This invention relates to the field of light emitting devices, and in particular to a patterned lamination sheet and corresponding structures and devices formed by such a sheet.
U.S. patent publication 2009/0173960 “SEMICONDUCTOR LIGHT EMITTING DEVICE WITH PRE-FABRICATED WAVELENGTH CONVERSION ELEMENT”, published 9 Jul. 2009 for Martin et al. and incorporated by reference herein, discloses a semiconductor light emitting device with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements that are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
It would be advantageous to simplify or reduce the costs associated with the process used to produce light emitting devices with wavelength conversion elements, or other elements that are added to the underlying light emitting structure.
Optical elements are attached to a flexible support film at select locations, the select locations corresponding to locations of light emitting elements on a separate substrate. The film is placed on the substrate containing the light emitting elements such that the optical elements are in contact with their corresponding light emitting elements. The optical elements are laminated to the light emitting elements, and the support film may be removed. The optical elements may include wavelength conversion elements, lens elements, combinations of elements, and so on. Other elements, such as metal conductors may also be positioned on the laminate film.
The invention is explained in further detail, and by way of example, with reference to the accompanying drawings wherein:
Throughout the drawings, the same reference numerals indicate similar or corresponding features or functions. The drawings are included for illustrative purposes and are not intended to limit the scope of the invention.
In the following description, for purposes of explanation rather than limitation, specific details are set forth such as the particular architecture, interfaces, techniques, etc., in order to provide a thorough understanding of the concepts of the invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments, which depart from these specific details. In like manner, the text of this description is directed to the example embodiments as illustrated in the Figures, and is not intended to limit the claimed invention beyond the limits expressly included in the claims. For purposes of simplicity and clarity, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.
The aforementioned published application discloses at least two techniques for adding optical elements, in this case wavelength conversion elements (e.g. phosphor) to light emitting elements. In a first technique, a sheet of phosphor material is placed over a substrate that contains multiple light emitting elements, then processed to attach the phosphor material to the light emitting elements. Using this technique, the entire substrate is covered by the phosphor material. In a second technique, the sheet of phosphor material is cut into individual elements, and the individual elements are attached to the light emitting portion of the light emitting elements, thereby conserving the amount of phosphor being used. A pick-and-place process may be used to place each of the phosphor elements upon each light emitting element.
The laminate film 100 of this example includes a plurality of optical elements 130 that are positioned at select locations on a flexible support film 110, producing variations in elevation, or profile, normal to the surface of the support film. The locations are selected such that, when the laminate film 100 is inverted and placed upon the tile 150 of light emitting devices 160, the optical elements 130 will be located upon a particular feature 140 of the light emitting devices 160. For example, if the optical elements 130 include a wavelength converting material, such as phosphor, they may be situated on the support film 110 at locations corresponding to the light emitting elements of the light emitting devices 160 on the tile 150.
When the laminate film 100 is inverted and placed upon the tile 150, as illustrated in
In an example embodiment, the support film 110 may be an ethylene tetra fluoro ethylene (ETFE) film that has relatively low adhesion to the optical element 130. The optical element 130 may be a glass or epoxy element with a higher adhesion to the feature 140 of the light emitting device 160. WO 2012/023119 “LAMINATION PROCESS FOR LEDS”, published 23 Feb. 2012 for Grigoriy Basin and Kazutoshi Iwata, discloses a method for laminating a layer of, for example, phosphor powder in a silicone binder, over an array of LED dies on a submount wafer, and is incorporated by reference herein. The layer is mounted over the LED dies, and the structure is heated in a vacuum. Downward pressure is placed on the support film so that the layer adheres to the tops of the LED dies. The structure is then exposed to ambient air, and the support film is removed. In a second lamination step, the structure is heated to a higher temperature in a vacuum to remove the remaining air between the layer and the wafer.
The optical elements 130 may be formed or placed on the support film 110 using any of a variety of techniques. An embossing process or screen printing may be used to stamp or print the optical elements 130 upon the support film; a photo-lithograph process may be used to form the optical elements 130 upon the support film; a pick-and-place process may be used to place the optical elements 130 upon the support film; or a combination of these and other techniques known in the art may be used. An embossing or other ‘casting’ technique may be used to create a desired pattern in the optical elements 130. Depending upon the processes and materials used, the pattern could be formed directly upon the optical elements 130, or the support film 111 could contain a pattern that is subsequently adopted by the optical elements 130.
