing from the spirit and scope thereof.



FIG. 17B depicts another example implementation of a layer 1750 incorporating a matrix that may be used to reduce air entrapment, which may or may not correspond to the adhesive layer 410 of FIG. 4. In this example, strategic adhesive placement (or other securing techniques) is used to reduce air entrapment between consecutive layers. In the previous example, a vented labyrinth seal in the sensor substrate/flexible contact layer interface was described.


In this example, a layer (e.g., below the sensor substrate 202) is not configured as a “full bleed adhesive sheet,” but instead is a square matrix of adhesive patches that bind the consecutive layers together. This allows easier assembly and eliminates air entrapment between layers. In this way, multiple layers may be bonded together through adhesive construction to achieve thin profile, stiffness, and allow internal electronics nesting of components.


Nesting



FIG. 18 depicts an example 1800 of surface mount hardware elements 1802 that may be used to support functionality of the input device 104. The input device 104 may be configured in a variety of ways to support a variety of functionality. For example, the input device 104 may be configured to include pressure sensitive keys as described in relation to FIGS. 5-7, a track pad as shown in FIG. 1, or other functionality such as mechanically switched keys, a biometric reader (e.g., fingerprint reader), and so on.


Accordingly, the input device 104 may include a variety of different types of surface mount hardware elements 1802 to support this functionality. For example, the input device 104 may include a processor 1804 which may be leveraged to perform a variety of different operations. An example of such an operation may include processing signals generated by the pressure sensitive keys 500 of FIG. 5 or other keys (e.g., mechanically switched keys that are not pressure sensitive) into a human interface device (HID) compliant input, such as to identify a particular keystroke. Thus, in this example the input device 104 may perform the processing of the signals and provide a result of this processing as an input to the computing device 102. In this way, the computing device 102 and software thereof may readily identify the inputs without modification, such as by an operating system of the computing device 102.


In another example, the input device 104 may include one or more sensors 1806. The sensors 1806, for instance, may be leveraged to detect movement and/or an orientation of the input device 104. Examples of such sensors 1806 include accelerometers, magnetometers, inertial measurement units (IMUs), and so forth.


In a further example, the input device 104 may include a touch controller 1808, which may be used to process touch inputs detected using one or more keys of the keyboard, the track pad, and so forth. In yet a further example, the input device 104 may include one or more linear regulators 1810 to maintain a relatively steady voltage for electrical components of the input device 104.


The input device 104 may also include an authentication integrated circuit 1812. The authentication integrated circuit 1812 may be configured to authenticate the input device 104 for operation with the computing device 102. This may be performed in a variety of ways, such as to share secrets between the devices that are processed by the input device 104 and/or the computing device 102 to perform the authentication. A variety of other 1814 surface mount hardware elements 1802 are also contemplated to support a variety of different functionality.


As previously described, however, inclusion of the surface mount hardware elements 1802 using conventional techniques may have an adverse effect on an overall thickness of the input device 104. However, in one or more implementations described herein layers of the input device 104 may include nesting techniques to mitigate this effect, further discussion of which may be found in relation to the following figure.



FIG. 19 illustrates an example implementation 1900 in which the surface mount hardware element 1802 of FIG. 18 is depicted as being nested in one or more layers of the input device 104. As previously described, the input device may include top and bottom outer layers 402, 416 which may be formed to have a desirable tactile feel to a user, such as through formation using microfiber, and so on. The outer layer 402, for instance, may be configured using an embossed fabric (e.g., 0.6 millimeter polyurethane) in which the embossing is used to provide indications of underlying keys as well as indications of respective functions of the keys.


A force concentrator 404 is disposed beneath the outer layer 402 that includes a force concentrator layer 1102 and a plurality of pads 1306, 1308 to support respective first and second pressure sensitive keys 1302, 1304. The force concentrator 404 may be configured to provide a mechanical filter, force direction, and to hide witness lines of underlying components.


A pressure sensitive key assembly 406 is disposed beneath the pads 1306, 1308 of the force concentrator layer 1102 in this example, although other examples are also contemplated in which a force concentrator 404 is not utilized. The pressure sensitive key assembly 406 includes layers used to implement pressure sensitive keys. As described in FIG. 5, for instance, the flexible contact layer 502 may include a force sensitive ink, which through flexing the flexible contact layer 502 may contact one or more conductors of the sensor substrate 504 to generate a signal usable to initiate an input.


The sensor substrate 504 may be configured in a variety of ways. In the illustrated example, the sensor substrate 504 includes a first side on which the one or more conductors are configured, such as through implementation as traces on a printed circuit board (PCB). A surface mount hardware element 1802 is mounted to second side of the sensor substrate 504 that is opposite the first side.


The surface mount hardware element 1802, for instance, may be communicatively coupled through the sensor substrate 504 to the one or more conductors of the first side of the sensor substrate 504. The surface mount hardware element 1802 may then process the generated signals to convert the signals to HID compliant inputs that are recognizable by the computing device 102.


This may include processing of analog signals to determine a likely intention of a user, e.g., to process miss hits, signals from multiple keys simultaneously, implement a palm rejection threshold, determine if a threshold has been exceeded that is indicative of a likely key press, and so on. As previously described in relation to FIG. 18, a variety of other examples of functionality that may be implemented using surface mount hardware elements of the input device 104 are contemplated without departing from the spirit and scope thereof.


In order to reduce an effect of a height the surface mount hardware element 1802 on an overall thickness of the input device 104, the surface mount hardware element 1802 may disposed through one or more holes of other layers of the input device 104. In this example, the surface mount hardware element 1802 is disposed through holes that are made through the support layer 408 and the adhesive layer 410 and at least partially through the support board 412. Another example is also illustrated in FIG. 4 in which holes are formed entirely through each of the support layer 408, adhesive layer 410, and the support board 412.


Thus, in this example an overall thickness of the layers of the input device 104 of the force concentrator layer 1102 through the backer layer 414 and the layers disposed in between may be configured to have a thickness of approximately 2.2 millimeters or less. Additionally, depending on the thickness of the material chosen for the outer layers 402, 416 the overall thickness of the input device 104 at a pressure sensitive key may be configured to be approximately at or below three and a half millimeters. Naturally, other thicknesses are also contemplated without departing from the spirit and scope thereof.


Key Formation



FIG. 20 depicts an example implementation 2000 showing a top view of an outer surface 402 of the input device 104 of FIG. 1 that includes a plurality of keys. In this example, the outer surface 402 of the input device is configured to cover a plurality of keys of a keyboard, examples of which are illustrated as the letters “j,” “k”, “l”, and “m” but naturally other keys and corresponding functions are also contemplated, such as numbers, punctuation, different languages and layouts, functions (e.g., a piano keyboard, game controller), and so on.


As previously described, conventional techniques that were utilized to configure an input device to support a thin form factor could result in an inefficient and undesirable user experience when interacting with the device, e.g., such as to type, due to difficulty in locating and identifying particular keys of the device. However, techniques are described in this section and elsewhere that may be employed to aid a user's experience with the input device 104.


The keys in this example are illustrated as indicating a border of the key as a rectangle having rounded corners, which may correspond to the edges of the spacer layer 506 of the key 400 described previously. Naturally, borders may be indicated in a variety of other ways, such as lines along one or more edges of the key, a series of dots, and so forth.


Regardless of a shape and pattern of how the border is indicated, the indications may be configured to provide tactile feedback such that a user may locate the keys using one or more fingers of the user's hand. For example, the border may be indicated through a series of protrusions that “stick up” from a surface of the outer layer 402. In another example, embossing techniques may be used to form depressions in the outer layer 402 to indicate the border, further discussion of which may be found beginning in relation to FIG. 23.


The keys may also include indications of respective functions of the keys such that a user may readily identify the function on sight, examples of which include the letters “j,” “k,” “l,” and “m” although other examples are also contemplated as previously described. Conventional techniques that were relied upon to provide such indications could lack permanency, especially when applied to a flexible surface such as the outer layer 402 of FIG. 20. Accordingly, techniques are described herein in which the indications of functions are formed within the outer layer 402 itself and therefore provide resiliency against damage, further discussion of which may be found beginning in relation to FIG. 25.



