Keycaps with reduced thickness

Abstract
An illuminated metal keycap having a legend diffuser material that may diffuse light through a legend opened in a background layer. The background layer may be opaque and the legend may be transparent. The metal keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the metal keycap, around the perimeter of the metal keycap, and/or through the background layer.
Description
TECHNICAL FIELD

This disclosure relates to input apparatuses for information processing devices and, in particular, to illuminated keycaps for thin profile keyboards.


BACKGROUND

Many electronic devices include input components such as buttons, keyboards, keypads and the like that may include individual buttons or keys that may be selectively illuminated. For example, personal computing devices may include backlit keyboards to enable a user to operate the keyboard in low light conditions. In another example, some electronic devices selectively illuminate keys or buttons for purely aesthetic purposes. Still further electronic devices may selectively illuminate keys or buttons for notification purposes.


Further, demand for illuminated input devices has increased, but at the same time consumers expect input devices to be durable, thin, and light. However, designing an illuminated keyboard, for example, that is durable, thin, illuminable, and light presents several challenges. For example, many keyboards illuminate only select portions of a key cap, such as the legend area, while leaving the remainder of the keycap unilluminated. Accordingly, the material of the legend is often translucent and the remainder of the key material is often substantially opaque.


Often, a translucent keycap is made from injection molded plastic, such as polycarbonate (PC) or acrylonitrile butadiene styrene mixed with a polycarbonate (ABS-PC), and coated in a durable paint. Thereafter, the paint layer is laser cut to reveal a transparent legend. Although inexpensive to manufacture, the luminous quality of a painted backlit key can deteriorate over time with repeated use. Furthermore, in order to be sufficiently durable, a plastic keycap may need to be relatively thick.


Accordingly, there may be a present need for a durable, thin, and illuminated input apparatus.


SUMMARY

Embodiments described herein may relate to or take the form of an illuminated input apparatus such as a keyboard for use with a computing device. The keyboard may include a plurality of keys, each including a metal keycap. The metal keycap may be aluminum, anodized or otherwise finished. The metal keycap may have a top surface including a legend aperture, a legend diffuser material within the legend aperture, a compressible scissor mechanism configured to activate electrical switch circuitry, a light source such as a light emitting diode (“LED”) having an on state and an off state, the light source oriented to transmit light through the legend aperture. In one example, the on state may include a legend illumination mode in which the light source transmits light through legend diffuser material and through the legend aperture. In another example, on state may include a keycap perimeter illumination mode in which the light source may emit light proximate perimeter of the metal keycap.


In certain embodiments, the legend aperture may be opened in the metal keycap by a laser cutting, a laser ablation process, or a combination thereof. In certain embodiments, the perimeter of the legend aperture may be defined in part by at least one bridge portion connecting to an island portion, with at least one bridge portion having a thickness less than that of the metal keycap.


In some example embodiments, a portion of the finished or cured legend diffuser material may be coplanar with the top surface of the metal keycap.


Other embodiments described herein may relate to or take the form of a method for manufacturing a light transmissive keycap for illuminating a keyboard, including forming at least a portion of a legend aperture within the metal keycap, depositing a translucent legend diffuser material over the legend aperture, placing the metal keycap and deposited legend diffuser material in a curing condition, smoothing residual legend diffuser material so that the cured legend diffuser material is coplanar with the top surface, which may be flat or arbitrarily curved, smoothing residual legend diffuser material so that the cured legend diffuser material is coplanar to the bottom surface, aligning the metal keycap along a vertical axis with a compressible scissor mechanism positioned above electrical switch circuitry. In further embodiments, the top surface of the keycap need not be flat. For example, the legend diffuser material may be smoothed to follow an arbitrary curvature of the keycap so as to form a substantially continuous surface with the top surface of the keycap. For example, certain keycaps may be slightly convex so as to contour to a typist's finger.


Further embodiments described herein may relate to or take the form of a keyboard including a plurality of keys, each including a keycap including a metal top layer having a uniform thickness, an aperture within the metal top layer defining a legend, a diffuser fill deposited on a bottom surface of the metal top layer, a light emissive layer underlying the plurality of keys, an electrical switch layer including a plurality of electrical switches, each of the plurality underlying a respective one of the plurality of keys.





BRIEF DESCRIPTION OF THE FIGURES

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.



FIG. 1 is a perspective view of a sample embodiment of an illuminated keyboard for use with an electronic device.



FIG. 2 is a close-up and exploded side cross-sectional view of a keycap of an embodiment of the illuminated keyboard taken along line 2-2 of FIG. 1.



FIG. 3A is a top plan view of a keycap showing a legend as a portion of the embodiment as shown in FIG. 1.



FIG. 3B is a close up side view of the embodiment shown in FIG. 3A taken along line 3B-3B.



FIG. 3C is a close up side view of the embodiment shown in FIG. 3A taken along line 3C-3C.



FIG. 3D is a close up side view of the embodiment shown in FIG. 3A taken along line 3D-3D.



FIG. 3E is a close up side view of the embodiment shown in FIG. 3A taken along line 3E-3E.



FIG. 3F is a close up side view of the embodiment shown in FIG. 3A taken along line 3F-3F.



FIG. 4A is a top plan view of another keycap, showing a hidden geometry of bridges supporting a central island portion.



FIG. 4B is a bottom plan view of the keycap of FIG. 4A, showing the geometry of bridges supporting a central island portion.



FIG. 5A is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing an inverted metal keycap before laser cutting.



FIG. 5B is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing the inverted metal keycap after laser cutting.



FIG. 5C is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing the inverted metal keycap after laser cutting and after a layer of legend diffuser material is applied.



FIG. 5D is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing the inverted metal keycap with legend diffuser material drawn in to occupy the volume opened by laser cutting.



FIG. 5E is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing a legend diffuser material finished to be substantially coplanar with a bottom surface of the inverted metal keycap.



FIG. 5F is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 5-5, showing the metal keycap after a legend diffuser material has been applied, cured and finished.



