Laser ablation for package fabrication

Information

  • Patent Grant
  • 11400545
  • Patent Number
    11,400,545
  • Date Filed
    Monday, May 11, 2020
    4 years ago
  • Date Issued
    Tuesday, August 2, 2022
    2 years ago
Abstract
A method of fabricating a frame to enclose one or more semiconductor dies includes forming one or more features including one or more cavities and one or more through-vias in a substrate by a first laser ablation process, filling the one or more through-vias with a dielectric material, and forming a via-in-via in the dielectric material filled in each of the one or more through-vias by a second laser ablation process. The one or more cavities is configured to enclose one or more semiconductor dies therein. In the first laser ablation process, frequency, pulse width, and pulse energy of a first pulsed laser beam to irradiate the substrate are tuned based on a depth of the one or more features. In the second laser ablation process, frequency, pulse width, and pulse energy of a second pulsed laser beam to irradiate the dielectric material are tuned based on a depth of the via-in-via.
Description
FIELD

Embodiments of the present disclosure generally relate to a method of fabricating semiconductor packages, and more specifically, to a method of forming features on a substrate by laser ablation.


BACKGROUND

Due to a continual goal of semiconductor manufacturers to increase yield and enhance performance of electronic devices and components, efforts to increase the density of semiconductor devices fabricated on a given size of a semiconductor substrate have been intensified. One method for increasing the density of semiconductor devices in a semiconductor assembly is to stack semiconductor dies to create a three-dimensional multichip module (3-D MCM). The formation of a 3-D MCM typically requires creating vias (i.e., through holes) in at least one semiconductor die that extend from its active surface to the opposing back surface thereof. The vias are filled with an electrically conductive material that provides interconnection of the back surface of the semiconductor die to external electrical contacts of another semiconductor die or a carrier substrate of the 3-D MCM.


Conventionally, etching and laser ablation or drilling are two methods frequently used for forming vias in semiconductor substrates. While forming vias using laser drilling has the advantage of being significantly faster and more locationally and dimensionally accurate than forming vias by etching, precise control of depth and topography of drilled areas have not yet been achieved by laser drilling. Furthermore, the laser energy is often used inefficiently, thus, leading to low ablation rates.


Accordingly, there is a need for a laser drilling method of rapidly forming vias in semiconductor substrates with controlled depth and topography.


SUMMARY

In one embodiment, a method of fabricating a frame to enclose one or more semiconductor dies includes forming one or more features including one or more cavities and one or more through-vias in a substrate by a first laser ablation process, filling the one or more through-vias with a dielectric material, and forming a via-in-via in the dielectric material filled in each of the one or more through-vias by a second laser ablation process. The one or more cavities is configured to enclose one or more semiconductor dies therein. The one or more through-vias extending through the substrate. In the first laser ablation process, frequency, pulse width, and pulse energy of a first pulsed laser beam to irradiate the substrate are tuned based on a depth of the one or more features. In the second laser ablation process, frequency, pulse width, and pulse energy of a second pulsed laser beam to irradiate the dielectric material are tuned based on a depth of the via-in-via.


In another embodiment, a method of patterning a substrate includes forming one or more features in a substrate by irradiating the substrate with a pulsed laser beam, and tuning frequency, pulse width, and pulse energy of the pulsed laser beam based on a depth of the one or more features.


In another embodiment, a method of fabricating a die assembly includes forming a frame, disposing one or more semiconductor dies within the one or more cavities, and disposing an interconnection within the via-in-via. The forming a frame includes forming one or more features, including one or more cavities and one or more through-vias in a substrate by a first laser ablation process, filling the one or more through-vias with a dielectric material; and forming a via-in-via in the dielectric material filled in each of the one or more through-vias by a second laser ablation process. The one or more through-vias extends through the substrate. In the first laser ablation process, frequency, pulse width, and pulse energy of a first pulsed laser beam to irradiate the substrate are tuned based on a depth of the one or more features. In the second laser ablation process, frequency, pulse width, and pulse energy of a second pulsed laser beam to irradiate the dielectric material are tuned based on a depth of the via-in-via.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and may admit to other equally effective embodiments.



FIG. 1A illustrates a three-dimensional multichip module (3-D MCM) according to one embodiment.



FIG. 1B illustrates a three-dimensional multichip module (3-D MCM) according to one embodiment.



FIG. 2A illustrates a die assembly 200 according to one embodiment.



FIG. 2B illustrates a die assembly 200 according to one embodiment.



FIG. 3 illustrates a flow diagram of a method for fabricating a frame to enclose one or more semiconductor dies according to one embodiment.



FIGS. 4A, 4B, 4C, 4D, 4E, 4F, and 4G schematically illustrate cross-sectional views of a substrate at different stages of frame formation processes according to one embodiment.



FIG. 5 illustrates a schematic top view of a structured substrate according to one embodiment.



FIG. 6 illustrates temporal profiles instantaneous laser power of a pulsed laser beam according to one embodiment.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.