FIG. 21 depicts a cross section view 2100 of the outer layer 402 of FIGS. 4 and 20. The outer layer 402 in this example is shown as formed from a plurality of layers. These layers include an outer skin 2102, a middle layer 2104, a base layer 2106, and a backer 2108. These layers form the outer layer 402 that acts as an outer cover to the input device 104 that includes the indications of borders and inputs as described in relation to FIG. 20.


In this example the outer skin 2102 and middle layer 2104 are “dry” in that solidifying (e.g., curing, drying, forming from a melted material, etc.) is not involved when forming the layers together to form the outer layer 402. The base layer 2106 in this example is a “wet” layer in that it formed to bond as part of the backer 2108. For example, the backer 2108 may be formed as a weave (e.g., nylon tricot weave) such that the baser layer 2106 is melted within the weave to bond the backer 2108 to the middle layer 2104.


As previously described, a thin form factor may be desired for the input device 104 (e.g., to support use as a cover) and therefore thinness of the outer layer 402 and the components of the layer may be used to support this form factor. In an implementation, the outer skin 2102 is formed from a polyurethane having a thickness of approximately 0.065 millimeters, although other materials and thicknesses are also contemplated. The middle layer 2104 is formed to have a thickness of approximately 0.05 millimeters from an open cell material that may be colored as further described in relation to FIG. 25.


The base layer 2106 as described above may be formed as a wet layer that melts within the backer 2108 and thus may be considered to have a minimal effect on thickness of the outer layer 402. The backer 2108 is formed from a weave material (e.g., nylon tricot) having a thickness of approximately 0.3 millimeters. Thus, the outer layer 402 as a whole may be configured to support the thin form factor of the input device 104. However, through such a configuration, conventional formation of the borders of the keys and indications of the keys could not be applied to such a form factor. Accordingly, techniques are described herein that may be used for such thicknesses as further described in beginning in relation to FIGS. 23 and 25, respectively.



FIG. 22 depicts a cross section view 2200 of the outer layer 416 of FIG. 4. This outer layer 416 is configured to cover a bottom of the input device 104 in this example. Accordingly, the middle layer 2104 of the outer layer 402 may be left out to further promote thinness of the input device 104. For example, the outer layer 416 may include the outer skin 2102, base layer 2106, and backer 2108 as described above but not include the middle layer 2104.


However, other implementations are also contemplated, such as to include the middle layer 2104 to support indications and other writing as further described in relation to FIG. 25. It should be readily apparent that the outer layer 416 may also be configured in a variety of other ways to include a variety of other sub-layers that differ from the outer layer 402 of FIG. 21 without departing from the spirit and scope thereof.



FIG. 23 depicts a cross section view 2300 of the outer layer 402 of FIG. 21 in which a border of a key is formed in the outer skin 2102. In this example, first and second depressions 2302, 2304 are formed to indicate a border of a key as described in relation to FIG. 20. As previously described, overall thinness of the input device 104 may be supported through using thinner layers to form the device.


Conventional techniques used to form these layers, however, may be insufficient for a desired purpose. For instance, conventional techniques involving embossing typically used material with thicknesses of well over one millimeter to make depressions. Such depressions could thus be made to have a depth that is sufficient to be felt tactilely by a user. On the contrary, embossing of a material having a thickness of less than a millimeter may result in a depression that is not easily identified by a user using conventional techniques. An example of this includes the thickness of the outer skin 2102 in the present example of approximately 0.065 millimeters which would accordingly support a depth of a depression that is even less than that.


Techniques are described in which embossing may be used to form depressions 2302, 2304 that may be felt tactilely by a user that have a depth that is less than that of conventional depressions. For example, the first and second depressions 2302, 2304 may be configured to have a depth of approximately one third of a thickness of the outer skin 2102, such as approximately 0.02 millimeters. Using conventional techniques such a depth was not readily felt tactilely by a user.


However, using techniques described herein the first and second depressions may be formed to have sharp edges (having at least one edge such as a substantially right angle) that may be felt tactilely by the user. In this way, a user may readily feel edges of a key for an improved typing experience yet the overall thickness of the outer skin 2102, and thus the outer layer 402 and input device itself may be configured to support a thin form factor. The outer skin 2102, for instance, may be configured to have a minimum amount of thickness such that the middle dry layer 2104 is not viewable through the outer skin 2102. This may be used to support formation of indications through different colorings of the layers as further described beginning in relation to FIG. 25. The first and second depressions 2302, 2304 may be formed in a variety of ways, an example of which is described in relation to the following figure.



FIG. 24 depicts an example implementation 2400 in which the first and second depressions 2302, 2304 of FIG. 23 are formed in the outer skin 2102 of the outer layer 402. In this example, a heated plate 2402 (e.g., a copper heated plate) includes first and second protrusions 2404, 2406 that are configured to form the first and second 2302, 2304 depressions in the outer skin 2102.


The heated plate 2402, for instance, may be heated to a temperate that is sufficient to emboss yet not burn the outer skin 2102, e.g., less than 130 degrees Celsius such as in a range of 110-120 degrees Celsius. The heated plate 2402 may then be pressed against the outer skin 2102 of the outer layer 402 using a pressure that is sufficient to form the first and second depressions 2302, 2304, which may again be chosen on the characteristics of the material used to form the outer skin 2102.


In the illustrated example of FIG. 24, the heated plate 2402 is pressed against the outer skin 2102 to form the first and second depressions 2302, 2304. As shown, a height of the first and second protrusions 2404, 2406 is greater than a depth of the first and second depressions 2302, 2303 that are formed in the outer skin 2102. In this way, portions of the outer skin 2102 that are not to be embossed (e.g., an area between the first and second protrusions 2404, 2406 in this example) are not contacted by the heated plate 2402. This may help to preserve an original look and feel of the outer skin 2402 as originally manufactured. Other implementations are also contemplated in which the heated plate 2402 does touch the outer skin 2102 along this portion.


In one or more implementations, the heated plate 2402 is configured to provide a different look and feel (e.g., appearance and texture) to the portions of the outer skin 2102 that are embossed in comparison with portions of the outer skin 2102 that are not embossed. In this way, a user may determine the boundary of the keys readily by look and feel. In another implementation, the heated plate 2402 is configured to form the first and second depressions 2302, 2304 to have a similar look and feel to a surface of the outer skin 2102. This may be performed in a variety of ways, such as through sandblasting of the heated plate 2402. A variety of other implementations are also contemplated without departing from the spirit and scope thereof.



FIG. 25 depicts an example implementation 2500 in which a portion of the outer skin 2102 is removed to expose the middle layer 2104 to form an indication of a function of a key. In this example, the outer layer 402 having the embossed first and second depressions 2302, 2304 is shown, although this technique may also be applied to the outer layer 402 before embossing, e.g., the outer layer of FIG. 21.


A laser 2502 is shown as transmitting a laser beam depicted as an arrow to remove a portion of the outer skin 2102. By removing this portion, a corresponding portion 2504 of the middle layer 2104 is exposed to be viewable by a user of the outer layer 402. Thus, by using a middle layer 2104 that has a color that is different from a color of outer skin 2102, indications of functions of respective keys and other indicia (e.g., warnings, logos, and so on) may be formed in the outer surface 402. A variety of different colors may be utilized, such as white for the middle layer 2104 and charcoal for the outer layer 2102.


In one or more implementations, the middle layer 2104 is formed to have a sufficient thickness such that it is not discolored or undesirably melted during removal of the portion. Further, a thickness of the outer skin 2102 may be chosen such that the middle layer 2104 is not viewable through portions of the outer skin 2102 that have not had material removed, i.e., so that the middle layer 2104 is not viewable through the material of the outer skin 2102.


Additionally, the laser 2502 may also be chosen based on the color of material used to form the outer skin 2102. For example, different wavelengths may support removal of different colors of material. In this way, a variety of different types of indications may be formed as part of the outer surface 402 which may then be used as a cover for the key assembly of the input device 104.



FIG. 26 depicts an example implementation 2600 in which removal of a portion of the outer skin 2102 causes the middle layer 2104 to expand through an opening formed in the outer skin 2102. An opening 2602 may be formed in the outer skin 2102 as previously described in relation to FIG. 25. In this example, however, the middle layer 2104 is configured to expand in response to this removal.