FIG. 6A is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 6-6, showing a metal keycap before laser ablation.



FIG. 6B is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 6-6, showing the metal keycap after laser ablation.



FIG. 6C is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 6-6, showing the metal keycap after laser ablation and inverted from the view of FIG. 6B.



FIG. 6D is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 6-6, showing the metal keycap after laser ablation, inverted, and after a legend diffuser material has been applied and drawn into the volume defined by the laser ablation.



FIG. 6E is a close up side view of the keycap shown in FIGS. 4A-4B taken along horizontal line 6-6, showing the metal keycap after legend diffuser material has been applied, cured and finished.



FIG. 7A is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing a metal keycap before laser ablation and laser etching.



FIG. 7B is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing the metal keycap after laser ablation and laser cutting.



FIG. 7C is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing the metal keycap inverted and after laser ablation and laser cutting.



FIG. 7D is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing the metal keycap inverted, after laser ablation and cutting and after a legend diffuser material has been applied.



FIG. 7E is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing the metal keycap inverted, after laser ablation and cutting and after a legend diffuser material has been applied and drawn into the volume defined by the laser ablation and laser cut.



FIG. 7F is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing the metal keycap after legend diffuser material has been applied, cured and finished.



FIG. 7G is a close up side view of the keycap shown in FIGS. 4A-4B taken along vertical line 7-7, showing the metal keycap removed from a processing surface.



FIG. 8A is a top plan view of a keycap showing illumination of a perimeter portion, a glyph portion, and a background portion in an off state.



FIG. 8B is a top plan view of a keycap showing illumination of a perimeter portion and a background portion in an off state with the illumination of a glyph portion in an on state.



FIG. 8C is a top plan view of a keycap showing illumination of a background portion in an off state with the illumination of a perimeter portion and a glyph portion in an on state.



FIG. 9 is a flow chart illustrating operations of a sample method for manufacturing an illuminated input apparatus.





The use of the same or similar reference numerals in different drawings indicates similar, related, or identical items.


DETAILED DESCRIPTION

Embodiments described herein may relate to or take the form of a backlit input apparatus with an illuminated surface configured to receive user input. In particular, certain embodiments may take the form of a fully or partially illuminated keyboard, keypad, or individual keys having metal keycaps. In certain embodiments, the metal keycap is made from aluminum. Such keys may be used in conjunction with personal computing devices, such as laptop computers or desktop computers, as either integrated or peripheral input devices. Certain other embodiments may take the form of a fully or partially illuminated button with a metal outer surface for use with other electronic devices such as televisions, portable media players, cellular telephones, tablet computers, and the like. Further, although embodiments herein are discussed specifically with respect to metal keycaps, it should be appreciated that alternative embodiments may employ the same structures, operations, methods, apparatuses and the like but incorporate keycaps made from other materials, such as glass, composites, plastics and the like. Accordingly, the discussion is intended to encompass keycaps formed of material other than metal.


One embodiment may be a back-illuminated key associated with a keyboard. The embodiment may include a metal keycap composed principally of aluminum. The metal keycap can have beveled or otherwise polished edges along a planar top surface. The metal keycap may be thin, with a thickness of less than a millimeter. The metal keycap may be anodized or otherwise finished to provide durability and, optionally, a particular look and/or texture.


The metal keycap may include a legend area that can be illuminated. The legend may take the form of any numeral, symbol or letter of any language appropriately suited to the keyboard. For example, the legend may be one or more English letters or symbols in one embodiment, or the legend may be one or more simplified Chinese characters. In further embodiments, the legend may take the form of a function symbol such as a power symbol, an eject symbol, or a play/pause symbol. One may appreciate that a legend may include any symbol, character, glyph, letter, artwork or other information-conveying image.


The legend may include one or more counters. A “counter” is an enclosed negative space within the perimeter of a glyph. For example, glyphs of the English letters “W” or “T” do not contain any counters, while a glyph of the English letter “B” contains two counters and a glyph of the letter “Q” contains one counter. The number, size, orientation, and location of counters may depend on the style of the legend itself. For example, for certain glyph designs (corresponding to particular fonts), the Arabic numeral “4” may have a counter while for other glyph designs, it may not. Accordingly, one may appreciate that the presence or absence of a counter or multiple counters for particular legends may vary from embodiment to embodiment.


In many embodiments, the legend may be cut from, cut into, or cut through the metal keycap in a laser cutting process, a laser ablation process, or any sequential or simultaneous combination thereof. In alternate embodiments, a metal stamping process, a mask and immerse chemical etching process, or any other suitable process or combination of processes may be used.


Laser cutting may involve directing a focused beam of light at a surface of the metal keycap. The material of the metal keycap may be melted, burned, ablated, or otherwise vaporized as a result. The heated material may be blown free by a gas or liquid jet or may be vaporized. One may appreciate that the focal point of the laser may be set along the top surface of the metal keycap or the bottom surface of the metal keycap, or anywhere in between. In a further embodiment, a portion of the legend may be cut from the top surface and a second portion may be cut from the bottom surface.


Laser ablation may involve a pulsed or continuous laser focused on the surface of the metal keycap in order to remove material from the metal keycap in a controlled manner without cutting entirely through the surface of the metal keycap.


In an embodiment featuring a legend without a counter, laser cutting of the metal keycap may be sufficient to cut the legend through the top surface and back surface of the metal keycap, opening an aperture in the metal keycap in the shape of the desired glyph.


In another embodiment featuring a legend with one or more counters, laser cutting of the metal keycap may remove both the exterior perimeter of the glyph as well as the one or more counters. In one embodiment, the separated counters may be collected to be attached to the metal keycap in a later process.


