The present invention relates in general to sources of electrons, and in particular, to an electron beam source.
Electron beams can be used to sterilize medical instruments, food and packaging. Irradiation by electrons is an accepted medical treatment for certain skin cancers. Environmental uses are cleaning flue gasses and decontamination of medical waste. Industrial applications are drying of inks and polymer crosslinking.
Referring to
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
In applications for electron beams such as those mentioned above, a large, uniform source is desirable. A uniform, large area beam would allow quicker processing of the items being irradiated. More important, the dose calibration would be made simpler.
To make a large, uniform source of electrons, a flat, large area cathode can be used such that many sources of electrons are available to many windows. This can be done in different ways. In all of the following embodiments, any cold cathode emitter could be utilized, such as a carbon cold cathode, a micro-tip array, a film of carbon nanotubes, amorphic diamond emitters, etc.
Referring to
Alternatively, referring to
Referring to
Referring to
The electron source can be a carbon cold cathode with grid structures for controlling the electron emission. It could also be a microtip array. Referring to
Chemical and biological warfare have been released on certain targets within the United States. These attacks have been through the use of sending letters or packages through regular or express mail delivery. There is a need to decontaminate these letters or packages before they are delivered or handled by many people. The present invention provides a way of accomplishing this in a very rapid, “non-destructive” means using a beam of electrons.
Some companies have developed electron lamps that accelerate electrons in a vacuum environment and aim them at a thin metal or semiconducting window. This window is thin enough that many of the electrons pass through while losing a small amount of energy. The environment outside the window could be air or vacuum. Many of these devices are used for exposing polymers to change their properties. Other companies use an electron beam to clean surfaces by placing the surfaces in a vacuum chamber and exposing them to a high energy electron beam inside the vacuum environment. All of these technologies use a hot filament electron source as the source of electrons. They also are used to treat surfaces and not bulk interior or surfaces inside an envelope of any sort.
The present invention can treat multiple surfaces simultaneously (e.g., the outside surface of an envelope plus the inside surfaces and surfaces of sheets of paper or other materials inside) using an electron beam generated from a carbon cold cathode. The carbon cold cathode may consist of carbon nanotubes (single wall and multiwall) and carbon thin films, including diamond-like carbon and mixtures of amorphous carbon, graphite, diamond and fullerene-type of carbon materials.
The letters can be treated by a beam of electrons when the letter is either inside or outside of a vacuum environment. Cold cathode sources work better than hot filaments since it is easier to have an extended (or distributed) source of electrons.
Referring to
Referring to
It is also possible to place an electron detector or arrays of detectors opposite the source 801 such that one can monitor how much the electron beam is penetrating the envelope 802.
It should be noted that in each of the electron sources shown herein, the e-beam is allowed to pass from the evacuated envelope wherein the cathode is held, out through a window in the envelope so that the electron beams are now passing through the air.
The present application is a continuation of application Ser. No. 10/262,997, filed Oct. 2, 2002, now U.S. Pat. No. 6,750,461, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/326,868, filed Oct. 3, 2001, and 60/330,358, filed Oct. 18, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3665241 | Spindt et al. | May 1972 | A |
3755704 | Spindt et al. | Aug 1973 | A |
5003178 | Livesay | Mar 1991 | A |
5414267 | Wakalopulos | May 1995 | A |
5489783 | Kristiansson | Feb 1996 | A |
5557163 | Wakalopulos | Sep 1996 | A |
5605483 | Takeda et al. | Feb 1997 | A |
5621270 | Allen | Apr 1997 | A |
5635791 | Vickers | Jun 1997 | A |
5759078 | Levine et al. | Jun 1998 | A |
5909032 | Wakalopulos | Jun 1999 | A |
5973444 | Xu et al. | Oct 1999 | A |
6097138 | Nakamoto | Aug 2000 | A |
6163107 | Itoh et al. | Dec 2000 | A |
6426507 | Rangwalla et al. | Jul 2002 | B1 |
6504292 | Choi et al. | Jan 2003 | B1 |
6509686 | Moradi et al. | Jan 2003 | B1 |
6664727 | Nakamoto | Dec 2003 | B1 |
6702984 | Avnery | Mar 2004 | B1 |
20030001490 | Yamamoto et al. | Jan 2003 | A1 |
20040036398 | Jin | Feb 2004 | A1 |
20040195950 | Ryu et al. | Oct 2004 | A1 |
20040227447 | Yaniv et al. | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040183032 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60326868 | Oct 2001 | US | |
60330358 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10262997 | Oct 2002 | US |
Child | 10765533 | US |