Heat from the laser 2502 of FIG. 25, for instance, may cause an open cell structure of the middle layer 2104 to expand. This expansion may cause the middle layer 2104 to pass through an opening 2602 formed in the middle layer 2102. Further, the heat may also cause an exposed surface 2604 of the middle layer 2104 to form a generally smooth surface. In the illustrated example, this expansion is configured such that the exposed surface 2604 of the middle layer 2104 forms a substantially continuous surface with the outer skin 2102, e.g., the surfaces are generally contiguous. A variety of other examples are also contemplated, including differing amount of expansion of the middle layer 2104 (e.g., to extend past a surface of the outer skin 2102), having the middle layer 2104 remain below the surface of the outer skin 2102, having the middle layer 2104 remain as shown in FIG. 25, and so forth.


Example System and Device



FIG. 27 illustrates an example system generally at 2700 that includes an example computing device 2702 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. The computing device 2702 may be, for example, be configured to assume a mobile configuration through use of a housing formed and size to be grasped and carried by one or more hands of a user, illustrated examples of which include a mobile phone, mobile game and music device, and tablet computer although other examples are also contemplated.


The example computing device 2702 as illustrated includes a processing system 2704, one or more computer-readable media 2706, and one or more I/O interface 2708 that are communicatively coupled, one to another. Although not shown, the computing device 2702 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.


The processing system 2704 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 2704 is illustrated as including hardware element 2710 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 2710 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.


The computer-readable storage media 2706 is illustrated as including memory/storage 2712. The memory/storage 2712 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 2712 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 2712 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 2706 may be configured in a variety of other ways as further described below.


Input/output interface(s) 2708 are representative of functionality to allow a user to enter commands and information to computing device 2702, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 2702 may be configured in a variety of ways to support user interaction.


The computing device 2702 is further illustrated as being communicatively and physically coupled to an input device 2714 that is physically and communicatively removable from the computing device 2702. In this way, a variety of different input devices may be coupled to the computing device 2702 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 2714 includes one or more keys 2716, which may be configured as pressure sensitive keys, mechanically switched keys, and so forth.


The input device 2714 is further illustrated as include one or more modules 2718 that may be configured to support a variety of functionality. The one or more modules 2718, for instance, may be configured to process analog and/or digital signals received from the keys 2716 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 2714 for operation with the computing device 2702, and so on.


Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 2702. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”


“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.


“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 2702, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.


As previously described, hardware elements 2710 and computer-readable media 2706 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.


Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 2710. The computing device 2702 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 2702 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 2710 of the processing system 2704. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 2702 and/or processing systems 2704) to implement techniques, modules, and examples described herein.


CONCLUSION

Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

Claims
  • 1. An input device comprising: a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device;a connection portion including a flexible hinge configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device; andan outer layer that is configured to cover the flexible hinge and the plurality of keys of the key assembly, the outer layer having a plurality of areas that are embossed thereon that indicate borders of the plurality of keys, the borders of the plurality of keys embossed to have raised or depressed thicknesses of less than a thickness of the outer layer.
  • 2. The input device as described in claim 1, wherein the plurality of areas are embossed using a heated plate having a plurality of protrusions that are configured to form the plurality of areas when pressed against the outer layer.
  • 3. The input device as described in claim 2, wherein at least two of the plurality of protrusions of the heated plate have a height such that an area between the at least two protrusions of the plurality of protrusions that is not to be embossed is not contacted by the heated plate when pressed against the outer layer.
  • 4. The input device as described in claim 3, wherein the plurality of areas that are embossed have a different surface smoothness than another part of the outer layer that is not embossed.
  • 5. The input device as described in claim 3, wherein the plurality of protrusions of the heated plate are not sandblasted.
  • 6. The input device as described in claim 1, wherein the outer layer includes an outer skin that is embossed and a middle layer that is disposed beneath the outer skin, the middle layer having a color that is different than a color of the outer skin.
  • 7. The input device as described in claim 6, wherein a portion of the outer skin is removed to expose the middle layer, the portion forming part of an indication of a function of a key of the plurality of keys.
  • 8. The input device as described in claim 7, wherein the portion of the outer skin is removed using a laser.
  • 9. The input device as described in claim 8, wherein the removal of the portion of the outer skin causes a corresponding portion of the middle layer to expand through an opening formed in the outer skin.
  • 10. The input device as described in claim 9, wherein the corresponding portion of the middle layer expands through the opening formed in the outer skin such that a surface of the corresponding portion of the middle layer forms a substantially continuous surface with the outer skin.
  • 11. The input device as described in claim 1, wherein the plurality of keys are configured to implement a QWERTY keyboard.
  • 12. A keyboard comprising: a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device;a connection portion configured to be removably connected to the computing device physically and communicatively via a flexible hinge to communicate signals generated by the plurality of keys to the computing device through the flexible hinge; andan outer layer that is configured to cover the flexible hinge and the plurality of keys of the key assembly, the outer layer having an outer skin and a middle layer that is disposed beneath the outer skin, a portion of the outer skin removed via a manufacturing process subsequent to the outer skin being formed to expose the middle layer to form at least part of an indication of a function of a key of the plurality of keys.
  • 13. The keyboard as described in claim 12, wherein the middle layer has a color that is different than a color of the outer skin.
  • 14. The keyboard as described in claim 12, wherein the portion of the outer skin is removed using a laser.
  • 15. The keyboard as described in claim 12, wherein the removal of the portion of the outer skin causes a corresponding portion of the middle layer to expand through an opening formed in the outer skin.
  • 16. The keyboard as described in claim 15, wherein the corresponding portion of the middle layer expands through the opening formed in the outer skin such that a surface of the corresponding portion of the middle layer forms an approximate continuous surface with the outer skin.
  • 17. The keyboard as described in claim 12, wherein the outer skin includes a plurality of areas that are embossed thereon that indicate one or more borders of more than one key of the plurality of keys.
  • 18. A method comprising: embossing an outer skin of an outer layer that is usable to cover a plurality of keys of a key assembly to indicate a border of the plurality of keys, the border of the plurality of keys embossed to a have raised or depressed thicknesses of less than a thickness of the outer layer;removing a portion of the outer skin covering the plurality of keys via a manufacturing process subsequent to the outer skin being formed to expose a middle layer of the outer layer that is disposed beneath the outer skin, the portion removed to form at least part of an indication of a function of a key of the plurality of keys; andcovering the key assembly with the outer layer having the indication of the border and the indication of the function of the key of the plurality of keys.
  • 19. The method as described in claim 18, wherein: the plurality of areas are embossed using a heated plate having protrusions that are configured to form the plurality of areas when pressed against the outer layer; andat least two of the protrusions of the heated plate having a height such that an area between the at least two protrusions that is not to be embossed is not contacted by the heated plate when pressed against the outer layer.
  • 20. The method as described in claim 18, wherein the outer layer and the key assembly have a combined thickness of 3.5 millimeters or less.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to the following U.S. Provisional patent applications, the entire disclosures of each of these applications being incorporated by reference in their entirety: U.S. Provisional Patent Application No. 61/606,321, filed Mar. 2, 2012, and titled “Screen Edge;” U.S. Provisional Patent Application No. 61/606,301, filed Mar. 2, 2012, and titled “Input Device Functionality;” U.S. Provisional Patent Application No. 61/606,313, filed Mar. 2, 2012, and titled “Functional Hinge;” U.S. Provisional Patent Application No. 61/606,333, filed Mar. 2, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/613,745, filed Mar. 21, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/606,336, filed Mar. 2, 2012, and titled “Kickstand and Camera;” and U.S. Provisional Patent Application No. 61/607,451, filed Mar. 6, 2012, and titled “Spanaway Provisional;” and further this application incorporates the following application by reference in their entirety: U.S. patent application Ser. No. 13/470,633, filed May 14, 2012, and titled “Flexible Hinge and Removable Attachment;” and U.S. patent application Ser. No. 13/471,282, filed May 14, 2012, and titled “Input Device Assembly.”