In a further embodiment featuring a legend having one or more counters, a combination of laser cutting and laser ablation may be used. A laser cutting process may be used to cut a substantial portion of a legend, leaving behind a select amount of material connecting the one or more counters to the outer perimeter of the legend such that the counter is held in place. In such an embodiment, the remaining counters may be referred to as “islands” and may be retained in position by one or more bridges. One may appreciate that any number of islands or any number of bridges may be required or desired depending upon the shape of the legend and the number or size of counter portions. Further, the location, width, orientation, and geometry of individual bridges may differ from embodiment to embodiment.


In a supplemental or additional process, laser ablation may be used to reduce the depth of the one or more bridges. In a first embodiment, the one or more bridges may be ablated from the top surface of the metal keycap. By ablating a portion of the depth of the bridges, the cross-section of the legend that intersects the top surface of the metal keycap may be uninterrupted by bridges, as described in further detail below.


After a legend or aperture has been cut into the top surface of the metal keycap, a legend diffuser material may be applied to fill the volume defined by the legend within the metal keycap. In a first example embodiment, the metal keycap may be inverted and placed along a flat processing surface. Next, the legend diffuser material may be applied as a liquid to the back of the metal keycap. The legend diffuser material may be composed of a semi-transparent or translucent material that is doped with glass beads or another diffusion dopant. In certain embodiments, the legend diffuser material may also include a pigment or ink of a particular color. For example, in certain embodiments, titanium oxide powder may be used to make the legend diffuser material, and thus optionally at least part of the keycap white. The white color may be seen only when light is transmitted therethrough or may be generally visible even when the keycap is not illuminated.


During the application of the legend diffuser material to the keycap, pockets of air may remain within the legend volume. For example, such pockets may be trapped by the application of the legend diffuser material. In other cases, unwanted pockets of air may remain within the volume defined by the ablated bridges and the flat processing surface. In order to remove the unwanted pockets of air such that the legend diffuser material occupies the entire volume defined by the legend and ablated bridges, the metal keycap with legend and legend diffuser may be placed in a vacuum chamber such that differential pressure between the pockets and the vacuum cause the removal of the air pockets. In another embodiment, the metal keycap and legend diffuser may be placed within an autoclave or other high pressure chamber to facilitate a pressure differential to remove the air pockets. In a subsequent process, the metal keycap and legend diffuser may be cured so that the legend diffuser material may harden and/or adhere to the metal keycap in a substantially permanent fashion. Curing conditions may differ depending on the material selected for the legend diffuser, the material selected for the dopant or pigment, and/or other factors. For example, curing conditions may include exposure to ultraviolet light of a particular wavelength, exposure to heat, or exposure to pressure.


After curing, the legend diffuser material may be smoothed or polished to a plane in a subsequent process such that an outer surface of the legend diffuser material is substantially parallel with the top surface of the metal keycap. Once polished, the metal keycap may be attached to a sub-frame which may include a scissor mechanism or other button mechanism positioned to activate electrical switch circuitry when depressed. In certain embodiments, the legend diffuser material may be polished such that the outer surface of the layer is coplanar with the bottom of the metal keycap. In other examples, the legend diffuser material may be polished such that the outer surface of the layer forms a substantially continuous surface with the bottom of the metal keycap.


For example, the legend diffuser material may be smoothed to follow an arbitrary curvature of the keycap so as to form a substantially continuous surface with the top surface of the keycap. In other embodiments, the legend diffuser material may be polished such that the outer surface of the layer is parallel to, but separated by, a gap or spacer from the bottom surface of the metal keycap. In further embodiments, the top surface of the legend diffuser material may be polished or otherwise finished so that it is substantially coplanar with the top surface of the metal keycap. In other examples, the top surface of the legend diffuser material may be polished or otherwise finished such that the outer surface of the material forms a substantially continuous surface with the bottom of the metal keycap.


In further embodiments, a legend diffuser material may not necessarily be separately applied to the laser cut metal keycap. For example, a laser cut metal keycap may be placed adjacent or on a top surface of a plastic carrier. Thereafter, the assembly may be placed into a reflow oven such that the plastic material from the plastic carrier melts and flows into the void defined by the laser cuts within the metal keycap. In other embodiments, other mechanisms for in-flowing plastic into the void defined by the laser cuts within the metal keycap.


Included within, below or adjacent a keycap may be one or more light sources positioned to emit light through the legend of the metal keycap. In certain embodiments, the light source may include or be coupled to a light source such as an organic light-emitting diode (“OLED”), a semiconductor-based light-emitting diode (“LED”) or any other suitable light source. In a first embodiment, the light source may be positioned to transmit light through the legend diffuser material. Thus, when viewing the metal keycap from above, the legend may be illuminated from its backside, such that light shines through the legend.


In a further embodiment, the light source may be positioned to transmit light around the perimeter of the metal keycap. In this way, when viewing the metal keycap from above, the perimeter of the key may appear illuminated. As one example, the metal keycap may appear to have a halo surrounding its periphery.



FIG. 1 is a perspective view of a sample embodiment of an illuminated keyboard 100 for use with an electronic device. The keyboard 100 may be a peripheral component of a desktop computing system or, in other embodiments, it may be an integral portion of a laptop computing system. The keyboard 100 may have one or more keys 110 and a housing 120 that fully or partially encases the internal components of the keyboard 100. In certain embodiments, the keyboard 100 may have a greater number of keys 110, or a fewer number of keys 110 than illustrated. The keys may be arranged in a different order. Some or all of the one or more keys 110 may have a legend image 130 associated with it. As illustrated, the one or more keys 110 may be of different sizes and may be positioned at different locations along the surface of the keyboard 100.



FIG. 2 is a close-up and exploded side cross-sectional view, taken along line 2-2 of FIG. 1, of a key 200 of the illuminated keyboard 100. The key 200 may be positioned at least partially within the housing 220 of the keyboard 100 (not shown). Through the housing 220 may be defined a key aperture 225, which may be present on both sides of the cross section and as illustrated. The key aperture 225 may be sized such that a perimeter gap 230 is present between the key 200 and the housing 220. The perimeter gap 230 may be selectively sized based on the size of the key 200. In certain embodiments, the key aperture 225 may not be necessarily required. Instead, one or more keys 110 (not shown in FIG. 2) may be arranged substantially adjacent to one another such that the perimeter gap 230 of each key is defined by the keys neighbor to the key 200.


