Keyboards may be used to transmit user input to a computing device. A manufacturer and/or user may desire a simpler keyboard design in order to reduce manufacturing costs and/or reduce a likelihood of the keyboard becoming damaged.
The following detailed description references the drawings, wherein:
Specific details are given in the following description to provide a thorough understanding of embodiments. However, it will be understood by one of ordinary skill in the art that embodiments may be practiced without these specific details. For example, well-known processes, structures and techniques may be shown without unnecessary detail in order to avoid obscuring embodiments.
Certain types of keyboards include keys having scissor mechanisms. These scissor mechanisms commonly interlock a keycap of to a remaining structure of the key. The scissor mechanism allows for a shorter travel time and/or distance of the key when pressed, and thus the key may be quieter and require less force to press. However, scissor mechanisms increase manufacturing costs as well as a number of parts included in the key. The increased number of parts also increases a likelihood of the key malfunctioning, such as the key becoming jammed. Moreover, a limited movement and increased attachment points of the keycap due to the scissor mechanisms may cause more debris to become lodged under the key as well as increase a difficulty of removing the debris.
Nonetheless, removing the scissor mechanism may, cause the key to become unstable. For example, the key may wobble, jiggle or descend at angle, when pressed by the user. Embodiments may provide a key having less parts while still maintaining a stability of the key. For example, an embodiment of key may include secondary domes surrounding a primary dome. The secondary domes may level a key that is being pressed unevenly. For example, if the user primarily presses down towards the dome layer 110 at a corner of the key, at least one of the secondary domes corresponding to the pressed corner may become engaged, thus preventing the key from being pressed unevenly or reducing a degree at which the key is pressed unevenly.
Referring now to the drawings,
In the embodiment of
The primary dome 112 is to provide a tactile response to a user and is to compress a switch (not shown) if the primary dome 112 collapses. For example, the primary dome 112 may hold up at least one of the first and second layers 120 and 130. If the user presses the key 100 via a sufficient downward force on at least one of the first and second layers 120 and 130, the primary dome 112 may collapse. Once the user sufficiently reduces or removes the downward force exerted on the key 100, the primary dome may return to its original form, thus pushing up again at least one of the first and second layers 120 and 130.
The first layer 120 is over the primary and secondary domes 112 and 114, with the first layer 120 substantially level or at substantially a same distance from the secondary domes 114 at a rest position. The rest position being a state at which the first layer is not acted upon by an external force, such as the user pressing the first layer 120 down towards the dome layer 110. The first layer 120 collapses the primary dome 112 and may not engage the secondary domes 114, if the first layer 120 is pressed substantially levelly or parallel to the rest position, Nonetheless, the secondary domes 114 may re-level the first and/or secondary layers 120 and 130 if the first and/or secondary layers 120 and 130 are pressed unevenly or not levelly, such as at angle. The term level may refer to a relatively uniform and/or horizontal plane in which any corners or edges of a surface along the plane have a relatively same height with respect to one another. The primary and secondary domes 112 and 114 will be described in further detail with respect to
Optionally, the second layer 130 may be over the first layer 120 and have a hardness greater than that of the first layer 120. As shown in
The second layer 130 may also display a letter, number, command, etc, via any display technique, such as lamination, embossing, and the like. While
The frame 140 is over the dome layer 110 and is composed of a material having a hardness greater than that of the primary and secondary domes 112 and 114, such as plastic. The frame 140 may outline and support a shape of the key 100. In one embodiment, the frame 140 and the dome layer 110 may be co-molded.
The base layer 150 may include a backer plate (not shown) and a one or more switches (not shown). The backer plate may be formed of a rigid substance, such as metal or plastic, and provide structural support for the key 100. An operation of the switch will be described in further detail below.
The secondary domes 114 surround the primary dome 112. In
When the user applies a downward force on the key 100, the force is transferred through the first and second layers 120 and 130 to the primary dome 112. When a threshold force is reached, the primary dome 112 begins to collapse. For example, the threshold force may be equivalent to a force exerted by 60 grams (gm) of mass. When the primary dome 112 collapses or is displaced a sufficient distance, such as approximately 14 millimeters (mm), the pillar 113 may apply sufficient contact with the base 150 to cause the switch associated with the key 100 to form a closed circuit.
For example, the switch may be a membrane switch composed of three layers, where two of the layers are membrane layers including conductive trace and the other layer is a spacer layer, such as an air gap, to keep the membrane layers apart. Thus, when the key 100 is not being pressed and the primary dome 112 is erect, the switch may be open because current cannot pass between the two membrane layers due to the spacer layer. However, when an upper of the membrane layers is pressed down by the pillar 113, the conductive traces of the membrane layers may make contact, thus allowing the circuit to dose and allow the key 100 to register being pressed to the computing device. Where there are plurality of such membrane switches, such as in a keyboard, the membrane switches may form a matrix to communicate to the computing device, for example, via a ribbon cable.
As shown in
If the plurality of secondary domes 114 are engaged by the first layer 120, the secondary domes 114 will not generally collapse, unlike the primary dome 112. As a result, any of the secondary domes 112 engaged by the first layer 120, will prevent or reduce the first layer 120 from descending any further at a location of the engaged secondary domes 112. As a result, the first layer 120 will not become more unleveled and further, may become re-leveled as a remaining surface of the first layer 120 is pressed or pushed down.
As shown in FIG, 3, the first layer 120 is further over the frame 140, but a height of the first layer 120 is greater over the primary and secondary domes 112 and 114 than that of the frame 140. Such a raised profile may allow the key 100 to be more easily pressed and/or physically differentiable by the user. However, embodiments are not limited thereto. For example, embodiments may include the first layer 120 having a relatively same height over the over the primary and secondary domes 112 and 114 as well as the frame 140. Larger keys, such as a shift key or a space bar, may also include stabilizing wire (not shown).
In
In addition, the frame 140 may be applied over the dome layer 110, before applying the first layer 120 at block 420. Alternatively, the dome layer 110 and the frame 140 may be applied simultaneously, with dome layer 110 and the frame 140 being co-molded. The frame 140 outlines the key 100 and surrounds the primary and secondary domes 112 and 114 of the key 100.
Further, a second layer 130 may be applied at least one of over the first layer 120 and between the first and dome layers 120 and 110. The hardness of the second layer 130 may be greater than that of the first layer 120 and the second layer 130 may not overlap with the frame 140. For example, the second layer 130 may include individual stiffeners that only cover an area within an opening in the frame 140 of the key 100.
With the above approaches, a key may provide a more simplified design with less parts that is less likely to become damaged during use while still providing stability when pressed down. In addition, the key may also reduce or prevent damage from external elements, such as liquids.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/046003 | 7/29/2011 | WO | 00 | 1/27/2014 |