US Referenced Citations (729)
Number Name Date Kind
578325 Fleming Mar 1897 A
3600528 Leposavic Aug 1971 A
3777082 Hatley Dec 1973 A
3879586 DuRocher et al. Apr 1975 A
3968336 Johnson Jul 1976 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4086451 Boulanger Apr 1978 A
4243861 Strandwitz Jan 1981 A
4261042 Ishiwatari et al. Apr 1981 A
4302648 Sado et al. Nov 1981 A
4317011 Mazurk Feb 1982 A
4317013 Larson Feb 1982 A
4323740 Balash Apr 1982 A
4365130 Christensen Dec 1982 A
4375018 Petersen Feb 1983 A
4492829 Rodrique Jan 1985 A
4503294 Matsumaru Mar 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4651133 Ganesan et al. Mar 1987 A
4652704 Franklin Mar 1987 A
4724605 Fiorella Feb 1988 A
4735394 Facco Apr 1988 A
4801771 Mizuguchi et al. Jan 1989 A
4824268 Diernisse Apr 1989 A
4864084 Cardinale Sep 1989 A
4990900 Kikuchi Feb 1991 A
5008497 Asher Apr 1991 A
5021638 Nopper et al. Jun 1991 A
5053585 Yaniger Oct 1991 A
5107401 Youn Apr 1992 A
5128829 Loew Jul 1992 A
5218177 Coleman et al. Jun 1993 A
5220318 Staley Jun 1993 A
5220521 Kikinis Jun 1993 A
5235495 Blair et al. Aug 1993 A
5253362 Nolan et al. Oct 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5363075 Fanucchi Nov 1994 A
5375076 Goodrich et al. Dec 1994 A
5480118 Cross Jan 1996 A
5491313 Bartley et al. Feb 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5581682 Anderson et al. Dec 1996 A
5596700 Darnell et al. Jan 1997 A
5617343 Danielson et al. Apr 1997 A
5661279 Kenmochi Aug 1997 A
5666112 Crowley et al. Sep 1997 A
5681220 Bertram et al. Oct 1997 A
5737183 Kobayashi et al. Apr 1998 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5803748 Maddrell et al. Sep 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5874697 Selker et al. Feb 1999 A
5905485 Podoloff May 1999 A
5920317 McDonald Jul 1999 A
5924555 Sadamori et al. Jul 1999 A
5926170 Oba Jul 1999 A
5971635 Wise Oct 1999 A
5995026 Sellers Nov 1999 A
6002389 Kasser Dec 1999 A
6002581 Lindsey Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6014800 Lee Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6042075 Burch, Jr. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6055705 Komatsu et al. May 2000 A
6061644 Leis May 2000 A
6108200 Fullerton Aug 2000 A
6128007 Seybold Oct 2000 A
6141388 Servais et al. Oct 2000 A
6178085 Leung Jan 2001 B1
6178443 Lin Jan 2001 B1
6188391 Seely et al. Feb 2001 B1
6254105 Rinde et al. Jul 2001 B1
6305073 Badders Oct 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6366440 Kung Apr 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6437682 Vance Aug 2002 B1
6450046 Maeda Sep 2002 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6585435 Fang Jul 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6603461 Smith, Jr. et al. Aug 2003 B2
6608664 Hasegawa Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6684166 Bellwood et al. Jan 2004 B2
6685369 Lien Feb 2004 B2
6687614 Ihara et al. Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6780019 Ghosh et al. Aug 2004 B1
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6798887 Andre Sep 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6856506 Doherty et al. Feb 2005 B2
6856789 Pattabiraman et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6909354 Baker et al. Jun 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6962454 Costello Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
7007238 Glaser Feb 2006 B2
7091436 Serban Aug 2006 B2
7099149 Krieger et al. Aug 2006 B2
7106222 Ward et al. Sep 2006 B2
7123292 Seeger et al. Oct 2006 B1
D535292 Shi et al. Jan 2007 S
7159132 Takahashi et al. Jan 2007 B2
7194662 Do et al. Mar 2007 B2
7213323 Baker et al. May 2007 B2
7213991 Chapman et al. May 2007 B2
7252512 Tai et al. Aug 2007 B2
7260221 Atsmon Aug 2007 B1
7277087 Hill et al. Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7365967 Zheng Apr 2008 B2
7415676 Fujita Aug 2008 B2
7447922 Asbury et al. Nov 2008 B1
7457108 Ghosh Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7486165 Ligtenberg et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7539882 Jessup et al. May 2009 B2
7542052 Solomon et al. Jun 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
RE40891 Yasutake Sep 2009 E
7594638 Chan et al. Sep 2009 B2
7629966 Anson Dec 2009 B2
7636921 Louie Dec 2009 B2
7639329 Takeda et al. Dec 2009 B2
7656392 Bolender Feb 2010 B2
7693654 Dietsch et al. Apr 2010 B1
7722358 Chatterjee et al. May 2010 B2
7729493 Krieger et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7761119 Patel Jul 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7822338 Wernersson Oct 2010 B2
7865639 McCoy et al. Jan 2011 B2
7884807 Hovden et al. Feb 2011 B2
7893921 Sato Feb 2011 B2
D636397 Green Apr 2011 S
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7932890 Onikiri et al. Apr 2011 B2
7944520 Ichioka et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7973771 Geaghan Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8053688 Conzola et al. Nov 2011 B2
8059384 Park et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
8090885 Callaghan et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8120166 Koizumi et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8149219 Lii et al. Apr 2012 B2
8154524 Wilson et al. Apr 2012 B2
8159372 Sherman Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8231099 Chen Jul 2012 B2
8243432 Duan et al. Aug 2012 B2
8248791 Wang et al. Aug 2012 B2
8255708 Zhang Aug 2012 B1
8264310 Lauder et al. Sep 2012 B2
8267368 Torii et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8322290 Mignano Dec 2012 B1
8346206 Andrus et al. Jan 2013 B1
8373664 Wright Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8387078 Memmott Feb 2013 B2
8387938 Lin Mar 2013 B2
8403576 Merz Mar 2013 B2
8416559 Agata et al. Apr 2013 B2
8424160 Chen Apr 2013 B2
8446359 Doczy et al. May 2013 B2
8464079 Chueh et al. Jun 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
8514568 Qiao et al. Aug 2013 B2
8520371 Peng et al. Aug 2013 B2
8543227 Perek et al. Sep 2013 B1
8548608 Perek et al. Oct 2013 B2
8564944 Whitt, III et al. Oct 2013 B2
8569640 Yamada et al. Oct 2013 B2
8570725 Whitt, III et al. Oct 2013 B2
8576031 Lauder et al. Nov 2013 B2
8587701 Tatsuzawa Nov 2013 B2
8599542 Healey et al. Dec 2013 B1
8610015 Whitt et al. Dec 2013 B2
8614666 Whitman et al. Dec 2013 B2
8633898 Westerman et al. Jan 2014 B2
8646999 Shaw et al. Feb 2014 B2
8674941 Casparian et al. Mar 2014 B2
8699215 Whitt, III et al. Apr 2014 B2
8719603 Belesiu May 2014 B2
8724302 Whitt et al. May 2014 B2
8744070 Zhang et al. Jun 2014 B2
8744391 Tenbrook et al. Jun 2014 B2
8762746 Lachwani et al. Jun 2014 B1
8767388 Ahn et al. Jul 2014 B2
8780540 Whitt, III et al. Jul 2014 B2
8780541 Whitt et al. Jul 2014 B2
8791382 Whitt, III et al. Jul 2014 B2
8797765 Lin et al. Aug 2014 B2
8823652 Linegar et al. Sep 2014 B2
8825187 Hamrick et al. Sep 2014 B1
8830668 Whitt, III et al. Sep 2014 B2
8850241 Oler et al. Sep 2014 B2
8854799 Whitt, III et al. Oct 2014 B2
8873227 Whitt et al. Oct 2014 B2
8891232 Wang Nov 2014 B2
8896993 Belesiu et al. Nov 2014 B2
8903517 Perek et al. Dec 2014 B2
8908858 Chiu et al. Dec 2014 B2
8934221 Guo Jan 2015 B2
8935774 Belesiu et al. Jan 2015 B2
8939422 Liu et al. Jan 2015 B2
8947864 Whitt, III et al. Feb 2015 B2
8949477 Drasnin Feb 2015 B2
8964376 Chen Feb 2015 B2
9047207 Belesiu et al. Jun 2015 B2
9064654 Whitt, III et al. Jun 2015 B2
9075566 Whitt, III et al. Jul 2015 B2
9098117 Lutz, III et al. Aug 2015 B2
9116550 Siddiqui et al. Aug 2015 B2
9134807 Shaw et al. Sep 2015 B2
9134808 Siddiqui et al. Sep 2015 B2
9146620 Whitt et al. Sep 2015 B2
9158383 Shaw et al. Oct 2015 B2
9158384 Whitt, III et al. Oct 2015 B2
9176900 Whitt, III et al. Nov 2015 B2
9176901 Whitt, III et al. Nov 2015 B2
9268373 Whitt et al. Feb 2016 B2
9275809 Panay et al. Mar 2016 B2
9298236 Oler et al. Mar 2016 B2
9304549 Siddiqui Apr 2016 B2
9304948 Whitman et al. Apr 2016 B2
9304949 Whitman et al. Apr 2016 B2
9348605 Drasnin May 2016 B2
20010023818 Masaru et al. Sep 2001 A1
20020005108 Ludwig Jan 2002 A1
20020044216 Cha Apr 2002 A1
20020070883 Dosch Jun 2002 A1
20020126446 Miyako et al. Sep 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020135457 Sandbach et al. Sep 2002 A1
20020195177 Hinkley et al. Dec 2002 A1
20030000821 Takahashi et al. Jan 2003 A1
20030007648 Currell Jan 2003 A1
20030011576 Sandbach et al. Jan 2003 A1
20030044216 Fang Mar 2003 A1
20030051983 Lahr Mar 2003 A1
20030067450 Thursfield et al. Apr 2003 A1
20030108720 Kashino Jun 2003 A1
20030160712 Levy Aug 2003 A1
20030163611 Nagao Aug 2003 A1
20030197687 Shetter Oct 2003 A1
20030231243 Shibutani Dec 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040046796 Fujita Mar 2004 A1
20040056843 Lin et al. Mar 2004 A1
20040085716 Uke May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040156168 LeVasseur et al. Aug 2004 A1
20040160734 Yim Aug 2004 A1
20040169641 Bean et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040212601 Cake et al. Oct 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050030728 Kawashima et al. Feb 2005 A1
20050047773 Satake et al. Mar 2005 A1
20050052831 Chen Mar 2005 A1
20050055498 Beckert et al. Mar 2005 A1
20050057515 Bathiche Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050062715 Tsuji et al. Mar 2005 A1
20050099400 Lee May 2005 A1
20050134717 Misawa Jun 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050206737 Gim et al. Sep 2005 A1
20050236848 Kim et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050283731 Saint-Hilaire et al. Dec 2005 A1