The term “horizontal” as used herein, except as otherwise noted, is defined as lying within the plane parallel to the surface of the housing 120 and 220 of the keyboard 100. The term “vertical” as used herein, except as otherwise noted, is defined as a direction perpendicular to the horizontal plane. Similar directional terminology as used herein (e.g., “above” or “below” or “top” or “bottom”) is defined with respect to the horizontal plane.


The key 200 may have a metal keycap 240. In certain embodiments, the metal keycap 240 may be composed of silica metal, sapphire metal, or another similar substantially transparent and scratch resilient material. The metal keycap 240 may include a substantially flat top surface. In certain embodiments, the metal keycap 240 may have a slightly concave shape so as to enhance the feel of the key when depressed by a user.


Disposed within the metal keycap 240 may be a legend aperture 260. Although shown in cross section, one may appreciate that the legend aperture 260 may, when viewed from above, take the form of any numeral, legend or letter of any language appropriately suited to the keyboard 100, or any symbol, icon or graphic that conveys information. For example, the legend aperture 260 may take the form of one or more English letters or, in another embodiment, the legend may take the form of the one or more simplified Chinese characters.


The legend aperture 260 may be formed from a diffuser material 270. In certain embodiments, the legend diffuser material 270 may be doped with a pigment of a particular color. For example, titanium oxide which may give the legend diffuser material 270 a white appearance. The legend diffuser material 270 may fill the legend aperture 260 from the top surface of the metal keycap 240 to the bottom surface of the metal keycap 240. In this way, the legend diffuser material 270 may occupy the volume of the legend aperture 260 within the background metal keycap 240.


Below the diffuser layer 270 may be a vertically compressible layered support structure positioned to activate electrical switch circuitry when depressed. A first layer of the structure may be a metal keycap receiving pad 280. The metal keycap receiving pad 280 may have a substantially flat top surface so that it may be adhered or attached to the bottom surface of the legend diffuser material 270 and to the bottom surface of the metal keycap 240, although in some embodiments this receiving pad may be omitted.


Disposed below the metal keycap receiving pad 280 may be a membrane 282, such as a dome switch. The membrane 282 may be constructed of a deformable polymer material such as rubber or silicon and may include one or more electrical contacts, although these contacts have been omitted from FIG. 2 for purposes of simplicity. The material selected for the membrane 282 may be substantially transparent in some embodiments.


Adjacent to the membrane 282 may be a compressible scissor mechanism 284 which collapses when the metal keycap 240 is depressed by the user. Collapsing the keycap may also collapse the dome switch or any other membrane beneath the keycap.


Below the membrane 282 may be a first contact wiring layer 286. Electrical contacts (not shown) may be disposed on the top surface of the first contact wiring layer 286 such that, when the membrane 282 and the compressible scissor mechanism 284 compress beyond a certain point, the electrical contacts of the membrane 282 and the electrical contacts of the first contact wiring layer 286 complete an electrical circuit. This may initiate a signal indicating that the key 200 has been depressed by the user.


In some embodiments, the first contact wiring layer 286 may be disposed upon a first substrate layer 288 which provides structural support to the key 200. The substrate layer 288 may be composed of a transparent or substantially transparent material. Below the substrate layer 288 may be an illumination layer 290 including a light emitting element 292 which is centered below the metal keycap 240. The light emitting element 292 may be an LED, OLED, or any other suitable light source. Although shown as a single light source, one may appreciate that multiple light sources may be used. For example, a light emitting element 292 may be positioned on the illumination layer 290 so as to direct or transmit light through the perimeter gap 230. In this manner, the light emitting element 292 may illuminate the perimeter of the key 200, creating a halo effect about the key 200 when viewed from above.


In another embodiment, a light emitting element 292 may be positioned to direct light only through the legend aperture 260. In this manner, the light emitting element 292 may illuminate the legend aperture 260, creating an illuminated legend effect on the surface of the key 200 when viewed from above.


One may further appreciate that a plurality of light emitting elements 292 may be disposed upon or within the light emissive layer 290. In this manner, multiple portions of the key 200 may be selectively or jointly illuminated.


It should be appreciated that light-emitting elements may be located substantially anywhere with respect to the layers and elements shown in FIG. 2. For example, a light-emitting element may be located between the membrane and the keycap or keycap receiving pad. As another example, a light pipe or other light-transmitting structure may be at least partially embedded in the housing 220 of the keyboard 100, such that light is transmitted through the light pipe and illuminates the legend.


Below the optional light emissive layer 290 may be disposed a second substrate layer 294, providing structural support to the key 200.


One may appreciate that FIG. 2 is not drawn to scale. For clarity, the relative height of each illustrated item has in some cases been substantially exaggerated to show the relationship between each of the several layers forming key 200. For example, one may appreciate that the metal keycap 240 may be less than a millimeter in height.



FIG. 3A is a top plan view of a metal keycap 300 showing a legend as a portion of the embodiment as shown in FIG. 1. The metal keycap may include at least background area 310 and a legend area 315, which as illustrated shows the English letter “A.” The metal keycap 300 may be situated within the housing 320 of a keyboard 100 (see, for example, FIG. 1). The metal keycap 300 may be positioned within a key aperture 325 defined within the keyboard. The horizontal surface area of the key aperture 325 may be slightly larger than the horizontal surface area of the metal keycap 300 such that a keycap perimeter gap 380 is formed.


Also shown in FIG. 3A are two bridge portions 390 and an island portion 395. The bridge portions 390 are shown in dotted lines to indicate the hidden geometry. One may appreciate that from the top view shown in FIG. 3A, the bridge portions are not visible.



