Implementations of the present disclosure generally relate to an apparatus for thermally processing a substrate. In particular, implementations of the present disclosure relate to an adapter for lamps used as a source of heat radiation in a processing chamber.
During rapid thermal processing (RTP) of substrates, thermal radiation is generally used to rapidly heat a substrate in a controlled environment to a maximum temperature of up to about 1350° C. This maximum temperature is maintained for a specific amount of time ranging from less than one second to several minutes depending on the particular process. The substrate is then cooled to room temperature for further processing.
High voltage, e.g., about 40 volts to about 130 volts, tungsten halogen lamps are commonly used as the source of heat radiation in RTP chambers. Current lamp assembly designs include a lamp body, a bulb, and a base coupled to the lamp body. The lamp base mates to a receptacle on a printed circuit board (PCB) structure, facilitating easy removal and replacement of the lamp assembly. When the bulb fails (typically the fuse or the filament within the bulb), the entire lamp assembly including the base coupled to the lamp body needs to be replaced even though the base itself is functioning properly. Replacement of a functional base due to a faulty bulb causes unnecessary waste and expense.
Therefore, it is desirable to provide an improved lamp design to reduce cost and provide ability to adjust height of the lamps as needed.
Implementations of the present disclosure provide an adapter for use in a processing chamber. In one implementation, the adapter comprises a hollow body having a first end and a second end opposing the first end, a first block and a second block symmetrically disposed within the hollow body about a longitudinal axis of the body, wherein the first block and the second block define a central opening therebetween, and a retention device disposed in contact with the first and second blocks to confine the movement of the first and second blocks with respect to the hollow body. The central opening is sized so that the first block and the second block provide direct contact with a press seal of the lamp.
In another implementation, a lamp assembly is provided. The lamp assembly comprises a lamp comprising a lamp capsule having a filament disposed therein, and a press seal extending from the lamp capsule, and an adapter removably engaged with the lamp, wherein the adapter is a cylindrical hollow body having a first end and a second end opposing the first end, the adapter comprising a first cut-out and a second cut-out symmetrically disposed about a longitudinal axis of the adapter at the first end, a first block and a second block symmetrically disposed about the longitudinal axis of the adapter, wherein the first block is received within the first cut-out and the second block is received within the second cut-out, and a retention device disposed around the cylindrical hollow body to confine the movement of the first block and the second block within the cylindrical hollow body, wherein the first block and the second block define an opening to allow passage of the press seal.
In yet another implementation, the lamp assembly comprises a lamp comprising a lamp capsule having a filament disposed therein, and a press seal extending from the lamp capsule, and an adapter removably engaged with the lamp, wherein the adapter is a cylindrical hollow body having a first end and a second end opposing the first end, the adapter comprising a first block and a second block symmetrically disposed within the cylindrical hollow body about a longitudinal axis of the body, wherein the first block and the second block define an opening to allow passage of the press seal, and a retention device disposed around the cylindrical hollow body to confine the movement of the first block and the second block within the cylindrical hollow body.
Implementations of the present disclosure, briefly summarized above and discussed in greater detail below, can be understood by reference to the illustrative implementations of the disclosure depicted in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical implementations of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective implementations.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The figures are not drawn to scale and may be simplified for clarity. It is contemplated that elements and features of one implementation may be beneficially incorporated in other implementations without further recitation.
A substrate support 160 holds the substrate 164 during processing in the process zone 138. The substrate support 160 may include a rotatable structure that rotates the substrate 164 during processing. For example, the support 160 may include a magnetically levitated rotor 168 positioned within a channel 172 in the main body 152. The magnetically levitated rotor 168 supports a quartz support cylinder 176, on top of which is a support ring 180 to hold the substrate 164. A magnetic stator 184 located externally to the channel 172 containing the rotor 168 is used to magnetically induce rotation of the rotor 168 in the channel 172, which in turn causes rotation of the substrate 164 on the support ring 180. The substrate 164 may be rotated, for example, at about 100 to about 250 revolutions per minute.
A radiation source 188 directs radiation onto the substrate 164, and can be positioned above the substrate 164, such as in a ceiling 192 of the RTP chamber 100 above the radiation permeable window 156 at the top of the process zone 138. The radiation source 188 generates radiation at wavelengths that heat the substrate 164, such as radiation having wavelengths of from about 200 nm to about 4500 nm. In one implementation, the radiation source 188 may include a honeycomb array 196 of lamp assemblies 20. The array 196 may include one or more approximately radial heating zones that can be independently modulated to control temperatures across the substrate 164. For example, in one aspect, the radiation source 188 may include 409 lamps divided into 15 radially symmetric zones. Each zone can be independently controlled to provide fine control of the radial profile of heat delivered to the substrate 164. The radiation source 188 is capable of rapidly heating the substrate 164 for thermal processing, for example at a rate of from about 50° C./s to about 280° C./s.