20060049920 Sadler et al. Mar 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060092139 Sharma May 2006 A1
20060096392 Inkster et al. May 2006 A1
20060102020 Takada May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060155391 Pistemaa et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060174143 Sawyers et al. Aug 2006 A1
20060176377 Miyasaka Aug 2006 A1
20060181514 Newman Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060192763 Ziemkowski Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060220465 Kingsmore et al. Oct 2006 A1
20060265617 Priborsky Nov 2006 A1
20060267931 Vainio et al. Nov 2006 A1
20060272429 Ganapathi et al. Dec 2006 A1
20070003267 Shibutani Jan 2007 A1
20070056385 Lorenz Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070117600 Robertson et al. May 2007 A1
20070121956 Bai et al. May 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070172229 Wernersson Jul 2007 A1
20070176902 Newman et al. Aug 2007 A1
20070178891 Louch et al. Aug 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070185590 Reindel et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070220708 Lewis Sep 2007 A1
20070222766 Bolender Sep 2007 A1
20070230227 Palmer Oct 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070236873 Yukawa et al. Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070252674 Nelson et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070268273 Westerman et al. Nov 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20070297125 Maatta Dec 2007 A1
20070297625 Hjort et al. Dec 2007 A1
20080001924 de los Reyes et al. Jan 2008 A1
20080042978 Perez-Noguera Feb 2008 A1
20080053222 Ehrensvard et al. Mar 2008 A1
20080059888 Dunko Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080104437 Lee May 2008 A1
20080129520 Lee Jun 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080186660 Yang Aug 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080273297 Kumar Nov 2008 A1
20080307242 Qu Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090009476 Daley, III Jan 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090089600 Nousiainen Apr 2009 A1
20090096756 Lube Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090131134 Baerlocher et al. May 2009 A1
20090140985 Liu Jun 2009 A1
20090158221 Nielsen et al. Jun 2009 A1
20090174759 Yeh et al. Jul 2009 A1
20090177906 Paniagua, Jr. et al. Jul 2009 A1
20090189873 Peterson Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090195518 Mattice et al. Aug 2009 A1
20090201254 Rais Aug 2009 A1
20090207144 Bridger Aug 2009 A1
20090231275 Odgers Sep 2009 A1
20090239586 Boeve et al. Sep 2009 A1
20090244009 Staats et al. Oct 2009 A1
20090244832 Behar et al. Oct 2009 A1
20090244872 Yan Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090285491 Ravenscroft et al. Nov 2009 A1
20090296331 Choy Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090315830 Westerman Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100006412 Wang Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100023869 Saint-Hilaire et al. Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039081 Sip Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045633 Gettemy et al. Feb 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100052880 Laitinen et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100054435 Louch et al. Mar 2010 A1
20100056130 Louch et al. Mar 2010 A1
20100072334 Le Gette et al. Mar 2010 A1
20100073329 Raman et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079379 Demuynck et al. Apr 2010 A1
20100083108 Rider et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100100752 Chueh et al. Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100105443 Vaisanen Apr 2010 A1
20100106983 Kasprzak et al. Apr 2010 A1
20100115309 Carvalho et al. May 2010 A1
20100117993 Kent May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100128427 Iso May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100146317 Challener et al. Jun 2010 A1
20100148995 Elias Jun 2010 A1
20100148999 Casparian et al. Jun 2010 A1
20100149104 Sim et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149377 Shintani et al. Jun 2010 A1
20100156913 Ortega et al. Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100185877 Chueh et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100201308 Lindholm Aug 2010 A1
20100205472 Tupman et al. Aug 2010 A1
20100206614 Park et al. Aug 2010 A1
20100207774 Song Aug 2010 A1
20100220205 Lee et al. Sep 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100231522 Li Sep 2010 A1
20100235546 Terlizzi et al. Sep 2010 A1
20100238620 Fish Sep 2010 A1
20100250975 Gill et al. Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100259482 Ball Oct 2010 A1
20100259876 Kim Oct 2010 A1
20100265182 Ball et al. Oct 2010 A1
20100271771 Wu et al. Oct 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309617 Wang et al. Dec 2010 A1
20100313680 Joung et al. Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321877 Moser Dec 2010 A1
20100324457 Bean et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110032127 Roush Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110050576 Forutanpour et al. Mar 2011 A1
20110050626 Porter et al. Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057724 Pabon Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110102326 Casparian et al. May 2011 A1
20110102752 Chen et al. May 2011 A1
20110107958 Pance et al. May 2011 A1
20110108401 Yamada May 2011 A1
20110113368 Carvajal et al. May 2011 A1
20110115738 Suzuki et al. May 2011 A1
20110117970 Choi May 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110134043 Chen Jun 2011 A1
20110157046 Lee et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110169762 Weiss Jul 2011 A1
20110176035 Poulsen Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110184824 George et al. Jul 2011 A1
20110188199 Pan Aug 2011 A1
20110191480 Kobayashi Aug 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110199389 Lu et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110221678 Davydov Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110234494 Peterson et al. Sep 2011 A1
20110241999 Thier Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110265287 Li et al. Nov 2011 A1
20110266672 Sylvester Nov 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110273475 Herz et al. Nov 2011 A1
20110285555 Bocirnea Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110298919 Maglaque Dec 2011 A1
20110302518 Zhang Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110305875 Sanford et al. Dec 2011 A1
20110314425 Chiang Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20110320204 Locker et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120007821 Zaliva Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120023401 Arscott et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026096 Ku Feb 2012 A1
20120026110 Yamano Feb 2012 A1
20120032887 Chiu et al. Feb 2012 A1
20120032891 Parivar Feb 2012 A1
20120032901 Kwon Feb 2012 A1
20120032917 Yamaguchi Feb 2012 A1
20120038495 Ishikawa Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120062564 Miyashita Mar 2012 A1
20120068919 Lauder et al. Mar 2012 A1
20120069540 Lauder et al. Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120077384 Bar-Niv et al. Mar 2012 A1
20120092279 Martin Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120113137 Nomoto May 2012 A1
20120113579 Agata et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120127126 Mattice et al. May 2012 A1
20120139727 Houvener et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120156875 Srinivas Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120182249 Endo et al. Jul 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120212438 Vaisanen Aug 2012 A1
20120218194 Silverman Aug 2012 A1
20120221877 Prabu Aug 2012 A1
20120224073 Miyahara Sep 2012 A1
20120229634 Laett et al. Sep 2012 A1
20120242584 Tuli Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120249443 Anderson et al. Oct 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120256829 Dodge Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120260177 Sehrer Oct 2012 A1
20120274811 Bakin Nov 2012 A1
20120299872 Nishikawa et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20130009413 Chiu et al. Jan 2013 A1
20130015311 Kim Jan 2013 A1
20130021289 Chen et al. Jan 2013 A1
20130027867 Lauder et al. Jan 2013 A1
20130031353 Noro Jan 2013 A1
20130038541 Bakker Feb 2013 A1
20130044074 Park et al. Feb 2013 A1
20130046397 Fadell et al. Feb 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130067126 Casparian et al. Mar 2013 A1
20130067259 Freiwald et al. Mar 2013 A1
20130073877 Radke Mar 2013 A1
20130076617 Csaszar et al. Mar 2013 A1
20130082824 Colley Apr 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130100082 Bakin et al. Apr 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130118878 Purcocks May 2013 A1
20130135214 Li et al. May 2013 A1
20130151944 Lin Jun 2013 A1
20130154959 Lindsay et al. Jun 2013 A1
20130159749 Moeglein et al. Jun 2013 A1
20130162554 Lauder et al. Jun 2013 A1
20130172906 Olson et al. Jul 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130212483 Brakensiek et al. Aug 2013 A1
20130217451 Komiyama et al. Aug 2013 A1
20130222272 Martin, Jr. Aug 2013 A1
20130222274 Mori et al. Aug 2013 A1
20130222275 Byrd et al. Aug 2013 A1
20130222323 McKenzie Aug 2013 A1
20130226794 Englebardt Aug 2013 A1
20130227836 Whitt, III Sep 2013 A1
20130228023 Drasnin Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130228434 Whitt, III Sep 2013 A1