FIGS. 3B-3F are close up side views of the embodiment shown in FIG. 3A taken along cross sections 3B-3F respectively. Visible in all cross sections shown in FIGS. 3B-3F is the metal keycap 340. The metal keycap 340 sits within the key aperture (not shown) within the keyboard housing 320 exposing the perimeter gap 330. As noted with respect to the embodiment illustrated by FIG. 2, the metal keycap 340 may be composed of metal.


Line 3B-3B of FIG. 3A does not intersect any portion of the legend area 315 of FIG. 3A. Accordingly, in the cross-section shown in FIG. 3B, no portion of a legend is present or illustrated.


Line 3C-3C of FIG. 3A intersects a portion of the legend area 315 of FIG. 3A. Specifically, line 3C-3C intersects the crest of the “A” legend as illustrated in FIG. 3A. Accordingly, within the cross section shown in FIG. 3C, a portion of a legend area 315 is shown. Because line 3C-3C intersects the legend only once, FIG. 3C illustrates only a single portion of the legend area 315.



FIG. 3D is a cross section of line 3D-3D of FIG. 3A intersects a portion of the legend area 315, and a portion of the island 395 and bridge areas 390 of FIG. 3A. The bridge sections 390 extend to connect the outer portions of the keycap 340 to the island portion 390. As illustrated, the bridge sections 390 have a smaller thickness than the rest of the metal keycap 340.


Line 3E-3E of FIG. 3A intersects a portion of the legend area 315 of FIG. 3A. Specifically, line 3E-3E intersects the extended leg portions of the “A” legend as illustrated in FIG. 3A. Accordingly, within the cross section shown in FIG. 3C, a portion of a legend area 315 is shown. Because line 3E-3E intersects the legend twice, FIG. 3C illustrates two portions of the legend area 315.


Similar to FIG. 3B, FIG. 3F does not intersect any portion of the legend area 315 of FIG. 3A and accordingly, no portion of a legend is present or illustrated.



FIG. 4A is a top plan view of a keycap showing hidden geometry of bridges supporting a central island portion. Illustrated in FIG. 4A is a legend area 415 within a metal keycap 440. The legend area 415 is shown as a glyph of the English letter “Q.” As previously noted, the English letter Q includes a single counter as an enclosed island defined within the exterior perimeter of the letter. The counter may be identified as an island 495. The island 495 may be connected to the metal keycap 440 by one or more bridges 490. The one or more bridges 490 are shown as hidden geometry from the top view as shown in FIG. 4A.



FIG. 4B is a bottom plan view of a keycap as shown in FIG. 4A showing a geometry of bridges supporting a central island portion. Illustrated in FIG. 4B is a legend area 415 within a metal keycap 440. The legend area 415 is shown as a glyph of the English letter “Q” flipped along the midsection. One may appreciate that the legend inverts from the bottom view of the keycap 440. Visible in FIG. 4B is an island 495, connected to the metal keycap 440 by one or more bridges 490. Of note is that the bridge portions are visible from the bottom view of the metal keycap 440.


With respect to FIGS. 5A-5F, the term “horizontal” is defined as the plane parallel to the surface of the metal keycap unless as otherwise noted with respect to individual figures. The term “vertical” as with respect to FIGS. 4A-4D is defined as the direction perpendicular to the horizontal plane, unless as otherwise noted with respect to individual figures. Similar directional terminology as used herein (e.g., “above” or “below” or “on” or “under”) is defined with respect to the horizontal plane.


The creation of a legend, including optional bridges, islands, and the like, will now be discussed.



FIG. 5A is a close up side view of the embodiments shown in FIG. 4A-4B taken along horizontal line 5-5, showing a metal keycap 540 before laser cutting. Below the metal keycap 540 is positioned a processing surface 545. The processing surface 545 may be the bed of a laser cutting or ablation apparatus, as one example, or another substrate supporting the key. In certain embodiments, the processing surface may be composed of metal, ceramic or other materials. It should be appreciated that the processing surface may be omitted in some embodiments and the key may be held or otherwise suspended instead.



FIG. 5B is a close up side view of the embodiments shown in FIG. 4A-4B taken along horizontal line 5-5, showing the metal keycap after laser cutting. The void areas (e.g., legend apertures 560) may be exposed by the laser cutting process. In other embodiments, the legend apertures 560 may be cut via a masking and chemical etching process. For example, a mask may be applied over the metal keycap 540. The mask may cover portions of the metal keycap 540 that should remain after etching, but may expose all portions of the metal keycap 540 that should be removed in order to expose the legend apertures 560. After the mask is applied, the metal keycap 540 may be immersed in, or exposed to, an etching solution that dissolves or otherwise reacts with the material selected for the metal keycap 540 but not the material selected for the mask. After a proscribed period of time, the metal keycap 540 may be removed from the etching solution and the mask may be removed.



FIG. 5C is a close up side view of the embodiment shown in FIG. 5B showing a sample cross section of a metal keycap 540 after a legend diffuser material 570 is applied over the metal keycap 540 and the exposed portions of a legend aperture 560. In certain embodiments, during the application of the legend diffuser material 570, unwanted pockets of air 505 may remain within the legend 560. The unwanted pockets of air 505 may cause undesirable visual artifacts in the legend.


In order to remove the unwanted pockets of air 505, the metal keycap 540 and legend diffuser material 570 may be placed in a vacuum chamber (not shown) such that a negative pressure differential forms to eliminate the air pockets 505. One may appreciate that the air pockets 505 may be created at or near atmospheric pressure. Accordingly, when placed in a vacuum environment, the difference in pressure between the air pockets 505 and the exterior vacuum may equalize, which may pull the diffuser layer 570 to fill the entire volume of the legend aperture 560, as shown in FIG. 5D.


In another embodiment, the metal keycap 540 and legend diffuser material 570 may be placed within an autoclave or other high pressure chamber to facilitate a positive pressure differential to remove the air pockets 505. As noted above, the air pockets 505 may be created at or near atmospheric pressure. When placed in a high pressure environment, the difference in pressure may push the diffuser layer 570 to fill the entire volume of the legend 560, as shown in FIG. 5D.