Each lamp assembly 20 in the array 196 of lamp assemblies 20 is enclosed in a tubular lamp assembly housing 204. One end of the lamp assembly housing 204 is adjacent to the transmission window 156. The lamp assembly housing 204 may have a reflective inner surface 208 to increase the efficiency of light and heat transfer from the lamp assemblies 20 to the substrate 164. The lamp assembly housing 204 may be enclosed in a fluid cooling chamber 212 defined by upper and lower fluid chamber walls 216, 220 and a cylindrical fluid chamber side wall 224. Clamps 256 secure the main body 152, window 156, and cooling chamber 212 together. O-rings 260 are located between the window 156 and the cooling chamber 212 and between the window 156 and the main body 152 to provide a vacuum seal at those interfaces. A cooling fluid, such as, for example, water, can be introduced into the cooling chamber 212 through a cooling fluid inlet 228 and removed from the cooling chamber 212 through a cooling fluid outlet 232.
In some implementations, a pressurized source (not shown) of a thermally conductive gas, such as helium, may be provided and configured to cool the lamp assembly housing 204 with the thermally conductive gas, thereby facilitating thermal transfer between the lamps assemblies 20 and the cooling chamber 212. The pressurized source may be connected to the lamp assembly housing 204 through a port and a valve. The thermally conductive gas may be introduced in a manner so that the lamp assembly housing 204 (and therefore the lamp assembly 20 disposed therein) is operated under reduced pressure of the thermal conductive gas.
The bottom wall 144 of the main body 152 may include a reflective plate 264 positioned below the substrate 164. One or more temperature sensors 268, such as pyrometers having fiber optic probes, may also be provided to detect the temperature of the substrate 164 during processing. The sensors 268 are connected to a chamber controller 272, which can use their output to determine a power level to supply to individual lamp assemblies 20 and to groups of lamp assemblies 20 in a zone. Each group of lamp assemblies 20 can be separately powered and controlled by a multi-zone lamp driver 276, which is in turn controlled by the controller 272.
A gas supply 280 can provide a process gas into the process zone 138 and control the atmosphere in the RTP chamber 100. The gas supply 280 includes a source 284 of process gas and a conduit 288 having a flow control valve 292 that connects the source 284 to a gas inlet (not shown) in the RTP chamber 100 to provide gas in the RTP chamber 100. An exhaust 202 controls the pressure of gas in the RTP chamber 100 and exhausts process gas from the RTP chamber 100. The exhaust 202 may include one or more exhaust ports 206 that receive spent process gas and pass the spent gas to an exhaust conduit 210 that feeds one or more exhaust pumps 211. A throttle valve 213 in the exhaust conduit 210 controls the pressure of the gas in the RTP chamber 100.
The RTP chamber 100 may further include a printed circuit board (PCB) structure 297 on top of the upper cooling fluid chamber wall 216. The PCB structure 297 may include receptacles 299 configured to receive electrical connectors of the lamp assembly 20. The PCB structure 297 may also include electrical traces and other electrical elements to deliver power and signals to the lamp assemblies 20 from the multi-zone lamp driver 276 and controller 272. Each of the plurality of lamp assemblies 20 is inserted into the PCB structure 297 for electrical connection through the driver 276 to a power supply source (not shown).
The lamp assembly 300 generally comprises a lamp capsule 302 having a press seal 304 extending from one end of the lamp capsule 302 (the lamp capsule 302 and the press seal 304 may collectively refer to as a lamp), and an adapter 306 for removably engaged with at least a portion of the press seal 304. The press seal 304 has electrically conductive wires or leads 303 extending out of the press seal 304. The lamp capsule generally contains a filament (not shown) that is electrically connects to the electrically conductive wires or leads disposed within the press seal 304.