20130228439 Whitt, III Sep 2013 A1
20130229100 Siddiqui Sep 2013 A1
20130229335 Whitman Sep 2013 A1
20130229347 Lutz, III Sep 2013 A1
20130229350 Shaw Sep 2013 A1
20130229354 Whitt, III et al. Sep 2013 A1
20130229363 Whitman Sep 2013 A1
20130229366 Dighde Sep 2013 A1
20130229380 Lutz, III Sep 2013 A1
20130229534 Panay Sep 2013 A1
20130229568 Belesiu Sep 2013 A1
20130229570 Beck et al. Sep 2013 A1
20130229756 Whitt, III Sep 2013 A1
20130229757 Whitt, III et al. Sep 2013 A1
20130229758 Belesiu Sep 2013 A1
20130229759 Whitt, III et al. Sep 2013 A1
20130229760 Whitt, III et al. Sep 2013 A1
20130229761 Shaw Sep 2013 A1
20130229762 Whitt, III Sep 2013 A1
20130229773 Siddiqui Sep 2013 A1
20130230346 Shaw Sep 2013 A1
20130231755 Perek Sep 2013 A1
20130232280 Perek Sep 2013 A1
20130232348 Oler Sep 2013 A1
20130232349 Oler Sep 2013 A1
20130232350 Belesiu et al. Sep 2013 A1
20130232353 Belesiu Sep 2013 A1
20130232571 Belesiu Sep 2013 A1
20130232742 Burnett et al. Sep 2013 A1
20130262886 Nishimura Oct 2013 A1
20130268897 Li et al. Oct 2013 A1
20130285922 Alberth, Jr. et al. Oct 2013 A1
20130300590 Dietz Nov 2013 A1
20130300647 Drasnin Nov 2013 A1
20130301199 Whitt Nov 2013 A1
20130301206 Whitt Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130321992 Liu et al. Dec 2013 A1
20130322000 Whitt Dec 2013 A1
20130322001 Whitt Dec 2013 A1
20130329360 Aldana Dec 2013 A1
20130332628 Panay Dec 2013 A1
20130339757 Reddy Dec 2013 A1
20130342976 Chung Dec 2013 A1
20140012401 Perek Jan 2014 A1
20140043275 Whitman Feb 2014 A1
20140048399 Whitt, III Feb 2014 A1
20140085814 Kielland Mar 2014 A1
20140119802 Shaw May 2014 A1
20140139989 Mori et al. May 2014 A1
20140167585 Kuan et al. Jun 2014 A1
20140185215 Whitt Jul 2014 A1
20140185220 Whitt Jul 2014 A1
20140204514 Whitt Jul 2014 A1
20140204515 Whitt Jul 2014 A1
20140247546 Whitt Sep 2014 A1
20140291134 Whitt Oct 2014 A1
20140293534 Siddiqui Oct 2014 A1
20140313665 Delpier et al. Oct 2014 A1
20140362506 Whitt, III et al. Dec 2014 A1
20140372914 Byrd et al. Dec 2014 A1
20140379942 Perek et al. Dec 2014 A1
20150005953 Fadell et al. Jan 2015 A1
20150036274 Belesui et al. Feb 2015 A1
20150227212 Whitt, III et al. Aug 2015 A1
20150234478 Belesiu et al. Aug 2015 A1
20150261262 Whitt, III et al. Sep 2015 A1
20150311014 Shaw et al. Oct 2015 A1
20150378392 Siddiqui et al. Dec 2015 A1
20160124467 Whitt et al. May 2016 A1
Foreign Referenced Citations (88)
Number Date Country
990023 Jun 1976 CA
1352767 Jun 2002 CN
1537223 Oct 2004 CN
1653411 Aug 2005 CN
1787605 Jun 2006 CN
1808362 Jul 2006 CN
101198925 Jun 2008 CN
101335147 Dec 2008 CN
101366001 Feb 2009 CN
101410781 Apr 2009 CN
101452334 Jun 2009 CN
101464750 Jun 2009 CN
101490642 Jul 2009 CN
101500388 Aug 2009 CN
101644979 Feb 2010 CN
101675406 Mar 2010 CN
101681189 Mar 2010 CN
101908428 Dec 2010 CN
102004559 Apr 2011 CN
1102012763 Apr 2011 CN
102096494 Jun 2011 CN
102112947 Jun 2011 CN
201853163 Jun 2011 CN
102117121 Jul 2011 CN
102124532 Jul 2011 CN
102138113 Jul 2011 CN
102147643 Aug 2011 CN
102214040 Oct 2011 CN
102292687 Dec 2011 CN
102356624 Feb 2012 CN
103455149 Dec 2013 CN
203606723 May 2014 CN
10116556 Oct 2002 DE
645726 Mar 1995 EP
1003188 May 2000 EP
1223722 Jul 2002 EP
1480029 Nov 2004 EP
1591891 Nov 2005 EP
1983411 Oct 2008 EP
2006869 Dec 2008 EP
2009660 Dec 2008 EP
2026178 Feb 2009 EP
2353978 Aug 2011 EP
2400365 Dec 2011 EP
2410408 Jan 2012 EP
2423787 Feb 2012 EP
2068643 Aug 1981 GB
2123213 Jan 1984 GB
2305780 Apr 1997 GB
2381584 May 2003 GB
2402460 Dec 2004 GB
2482932 Feb 2012 GB
52107722 Sep 1977 JP
56108127 Aug 1981 JP
6014315 Jan 1985 JP
08273471 Oct 1996 JP
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11338575 Dec 1999 JP
2000010654 Jan 2000 JP
2001142564 May 2001 JP
2002170458 Jun 2002 JP
2004038950 Feb 2004 JP
2005117161 Apr 2005 JP
2006163459 Jun 2006 JP
2006294361 Oct 2006 JP
2010244514 Oct 2010 JP
2003077368 Mar 2014 JP
20010107055 Dec 2001 KR
20050014299 Feb 2005 KR
20060003093 Jan 2006 KR
20080006404 Jan 2008 KR
20090029411 Mar 2009 KR
20100022059 Feb 2010 KR
20100067366 Jun 2010 KR
20100115675 Oct 2010 KR
102011008717 Aug 2011 KR
20110109791 Oct 2011 KR
20110120002 Nov 2011 KR
20110122333 Nov 2011 KR
101113530 Feb 2012 KR
WO-9919995 Apr 1999 WO
WO-2006044818 Apr 2006 WO
WO-2007103631 Sep 2007 WO
WO-2007112172 Oct 2007 WO
WO-2009034484 Mar 2009 WO
WO-2010074116 Jul 2010 WO
WO-2011049609 Apr 2011 WO
Non-Patent Literature Citations (384)
Entry
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, (Jan. 20, 2013), 1 page.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, (Feb. 22, 2013), 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013), 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages.
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Apr. 9, 2013), 2 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, (Apr. 18, 2013), 13 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, (May 21, 2013), 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, (May 3, 2013), 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, (Apr. 15, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Jun. 3, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, (Apr. 23, 2013), 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, (May 2, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, (May 31, 2013), 5 pages.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html>on May 25, 2012, 4 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/contentasp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages.
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages.
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: <http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html> on Jul. 25, 2012,(2011), 4 pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages.
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011), 14 pages.
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages.
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages.
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/>on May 4, 2012,(Jan. 16, 2012), 9 pages.
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages.
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 1, 2012, 2 pages.
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/> on May 7, 2012,(Jan. 15, 2006), 5 pages.
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages.
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156.
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html>on May 7, 2012,(Mar. 15, 2002), 5 pages.
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 5, 2012,(Jul. 17, 2006), 9 pages.
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860.
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages.
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages.
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380.
“Corrected Notice of Allowance”,U.S. Appl. No. 13/470,633, (Jul. 2, 2013), 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, (Jul. 25, 2013), 20 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, (Aug. 28, 2013), 18 pages.
“Final Office Action”, U.S. Appl. No. 13/651,976, (Jul. 25, 2013), 21 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, (Aug. 2, 2013), 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, (Jul. 19, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Jul. 1, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/938,930, (Aug. 29, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, (Aug. 28, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,032, (Aug. 29, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, (Jul. 1, 2013), 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, (Jun. 11, 2013), 7 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/029461, (Jun. 21, 2013),11 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/028948, (Jun. 21, 2013),11 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, (Dec. 22, 1996), 364 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 12, 2013), 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 23, 2013), 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,726, (Sep. 17, 2013), 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,139, (Sep. 16, 2013), 13 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, (Oct. 18, 2013), 16 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, (Oct. 23, 2013), 14 pages.
“Final Office Action”, U.S. Appl. No. 13/938,930, (Nov. 8, 2013), 10 pages.
“Final Office Action”, U.S. Appl. No. 13/939,002, (Nov. 8, 2013), 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, (Sep. 5, 2013), 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/042550, (Sep. 24, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, (Oct. 30, 2013), 12 pages.
“Notice of Allowance”, U.S. Appl. No. 13/563,435, (Nov. 12, 2013), 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,871, (Oct. 2, 2013), 7 pages.
“Notice to Grant”, CN Application No. 201320097089.9, (Sep. 29, 2013), 2 Pages.
“Notice to Grant”, CN Application No. 201320097124.7, (Oct. 8, 2013), 2 pages.
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, (Sep. 16, 2009), 3 pages.
Prospero, Michael “Samsung Outs Series 5 Hybrid PC Tablet”, Retrieved from: <http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, (Jun. 4, 2012), 7 pages.
“Non-Final Office Action”,U.S. Appl. No. 14/063,912, Jan. 2, 2014, 10 pages.
“FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP”, FingerWorks, Inc. Retrieved from <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, 2002, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, Dec. 5, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,918, Dec. 26, 2013, 18 pages.