FIG. 5E is a close up side view of the embodiment shown in FIG. 5D showing a sample cross section of a keycap 540 with the legend diffuser material 570 finished to a smooth plane, coplanar with the top surface of the metal keycap 540. In certain embodiments, smoothing the legend diffuser material in this manner may provide for an exceptionally thin overall keycap thickness. In other embodiments, the legend diffuser material 570 can be finished to a smooth surface that forms a substantially continuous surface with the top surface of the metal keycap 540. For example, the top surface of the metal keycap 540 may be partially convex so as to contour to a typist's finger.


Once polished or otherwise smoothed, the keycap may be removed from the processing surface, vertically flipped, and attached to a key stack, such as some of or the entire stack shown in FIG. 2. The legend diffuser material 570 may be smoothed in order to provide the substantially parallel relationship between the scissor mechanism and the top surface of the metal keycap 540 in the illustrated embodiment.



FIG. 6A is a close up side view of the embodiments shown in FIG. 4A-4B taken along horizontal line 6-6, showing a metal keycap 640 before laser ablation. Below the metal keycap 640 is positioned a processing surface 645. In certain embodiments, the processing surface may be composed of metal, ceramic or other materials.



FIG. 6B is a close up side view of the embodiments shown in FIG. 4A-4B taken along horizontal line 6-6, showing the metal keycap after laser ablation. The reduced areas, or the bridges 690 may be exposed by a laser ablation process. Laser ablation may involve a pulsed or continuous laser focused on the surface of the metal keycap 640 in order to remove material from the metal keycap in a controlled manner without cutting entirely through the surface of the metal keycap. The bridges 690 may be reduced to a certain selected depth.


In other embodiments, the bridges 690 may be etched via a masking and chemical etching process, similar to that previously described.



FIG. 6C is a close up side view of the embodiments shown in FIG. 4A-4B taken along horizontal line 6-6, showing the inverted metal keycap 640 after laser ablation. The metal keycap 640 may be inverted by any suitable process. The metal keycap 640 may be inverted so that, when a legend diffuser material 670 (not shown in FIG. 6C) is applied, a portion of the legend diffuser material 670 which interfaces with a top surface of the processing surface 645 may cure to the shape of the processing surface 645. For example, in the embodiment illustrated, the legend diffuser material may enjoy a flat surface.


As a result of the inversion, unwanted or undesirable pockets of air 605 may remain within the volume defined by the processing surface 645 and the bridges 690. The unwanted pockets of air 605 may cause undesirable visual artifacts in the legend. In further embodiments, pockets of air 605 may be desirable for diffusion or other optical or structural characteristics. In such an embodiment, the pockets of air 605 need not be removed prior to curing.


For embodiments in which unwanted pockets of air 605 should be removed, the metal keycap 640 and legend diffuser material 670 (not shown) may be placed in a vacuum chamber (not shown) such that a negative pressure differential forms to eliminate the air pockets 605. One may appreciate that the air pockets 605 may be created at or near atmospheric pressure. Accordingly, when placed in a vacuum environment, the difference in pressure between the air pockets 605 and the exterior vacuum may equalize, which may pull the diffuser layer 670 to fill the entire volume defined by the processing surface 645 and the bridges 690, as shown in FIG. 6E.


In another embodiment, the metal keycap 640 and legend diffuser material 670 may be placed within an autoclave or other high pressure chamber to facilitate a positive pressure differential to remove the air pockets 605. As noted above, the air pockets 605 may be created at or near atmospheric pressure. When placed in a high pressure environment, the difference in pressure may push the diffuser layer 670 to fill volume the defined by the processing surface 645 and the bridges 690, as shown in FIG. 6D.



FIG. 6E is an close up side view of the embodiment shown in FIG. 6D showing a sample cross section of a keycap 640 with the legend diffuser material 670 finished to a smooth plane, coplanar with the top surface of the metal keycap 640. As noted with respect to other embodiments described here, the legend diffuser material 670 may be alternately or additionally finished to form a substantially continuous surface with the top surface of the keycap 670. In certain embodiments, smoothing the legend diffuser material in this manner may provide for an exceptionally thin overall keycap thickness.


Once polished or otherwise smoothed, the keycap may be removed from the processing surface, vertically flipped, and attached to a scissor mechanism (not shown) or other button mechanism positioned to activate electrical switch circuitry when depressed. The legend diffuser material 670 may be smoothed in order to provide a substantially parallel relationship between the scissor mechanism and the top surface of the metal keycap 640.



FIG. 7A is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing a metal keycap 740 atop a processing surface 745, before laser ablation or laser cutting.



FIG. 7B is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing the metal keycap 740 after laser ablation and laser cutting. Opened within the metal keycap 740 is a legend aperture 760. As with FIGS. 5A-5H, the legend aperture 760 may be opened in the metal keycap 740 in a laser cutting process. Also shown is a vertical cross section of a bridge portion 790, which may be formed by a laser ablation process.



FIG. 7C is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing the inverted metal keycap 740 after laser ablation and laser cutting. As described with respect to FIG. 7B, a result of the inversion may be that unwanted pockets of air 705 remain within the volume defined by the processing surface 745 and the bridge 790. The unwanted pockets of air 705 may cause undesirable visual artifacts in the legend.



FIG. 7D is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing the inverted metal keycap 740 after laser ablation and cutting and after a legend diffuser material 770 has been applied. As with embodiments described above, in order to remove the unwanted pockets of air 705, the metal keycap 740 and legend diffuser material 770 may be placed in a vacuum chamber (not shown) such that a negative pressure differential forms to eliminate the air pockets 705.



FIG. 7F is a close up side view of the embodiments shown in FIG. 4A-4B taken along vertical line 7-7, showing the metal keycap 740 after legend diffuser material has been applied, cured and finished. FIG. 7G illustrates the metal keycap 740 after removal from the processing surface.