If the resultant laminate film 100 is to be stored for future lamination to a tile 150, a removable cover film may be placed over the optical elements 130, opposite the support film 110, to avoid contamination or damage to the optical elements 130. In this regard, the terms ‘support film’ and ‘cover film’ may be interpreted to be equivalent. For example, if the elements 130 are sandwiched between the original film upon which the elements 130 are formed and another film that covers the elements 130, it may be immaterial which film is removed to expose the elements 130, the remaining film thereafter being the support film.
The laminate film 100 is not limited to a single type of optical element 130. The optical element 130 may comprise multiple elements and structures. For example, as illustrated in
In
At 410, a support film is provided. As noted above, the support film may be an ethylene tetra fluoro ethylene (ETFE) film with low adhesion. Upon this film, discrete optical elements are placed or formed at select locations, at 420. These locations are selected to correspond to locations of features of light emitting devices on a separate substrate, such as the location of the light emitting element in each light emitting device. As also noted above, these optical elements may be embossed or printed on the support film, or formed using photo-lithographic techniques. The optical elements may include phosphors in an epoxy or glass slurry that is subsequently cured, or partially cured upon the support film to form a laminate film. Other elements, which may be additional parts of the discrete optical elements, may also be added to the laminate film, at 430.
Optionally, at 440, a protective cover film may be added to the laminate film, opposite the support film. This cover film may also be an ETFE film with low adhesion.
At 450, the tile of light emitting devices is provided, and at 455, the protective cover, if any, may be removed. If a protective cover film had been added, and depending on the particular structure of the optical element, either the original film or this cover film may subsequently be considered the support film; the support film being the film remaining after the other film is removed.
The laminate film is placed upon the tile such that the optical elements are in contact with the corresponding feature of the light emitting devices, at 460. The laminate film is then laminated to the light emitting devices, at 470. Lamination may be performed using a vacuum and heating process, as detailed above, or, any alternative lamination technique may be used. The resultant laminate structure may be stored for subsequent processing, the support film forming a protective cover for this structure.
At 480, the support film may be removed and any remaining processes may be performed, at 490, such as testing, encapsulation, singularizing, and so on.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. For example, it is possible to operate the invention in an embodiment wherein the variations in profile of one layer are compensated by other layers, to provide a substantially uniformly thick laminated film, but at least one of the patterned layers will provide a variation in elevation of that layer with respect to the support film.
Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/054684 | 10/20/2011 | WO | 00 | 4/16/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/056378 | 5/3/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4007396 | Wisbey et al. | Feb 1977 | A |
8141384 | Barnes et al. | Mar 2012 | B2 |
8669573 | Medendorp, Jr. | Mar 2014 | B2 |
8759123 | Wada et al. | Jun 2014 | B2 |
20060102914 | Smits et al. | May 2006 | A1 |
20070096131 | Chandra | May 2007 | A1 |
20070267646 | Wierer, Jr. et al. | Nov 2007 | A1 |
20090001869 | Tanimoto et al. | Jan 2009 | A1 |
20090020779 | Yamada et al. | Jan 2009 | A1 |
20090053528 | Okuya et al. | Feb 2009 | A1 |
20090154166 | Zhang et al. | Jun 2009 | A1 |
20090173960 | Martin et al. | Jul 2009 | A1 |
20100051984 | West | Mar 2010 | A1 |
20100109025 | Bhat | May 2010 | A1 |
20100295077 | Melman | Nov 2010 | A1 |
20110018011 | Beeson et al. | Jan 2011 | A1 |
20110058372 | Lerman et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2120271 | Nov 2009 | EP |
2005-183777 | Jul 2005 | JP |
2006-165326 | Jun 2006 | JP |
2007-019096 | Jan 2007 | JP |
201019395 | May 2010 | TW |
2007146860 | Dec 2007 | WO |
2010027672 | Mar 2010 | WO |
2012023119 | Feb 2012 | WO |
Entry |
---|
Office Action dated Dec. 10, 2015 from ROC (Taiwan) Application No. 100139214. |
International Search Report mailed Feb. 12, 2012 from International Application No. PCT/IB2011/054684, 13 pgs. |
Office Action issued Aug. 4, 2015 from Japanese Application No. 2013-535553. |
Number | Date | Country | |
---|---|---|---|
20130221835 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61407180 | Oct 2010 | US |