“Corrected Notice of Allowance”,U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,321, Dec. 18, 2013, 41 pages.
“Foreign Office Action”, Chinese Application No. 201320097066.8, Oct. 24, 2013, 5 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, Dec. 20, 2013, 5 pages.
“Final Office Action”, U.S. Appl. No. 13/939,032, Dec. 20, 2013, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 13/468,918, Nov. 29, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Feb. 26, 2014, 10 pages.
“Advisory Action”, U.S. Appl. No. 13/939,032, Feb. 24, 2014, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 25, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,186, Feb. 27, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,405, Feb. 20, 2014, 37 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, Mar. 12, 2014, 17 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,139, Mar. 17, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/938,930, Feb. 20, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,002, Mar. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, May 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 5, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Apr. 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, May 7, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Apr. 2, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Apr. 30, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, Apr. 10, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, Apr. 11, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 25, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,287, May 2, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,032, Apr. 3, 2014, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/653,321, Mar. 28, 2014, 4 pages.
“Advisory Action”, U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 30, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 31, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,287, Aug. 21, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, Jun. 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 22, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, Jun. 19, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jun. 26, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jul. 15, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/468,949, Oct. 6, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/471,054, Oct. 23, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, Oct. 6, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/471,376, Aug. 18, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Aug. 15, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/599,635, Aug. 8, 2014, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, Jun. 11, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, Sep. 17, 2014, 10 pages.
“Foreign Notice of Allowance”, CN Application No. 201320096755.7, Jan. 27, 2014, 2 pages.
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, Nov. 21, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Sep. 26, 2013, 4 pages.
“Interlink Electronics FSR (TM) Force Sensing Resistors (TM)”, Retrieved at <<http://akizukidenshi.com/download/ds/ interlinkelec/94-00004+Rev+B%20FSR%201ntegration%20Guide.pdf on Mar. 21, 2013, 36 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/031531, Jun. 20, 2014, 10 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028483, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028484, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028485, Jun. 25, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028769, Jun. 26, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028771, Jun. 19, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028486, Jun. 20, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/041017, Jul. 17, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028489, Jun. 20, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028767, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028490, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028766, Jun. 26, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028772, Jun. 30, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028768, Jun. 24, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028482, Jun. 20, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028487, May 27, 2014, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028770, Jun. 26, 2014, 9 pages.
“International Search Report and Written Opinion”, PCT App PCT/US2014/043546, Oct. 9, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, Jul. 9, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,949, Jun. 20, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, Jun. 17, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, May 15, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Jun. 3, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,282, Sep. 3, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Oct. 20, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, Jul. 11, 2014, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 16, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/595,700, Jun. 18, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, Jun. 16, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Sep. 15, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 2, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Jun. 17, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Jun. 13, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/277,240, Jun. 13, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 17, 2014, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 5, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,186, Jul. 3, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,405, Jun. 24, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,682, Sep. 24, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/277,240, Sep. 16, 2014, 4 pages.
“Restriction Requirement”, U.S. Appl. No. 13/595,700, May 28, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Aug. 29, 2014, 5 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages.
Harrison, “UIST 2009 Student Innovation Contest—Demo Video”, Retrieved From: <https://www.youtube.com/watch?v=PDI8eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/277,240, Jan. 8, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/468,882, Feb. 12, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/527,263, Jan. 27, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 12, 2015, 12 pages.
“Final Office Action”, U.S. Appl. No. 14/225,250, Mar. 13, 2015, 7 pages.
“First Examination Report”, NZ Application No. 628690, Nov. 27, 2014, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, Jan. 15, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Mar. 13, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Mar. 27, 2015, 28 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Mar. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 26, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 12, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/852,848, Mar. 26, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/147,252, Feb. 23, 2015, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Apr. 6, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/595,700, Jan. 21, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Mar. 30, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,976, Jan. 21, 2015, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/656,055, Mar. 4, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 17, 2015, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 25, 2015, 4 pages.
Schaffer, “Using Interactive Maps for Navigation and Collaboration”, CHI '01 Extended Abstracts on Human Factors in Computing Systems, Mar. 31, 2001, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Aug. 10, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/564,520, Aug. 14, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 6, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Jul. 1, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,376, Jul. 28, 2015, 35 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, Jul. 10, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/599,635, Jul. 30, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 13/852,848, Jul. 20, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 14/059,280, Jul. 22, 2015, 25 pages.
“Foreign Office Action”, CN Application No. 201310067335.0, Jun. 12, 2015, 15 Pages.
“Foreign Office Action”, CN Application No. 201310225788.1, Jun. 23, 2015, 14 Pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2014/031531, Jun. 9, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, Jul. 31, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Aug. 19, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/727,001, Jul. 10, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/457,881, Jul. 22, 2015, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Aug. 7, 2015, 4 pages.
Cunningham,“Software Infrastructure for Natural Language Processing”, In Proceedings of the fifth conference on Applied natural language processing, Mar. 31, 1997, pp. 237-244.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 24, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jun. 10, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Apr. 13, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/200,595, Jun. 4, 2015, 3 pages.