One may appreciate that FIGS. 5A-5H, 6A-6E, and 7A-7G may not necessarily be drawn to scale. For clarity, the relative height of each illustrated item has in some cases been substantially exaggerated to show the relationship between each of the several layers forming the illustrated key. Further, one may appreciate that the application of the legend diffuser material may be applied in any number of ways. As illustrated in each of the related embodiments, one may appreciate that the legend diffuser material is applied to the bottom surface of the keycap. In other embodiments, the legend diffuser material may be applied to the top surface of the keycap. In still further embodiments the legend diffuser material may be applied selectively. For example, individual portions of the legend diffuser material may be applied to select portions of the laser cut or laser ablated areas defining a particular legend. In other embodiments, the legend diffuser material may be deposited in other ways. For example, the legend material may be printed or otherwise layered into the volume defined by laser cuts and laser ablations. In other examples, a cut and/or ablated keycap may be immersed a legend diffuser material.



FIG. 8A is a top plan view of a keycap showing the selective illumination of a perimeter gap portion 880 in an off state, a legend area portion 818 (not shown) in an off state, and a background area portion 810. One may note that in the illustrated embodiment, a legend portion 818 is not visible. In certain embodiments, the boundaries between the background portion 810 and the legend area portion 818 are not distinguishable when the legend area portion 818 is in an off state. Accordingly, FIG. 8A is illustrated without the legend area visible. In other embodiments, the legend may be visible on the keycap even when the legend or keycap is not illuminated.



FIG. 8B is a top plan view of a keycap showing illumination of a perimeter gap portion 880 in an off state and the legend area portion 818 in an on state. Contrary to FIG. 8A, the legend area portion 818 is visible and distinguishable from the background area 810. FIG. 8C is a top plan view of a keycap showing illumination of a perimeter gap portion 880 and a legend area portion 818 in an on state.


Although FIGS. 8A-8C illustrate various combinations of illuminated portions of a keycap, one may appreciate that additional or fewer combinations are contemplated. One may appreciate further that individual keys on the same keyboard may be illuminated separately, sequentially, with differing brightness, for varying durations, with different or similar colors, etc.



FIG. 9 is a flow chart illustrating operations of a sample method for manufacturing an illuminated input apparatus. The process may begin at operation 900 by selecting a liberated keycap. In certain embodiments, operation 900 may entail selecting a keycap liberated from a mother sheet in a separate process or, alternately, operation 900 may entail liberating a key from a mother sheet.


Next, the process may continue to operation 910 to determine a desired legend shape. As noted above, the legend may take the form of any numeral, symbol or letter of any language appropriately suited to the keyboard as used. For example, the legend may take the form of English letters or symbols in one embodiment or, the legend may take the form of the characters of simplified Chinese. In further embodiments, the legend may take the form of a function symbol such as a power symbol, an eject symbol, or a play/pause symbol. One may appreciate that a legend may include any symbol, character, glyph, or artwork.


Next, the process may continue to operation 920 to determine whether bridges or islands are required to account for one or more counters required to properly illustrate the legend selected in 910. As noted above, a counter is an enclosed negative space within the perimeter of a glyph. Once the number of bridges and islands is determined, the procedure of operation 920 may continue by selectively locating the bridges in order to most efficiently support the islands.


Next, should at least one bridge and island be required per operation 920 for the legend selected in operation 910, the process may continue to operation 930 in which a laser cutting device cuts through the metal keycap selected in operation 900. The laser cutter may leave behind the areas for the bridges and islands.


Next, the process may continue to operation 940 in which a laser ablating apparatus reduces the thicknesses of the bridges left behind in operation 930. The thickness to which the bridges should be reduced may vary from embodiment to embodiment.


Returning to operation 920, should the operation determine that no bridges or islands are required (i.e., the legend selected in operation 910 does not contain a counter), the process may continue to operation 950 in which a laser cutter may be used to cut the entire shape of the legend selected in operation 910.


From either operation 950 or operation 940, the process may continue to operation 960 in which a legend diffuser material may be applied to the keycap. As noted above, the material may be applied in any number of ways.


Once the legend diffuser material is applied to the keycap, the process may continue to operation 970 in which excess air pockets are removed. As noted above, unwanted air pockets may be removed in a vacuum chamber, an autoclave chamber, or any other suitable process.


Thereafter, the process may continue to operation 980 in which the legend diffuser material is cured. At operation 980, the metal keycap and legend diffuser may be placed in curing conditions so that the legend diffuser material may harden and/or adhere to the metal keycap in a substantially permanent fashion. Curing conditions may differ depending on the material selected for the legend diffuser, the material selected for the metal keycap, or other factors. For example curing conditions may include ultraviolet light of a particular wavelength, exposure to heat, or exposure to pressure. The process may conclude at the conclusion of operation 980.


One may appreciate that although many embodiments are disclosed above, that the operations presented in FIG. 9 are meant as examples and accordingly are not exhaustive. One may further appreciate that alternate operation order, or additional or fewer operations may be used to accomplish methods contemplated here.


Where components or modules of the invention are implemented in whole or in part using software, in one embodiment, these software elements can be implemented to operate with a computing or processing module capable of carrying out the functionality described with respect thereto.


Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.