The lamp may or may not have a fuse in the lamp capsule 302 or the press seal 304. The fuse is generally provided to limit arcing and potential explosion in the lamp during lamp failure. The fuse (not shown) may be provided external to the lamp capsule 302 and the press seal 304 to prevent undesirable cracking or breaking of the capsule during lamp failure. In cases where the lamp is a simple capsule/fuse style (i.e., the adapter does not contain a fuse and the fuse is incorporated internal or external to the lamp), the fuse can be replaced along with the lamp. In cases where the lamp is a simple capsule style (i.e., the fuse is not used in the lamp and may be provided by the adapter), the adapter 306 may optionally provide a fuse to be connected to the electrically conductive wires or leads 303 of the lamp. In this case, the fuse can be made separated from the adapter 306 and be replaced through the top of the adapter 306.
The adapter 306 may be an elongate body having a first end 307 and a second end 309 opposing the first end 307. In one implementation, the adapter 306 is a substantially cylindrical hollow body. The second end 309 of the adapter 306 may be sealed or closed with a plug 350. The plug 350 may be a flexible plug or a rigid plug that can be adjusted so that tolerances between the lamp and the PCB will be accommodated by either a controlled floating rigid plug with clearance holes or more fixed rigid plug with larger conductor holes for conductors to engage with the PCB. In some implementations, the plug 350 may include tubular-like extensions extending upwardly from the top surface of the plug 350 to provide additional insulation and guidance to the lamp leads (e.g., electrically conductive wires or leads 303). High temperature polyimides are one possibility for materials along with more conventional plastics. The plug 350 may also include features to hold the axial position of the two blocks 314, 316 (to be discussed below) to prevent relative sliding between the plug 350 and the blocks 314, 316.
The electrically conductive wires or leads 303 from the press seal 304 may extend through and out of the plug 350 in a direction along a longitudinal axis 312 of the adapter 306 to insert into respective electrically conductive receptacles (e.g., receptacles 299 shown in
The wall thickness of the cylindrical hollow body, i.e., the wall surrounding the lamp capsule 302, may be about 0.5 mm to about 30 mm. It should be noted that the wall thickness may vary for rectangular cross section press seals in circular cross section adapter, depending upon the application.
The adapter 306 has two cut-outs 308, 310 symmetrically disposed about a longitudinal axis 312 of the adapter at the first end. The cut-outs 308, 310 are formed in the wall of the cylindrical hollow body of the adapter 306, leaving a joint portion 335 on either side of the adapter 306 (only one joint portion 335 is shown in
The cut-outs 308, 310 are sized and adapted to receive a pair of blocks 314, 316. The blocks 314, 316 may be symmetrically disposed about the longitudinal axis 312 of the adapter 306. In one implementation as shown, the blocks 314, 316 are physically separated from the adapter 306. The blocks 314, 316 may have an exterior shape accommodating to the cylindrical shape of the adapter 306. In one implementation, the blocks 314, 316 are two approximately half-cylindrical sections, which when combined, are received or nested within the respective cut-out 308, 310. That is, the block 314 is received within the cut-out 308 while the block 316 is received within the cut-out 310 when assembled. Each block 314, 316 has a recess 318, 320 formed in the respective half-cylindrical section along the diameter of the block to provide sidewalls 314a, 314b, 316a, 316b for the blocks 314, 316. When two blocks 314, 316 are combined, the recesses 318, 320 and sidewalls 314a, 314b, 316a, 316b define a central opening 322 corresponding to the shape of the press seal 304. The blocks 314, 316 may have a height corresponding to, less than, or greater than the length of the press seal 304. In some implementations, the overall axial length of the blocks 314, 316 could be longer than the press seal 304.
The central opening 322 is adapted to allow passage of the press seal 304. Particularly, the opening 322 is sized such that the blocks 314, 316 are in an interference fit to the press seal 304 when the lamp is inserted into the adapter 306. In other words, when the adapter 306 does not have a lamp installed, the spacing (i.e., the central opening 322) between blocks 314, 316 is smaller than the smallest possible width (e.g., “W1” shown in
The upper portion of the blocks 314, 316 may have an angled surface 327 configured to comply with the profile of the lamp capsule 302 and/or press seal 304 when the press seal 304 is fully inserted into the opening 322. When blocks 314, 316 are combined, the sidewalls 314a, 314b of the block 314 and the sidewalls 316a, 316b of the block 316 are abutted against each other. The blocks 314, 316 (as well as the joint portion 335) may each have one or more grooves formed in the outer peripheral surface to receive an O-ring or a C-shaped ring. In one implementation shown in
It is contemplated that while the central opening 322 is shown as a rectangular opening, this geometry of the central opening 322 should not be limited and can be altered to fit the shape/design of the press seal. In addition, the split may be machined to more closely represent the lamp capsule 302. This can include retention features in the contact area such as matching indents and protrusions and the like. Alternatively, the grooves or the press seal may be machined into the split so as to easily decrease the thermal contact from the lamp to the adapter 306.