“Final Office Action”, U.S. Appl. No. 13/525,614, Apr. 29, 2015, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Apr. 10, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/147,252, Jun. 25, 2015, 11 pages.
“Foreign Notice on Reexamination”, CN Application No. 201320097066.8, Apr. 3, 2015, 7 Pages.
“Foreign Office Action”, CN Application No. 201310067808.7, May 28, 2015, 14 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, Jun. 24, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, Jun. 1, 2015, 31 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, May 7, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Apr. 23, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,949, Apr. 24, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Apr. 8, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,949, Apr. 24, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,282, Apr. 30, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/564,520, May 8, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/225,276, Jun. 22, 2015, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 4, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Jun. 5, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, Apr. 10, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, May 4, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, May 22, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,055, May 15, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,055, Jun. 10, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,412, Dec. 15, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages.
“Final Office Action”, U.S. Appl. No. 14/225,276, Dec. 17, 2014, 6 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Jul. 28, 2014, 4 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, Nov. 24, 2014, 19 pages.
“Restriction Requirement”, U.S. Appl. No. 14/147,252, Dec. 1, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Dec. 17, 2014, 5 pages.
“Advisory Action”, U.S. Appl. No. 13/471,376, Sep. 23, 2015, 7 pages.
“Advisory Action”, U.S. Appl. No. 14/059,280, Sep. 25, 2015, 7 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, Jan. 4, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/564,520, Sep. 17, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Aug. 27, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Sep. 29, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Aug. 20, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Oct. 2, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.
“Decision on Reexamination”, CN Application No. 201320097079.5, Sep. 7, 2015, 8 Pages.
“Extended European Search Report”, EP Application No. 13858283.8, Nov. 23, 2015, 10 pages.
“Extended European Search Report”, EP Application No. 13858397.6, Nov. 30, 2015, 7 pages.
“Extended European Search Report”, EP Application No. 13858620.1, Sep. 18, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13858674.8, Nov. 27, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13858834.8, Oct. 29, 2015, 8 pages.
“Extended European Search Report”, EP Application No. 13859280.3, Sep. 7, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13859406.4, Sep. 8, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13860272.7, Dec. 14, 2015, 9 pages.
“Extended European Search Report”, EP Application No. 13861292.4, Nov. 23, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, Dec. 10, 2015, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/689,541, Nov. 2, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 3, 2015, 13 pages.
“Foreign Office Action”, CN Application No. 201310065273.X, Oct. 28, 2015, 14 pages.
“Foreign Office Action”, CN Application No. 201310067385.9, Aug. 6, 2015, 16 pages.
“Foreign Office Action”, CN Application No. 201310067429.8, Nov. 25, 2015, 12 Pages.
“Foreign Office Action”, CN Application No. 201310067592.4, Oct. 23, 2015, 12 Pages.
“Foreign Office Action”, CN Application No. 201310067622.1, Oct. 27, 2015, 14 pages.
“Foreign Office Action”, CN Application No. 201310067627.4, Sep. 28, 2015, 14 pages.
“Foreign Office Action”, CN Application No. 201310067631.0, Dec. 10, 2015, 11 Pages.
“Foreign Office Action”, CN Application No. 201310096345.7, Oct. 19, 2015, 16 Pages.
“Foreign Office Action”, CN Application No. 201310316114.2, Sep. 29, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, Nov. 13, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Sep. 30, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Dec. 17, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Sep. 18, 2015, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/162,529, Sep. 18, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Aug. 19, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,054, Sep. 25, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,376, Nov. 23, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,412, Nov. 20, 2015, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/527,263, Dec. 9, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/852,848, Nov. 19, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/059,280, Nov. 23, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Oct. 2, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.
“Restriction Requirement”, U.S. Appl. No. 14/794,182, Dec. 22, 2015, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Sep. 14, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,054, Nov. 19, 2015, 2 pages.
“Supplementary European Search Report”, EP Application No. 13728568.0, Oct. 30, 2015, 7 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,054, Jan. 11, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,412, Feb. 16, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, Jan. 11, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/852,848, Jan. 29, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Jan. 25, 2016, 2 pages.
“Extended European Search Report”, EP Application No. 13857958.6, Dec. 18, 2015, 8 pages.
“Extended European Search Report”, EP Application No. 13860836.9, Nov. 27, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 14/225,250, Jan. 29, 2016, 10 pages.
“Foreign Office Action”, CN Application No. 201310067373.6, Dec. 23, 2015, 15 Pages.
“Foreign Office Action”, CN Application No. 201310067641.4, Dec. 30, 2015, 12 Pages.
“Foreign Office Action”, CN Application No. 201310067808.7, Jan. 7, 2016, 7 Pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/471,412, filed Mar. 3, 2016, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/527,263, filed Mar. 7, 2016, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/852,848, filed Mar. 2, 2016, 2 pages.
Extended European Search Report, EP Application No. 13728568.0, Mar. 14, 2016, 16 pages.
Final Office Action, U.S. Appl. No. 13/471,393, filed Mar. 9, 2016, 17 pages.
Foreign Office, CN Application No. 201310067356.2, Feb. 4, 2016, 15 Pages.
Foreign Office, CN Application No. 201310067603.9, Feb. 15, 2016, 12 Pages.
Foreign Office, CN Application No. 201310225788.1, Feb. 29, 2016, 15 Pages.
Notice of Allowance, U.S. Appl. No. 14/517,048, filed Feb. 24, 2016, 8 pages.
Restriction Requirement, U.S. Appl. No. 14/307,262, filed Mar. 21, 2016, 6 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/527,263, filed Apr. 12, 2016, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/527,263, filed Apr. 25, 2016, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 14/517,048, filed Apr. 13, 2016, 2 pages.
Extended European Search Report, EP Application No. 13858403.2, Mar. 16, 2016, 12 pages.
Extended European Search Report, EP Application No. 13860271.9, May 4, 2016, 8 pages.
Extended European Search Report, EP Application No. 13861059.7, Apr. 29, 2016, 8 pages.
Final Office Action, U.S. Appl. No. 13/780,228, filed Mar. 23, 2016, 16 pages.
Foreign Notice of Allowance, CN Application No. 201310065273.X, Mar. 31, 2016, 4 Pages.
Foreign Notice of Allowance, CN Application No. 201320097079.5, Apr. 1, 2016, 4 Pages.
Foreign Notice of Allowance, CN Application No. 201310067808.7, May 4, 2016, 4 pages.
Foreign Office Action, CN Application No. 201310067385.9, Apr. 14, 2016, 14 Pages.
Foreign Office Action, CN Application No. 201310067627.4, May 3, 2016, 7 pages.
Foreign Office Action, CN Application No. 201310225788.1, Feb. 29, 2016, 11 pages.
Foreign Office Action, CN Application No. 201310316114.2, Apr. 18, 2016, 11 pages.
Non-Final Office Action, U.S. Appl. No. 13/689,541, filed Apr. 14, 2016, 23 pages.
Non-Final Office Action, U.S. Appl. No. 14/307,262, filed Apr. 20, 2016, 10 pages.
Non-Final Office Action, U.S. Appl. No. 14/794,182, filed Apr. 13, 2016, 15 pages.
Non-Final Office Action, U.S. Appl. No. 14/994,737, filed Apr. 5, 2016, 6 pages.
Final Office Action, U.S. Appl. No. 13/492,232, filed May 25, 2016, 12 pages.
Foreign Notice of Allowance, CN Application No. 201310067592.4, May 17, 2016, 4 pages.
Foreign Office Action, CL Application No. 14-211.785, Apr. 26, 2016, 12 pages.
Foreign Office Action, CN Application No. 201310096345.7, May 25, 2016, 16 Pages.
Foreign Office Action, CN Application No. 201380025290.9, May 10, 2016, 15 pages.
Notice of Allowance, U.S. Appl. No. 13/468,882, filed May 24, 2016, 5 pages.
Related Publications (1)
Number Date Country
20130229351 A1 Sep 2013 US
Provisional Applications (7)
Number Date Country
61606321 Mar 2012 US
61606301 Mar 2012 US
61606313 Mar 2012 US
61606333 Mar 2012 US
61613745 Mar 2012 US
61606336 Mar 2012 US
61607451 Mar 2012 US