Claims
  • 1. An illuminated input apparatus for use with a computing device comprising: a plurality of keys, each key comprising: a metal keycap comprising a body formed entirely from metal and having a top surface defining an external surface of the key;a legend aperture defined through the body and intersecting the top surface;a legend diffuser material within the legend aperture and flush with the top surface;a compressible mechanism configured to support the metal keycap; anda light source operable in an on state and an off state, the light source oriented to transmit light through the legend aperture.
  • 2. The illuminated input apparatus of claim 1, wherein the on state comprises a keycap perimeter illumination mode in which the light source emits light proximate a perimeter of the metal keycap.
  • 3. The illuminated input apparatus of claim 1, wherein the on state comprises a legend illumination mode in which the light source transmits light through legend diffuser material and through the legend aperture.
  • 4. The illuminated input apparatus of claim 1, wherein the metal keycap is formed from aluminum.
  • 5. The illuminated input apparatus of claim 1, wherein the legend diffuser material is configured to diffuse light transmitted through the legend aperture.
  • 6. The illuminated input apparatus of claim 1, wherein the metal keycap is anodized.
  • 7. The illuminated input apparatus of claim 1, wherein the legend aperture is formed in the metal keycap using a laser cutting process.
  • 8. The illuminated input apparatus of claim 1, wherein the legend aperture is formed in the metal keycap using a laser ablation process.
  • 9. The illuminated input apparatus of claim 1, wherein the light source comprises a light emitting diode.
  • 10. The illuminated input apparatus of claim 1, wherein a portion of the legend diffuser material is coplanar with the top surface.
  • 11. The illuminated input apparatus of claim 1, wherein the legend aperture is defined in part by at least one bridge portion connecting to an island portion.
  • 12. The illuminated input apparatus of claim 11, wherein the at least one bridge portion has a thickness less than that of the metal keycap.
  • 13. The illuminated input apparatus of claim 12, wherein the at least one bridge portion is formed using a laser ablation process.
  • 14. A method for manufacturing a light transmissive keycap for illuminating a keyboard, comprising: forming at least a portion of a legend aperture within a body of a metal keycap, the body formed entirely from metal;depositing a translucent legend diffuser material within the legend aperture;exposing the metal keycap and the legend diffuser material to a curing condition, thereby curing the legend diffuser material;smoothing residual legend diffuser material so that the cured legend diffuser material forms a substantially continuous surface with an external surface of the metal keycap; andsmoothing residual legend diffuser material so that the cured legend diffuser material forms a substantially continuous surface with a bottom surface of the metal keycap.
  • 15. The method of claim 14, further comprising beveling the edges of the metal keycap.
  • 16. The method of claim 15, further comprising positioning a light emitting element below the metal keycap such that light emitted from the light emitting element transmits through the translucent legend diffuser material and through the legend aperture.
  • 17. The method of claim 14, wherein the legend aperture is cut using a laser cutting process.
  • 18. The method of claim 14, wherein the legend aperture is cut using a laser ablation process.
  • 19. The method of claim 18, wherein the legend aperture is defined by at least one bridge portion and at least one island portion.
  • 20. The method of claim 19, wherein the at least one bridge portion has a thickness less than the uniform thickness of the selected metal keycap.
  • 21. A keyboard comprising: a plurality of keys, each key comprising a keycap comprising: a metal body having a uniform thickness and a top surface defining an external surface of the key, the metal body formed entirely from metal;an aperture defined through the metal body defining a legend; anda diffuser fill deposited on a bottom surface of the metal body and through the aperture, the diffuser fill flush with the external surface of the metal body;a light emissive layer underlying the plurality of keys; andan electrical switch layer comprising a plurality of electrical switches, each of the plurality underlying a respective one of the plurality of keys.
  • 22. The keyboard of claim 21, wherein the light emissive layer comprises a plurality of light emitting diodes.
  • 23. The keyboard of claim 21, wherein the aperture is opened in part by a laser cutting process and in part by a laser ablation process.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a nonprovisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 61/884,241, filed Sep. 30, 2013 and titled “Keycaps Having Improved Illumination and Reduced Thickness,” the disclosure of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (234)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5382762 Mochizuki Jan 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5935691 Tsai Aug 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6706986 Hsu Mar 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6926418 Osterg.ang.rd et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Tsai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7038832 Kanbe May 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura et al. Nov 2007 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7639187 Caballero et al. Dec 2009 B2
7679010 Wingett Mar 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8080744 Yeh et al. Dec 2011 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Aug 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Travis Oct 2012 B2
8317384 Chung et al. Nov 2012 B2
8319298 Hsu Nov 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8451146 Mahowald et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8651720 Sherman et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8786548 Oh et al. Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9063627 Yairi et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9213416 Chen Dec 2015 B2
9223352 Smith et al. Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9275810 Pance et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040257247 Lin et al. Dec 2004 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20100066568 Lee Mar 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100163389 Tsao et al. Jul 2010 A1
20100187079 Dumont et al. Jul 2010 A1
20100213044 Strittmatter et al. Aug 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110032127 Roush Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110203912 Niu et al. Aug 2011 A1
20110205179 Braun Aug 2011 A1
20110303521 Niu et al. Dec 2011 A1
20120012446 Hwa Jan 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120168294 Pegg Jul 2012 A1
20120193202 Chen Aug 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130100030 Los et al. Apr 2013 A1
20130162450 Leong et al. Jun 2013 A1
20130270090 Lee Oct 2013 A1
20140071654 Chien Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140116865 Leong et al. May 2014 A1
20140118264 Leong et al. May 2014 A1
20140151211 Zhang Jun 2014 A1
20140251772 Welch et al. Sep 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140320436 Modarres et al. Oct 2014 A1
20140346025 Hendren et al. Nov 2014 A1
20140375141 Nakajima Dec 2014 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150090571 Leong et al. Apr 2015 A1
20150227207 Winter et al. Aug 2015 A1
20150243457 Niu et al. Aug 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150332874 Brock et al. Nov 2015 A1
20150348726 Hendren Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336127 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160365204 Cao et al. Dec 2016 A1
Foreign Referenced Citations (140)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
101051569 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
201210457 Mar 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102683072 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2022606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S62072429 Apr 1987 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2001100889 Apr 2001 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008533559 Aug 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
201246251 Nov 2012 TV
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
WO9744946 Nov 1997 WO
WO2005057320 Jun 2005 WO
WO2008045833 Apr 2008 WO
WO2009005026 Jan 2009 WO
WO2012027978 Mar 2012 WO
WO2013096478 Jun 2013 WO
WO2014175446 Oct 2014 WO
Non-Patent Literature Citations (2)
Entry
Invitation to Pay Additional Fees, PCT/US2014/053533, 5 pages, Nov. 13, 2014.
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016.
Related Publications (1)
Number Date Country
20150090570 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
61884241 Sep 2013 US