In one implementation, which can be combined with other implementations described in this disclosure, the adapter 306 may be made with a high thermal conductivity material such as a metal (e.g., copper, aluminum or stainless steel) or ceramic (e.g., aluminum nitride, silicon carbide, alumina, or silicon nitride) to facilitate heat transfer between the lamp capsule/press seal and the outside world. In one implementation, aluminum is utilized for the cylindrical hollow body to increase the thermal conductivity of the adapter 306. The blocks 314, 316 may be made of copper, aluminum, stainless steel or any other suitable materials.
In addition to the O-rings discussed above, it is contemplated that the blocks 314, 316 may be held against to each other by any suitable manner, for example a retention features such as a clip, a contact spring, a spring-loaded member, a notch, etc., that may be used to confine the movement of the blocks 314, 316. These retention features may be disposed at the joint surfaces (collectively shown as 325 in
In addition, while the blocks 314, 316 are shown to have four sidewalls, any two abutting sidewalls, for example 314a and 316a or 314b and 316b, may be integrated as one single sidewall to simplify the manufacturing process.
In some implementations, which can be combined with other implementations described in this disclosure, the upper inner surface of the adapter 306 and/or interior surface 309 of the blocks 314, 316 may be coated to aid in directing radiation to the target in a controlled manner or modify the radiant heating of the adapter. For example, the upper inner surface 317 of the adapter 306 and/or interior surface 319 of the blocks 314, 316 may be coated with a light reflecting material such as aluminum, protected aluminum, gold or gold-plated aluminum, or even a diffuse reflective material such as titania, alumina, silica, zirconia, or hafnia. The upper inner surface 317 of the adapter 306 described herein refers to the surface facing the bulb (i.e., above the press seal 304 and surrounds a portion of the lamp capsule 302) while the interior surface 319 refers to the surface that is in physical contact with the press seal 304. Having a light reflecting material applied to the upper inner surface 317 (surface areas above the press seal 304) of the adapter 306 can increase the amount of forward radiation power gained from the lamp.
In some implementations, which can be combined with other implementations described in this disclosure, the upper inner surface 317 and/or interior surface 319 of the blocks 314, 316 may include conformal films, or conformal layers of material to further decrease the thermal contact resistance between the press seal surfaces and the inner walls of the central opening 322.
In some implementations, which can be combined with other implementations described in this disclosure, the lower inner surface 321 of the adapter 306 below the press seal 304 may provide an insulative layer to reduce the likelihood of arcing or potential explosion in the lamp during lamp failure. The insulative layer may be in the form of a coating, an inner sleeve, molding, etc. Additionally or alternatively, arcing can be controlled by increasing the spacing “D1” between the press seal 304 of the adapter and the electrically conductive wires or leads 303 from the press seal 304, as shown in
Similarly, the upper portion of the blocks 414, 416 may have an angled surface 427 configured to comply with the profile of the lamp capsule 302 and/or press seal 304 (see
The opening 422 defined by the blocks 414, 416 allows passage of the press seal 304 (see
Implementations of the present disclosure provide an improved lamp adapter that is split into two symmetric sections along a longitudinal axis of the adapter, and the two symmetric sections are spring loaded such that the spacing between the two sections at the press seal area is sized such that the sections make intimate contact with both sides of the press seal of the lamp. Benefits of the present disclosure include a direct, intimate contact between the lamp adapter and the press seal area to keep the thermals of the lamp within range for sustained operation. The intimate contact serves as a cooling path to facilitate heat transfer from the press seal to the outside world. As a result, the lamp assembly 100 can be operated at a temperature low enough to permit longer lamp life. In addition, the split of the adapter is capable of accommodating relatively large sizes of fuses, thereby minimizing arcing and potential explosion in the lamp during lamp failure.
While the foregoing is directed to implementations of the present disclosure, other and further implementations of the disclosure may be devised without departing from the basic scope thereof. For example, the two symmetric sections 417, 419 shown in
This application claims priority to United States provisional patent application Ser. No. 62/240,696, filed Oct. 13, 2015, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4982132 | Meyer | Jan 1991 | A |
6488510 | Li | Dec 2002 | B2 |
20050218774 | Bhagwat | Oct 2005 | A1 |
20110298372 | He | Dec 2011 | A1 |
20150179425 | Ranish | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170105249 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62240696 | Oct 2015 | US |