DETAILED DESCRIPTION

The present disclosure relates to methods for forming a semiconductor package. In one embodiment, a substrate is patterned, by laser ablation to enable formation of interconnections therethrough. The substrate is thereafter utilized as a package frame for forming one or more semiconductor packages with semiconductor dies disposed therein. The methods disclosed herein include tuning of pulsed laser beams used for forming features in a substrate. Specifically, frequency, pulse width, and pulse energy of pulsed laser beams are tuned based on sizes of the features and the material in which the features are formed. The appropriate tuning of pulsed laser beams used for laser beams allows rapid formation of features in semiconductor substrates with controlled depth and topography.


As used herein, the term “about” refers to a +/−10% variation from the nominal value. It is to be understood that such a variation can be included in any value provided herein.



FIG. 1A illustrates one exemplary embodiment of a three-dimensional multichip module (3-D MCM) 100 that is formed of four semiconductor packages 102. Each semiconductor package 102 includes a semiconductor die 104 (i.e., memory chip) embedded within a substrate 106 and encapsulated by an insulating layer 108 (e.g., having a portion of each side in contact with the insulating layer 108). In some embodiments, the insulating layer 108 is formed by curing a ceramic-filler-containing epoxy resin, such as an epoxy resin containing silica (SiO2) particles. Other examples of ceramic fillers that may be utilized to form the insulating layer 108 include aluminum nitride (AlN), aluminum oxide (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), Sr2Ce2Ti5O16, zirconium silicate (ZrSiO4), wollastonite (CaSiO3), beryllium oxide (BeO), cerium dioxide (CeO2), boron nitride (BN), calcium copper titanium oxide (CaCu3Ti4O12), magnesium oxide (MgO), titanium dioxide (TiO2), zinc oxide (ZnO) and the like. In some examples, the ceramic fillers utilized to form the insulating layer 108 have particles ranging in size between about 40 nm and about 1.5 μm, such as between about 80 nm and about 1 μm, and between about 300 nm and about 600 nm. In some embodiments, the ceramic fillers utilized to form the insulating layer 108 include particles having a size less than about 25% of the desired feature (e.g., via, cavity, or through-assembly via) width or diameter, such as less than about 15% of the desired feature width or diameter. One or more interconnections 110 are formed though the entire thickness of each semiconductor package 102. One or more interconnections 112 are formed through the insulating layer 108. In some embodiments, one or more redistribution connections 114 are formed in the semiconductor package 102 to relocate contact points of the interconnections to desired lateral locations on the surface of the semiconductor package 102.


The interconnections 110 are in contact with one or more solder bumps 116 disposed between major surfaces 118 and 120 of adjacent the semiconductor packages directly, or via the redistribution connections 114 or an optional adhesion layer 122 and/or seed layer 124 formed on the insulating layer 108. The redistribution connections 114 are formed by any suitable methods including electroplating and electroless deposition. In some embodiments, the adhesion layer 122 is formed from titanium, titanium nitride, tantalum, tantalum nitride, manganese, manganese oxide, molybdenum, cobalt oxide, cobalt nitride, or any other suitable materials or combinations thereof. In some embodiments, the adhesion layer 122 has a thickness of between about 10 nm and about 300 nm, such as between about 50 nm and about 150 nm. For example, the adhesion layer 122 has a thickness between about 75 nm and about 125 nm, such as about 100 nm. The adhesion layer 122 may be formed by any suitable deposition process, including but not limited to CVD, PVD, PECVD, ALD, or the like. The seed layer 124 is formed of a conductive material such as copper, tungsten, aluminum, silver, gold, or any other suitable materials or combinations thereof. In some embodiments, the seed layer 124 has a thickness between about 50 nm and about 500 nm, such as between about 100 nm and about 300 nm. For example, the seed layer 124 has a thickness between about 150 nm and about 250 nm, such as about 200 nm. In some embodiments, the seed layer 124 has a thickness of between about 0.1 μm and about 1.5 μm. Similar to the adhesion layer 122, the seed layer 124 is formed by any suitable deposition process, such as CVD, PVD, PECVD, ALD dry processes, wet electroless plating processes, or the like. In some embodiments, a molybdenum adhesion layer 122 is formed on the semiconductor die 104 in combination with a copper seed layer 124.


As depicted in the 3-D MCM 100, four or more solder bumps 116 are disposed between major surfaces 118 and 120 of adjacent semiconductor packages 102 to bridge (e.g., connect, couple) the interconnections 110 of each semiconductor package 102 with the interconnections 110 of an adjacent semiconductor package 102.


In some embodiments, voids between adjacent semiconductor packages 102 connected by the solder bumps 116 are filled with an encapsulation material 126 to enhance the reliability of the solder bumps 116. The encapsulation material 126 may be any suitable type of encapsulant or underfill. In one example, the encapsulation material 126 includes a pre-assembly underfill material, such as a no-flow underfill (NUF) material, a nonconductive paste (NCP) material, and a nonconductive film (NCF) material. In one example, the encapsulation material 126 includes a post-assembly underfill material, such as a capillary underfill (CUF) material and a molded underfill (MUF) material. In one embodiment, the encapsulation material 126 includes a low-expansion-filler-containing resin, such as an epoxy resin filled with (e.g., containing) SiO2, AlN, Al2O3, SiC, Si3N4, Sr2Ce2Ti5O16, ZrSiO4, CaSiO3, BeO, CeO2, BN, CaCu3Ti4O12, MgO, TiO2, ZnO and the like.


In one embodiment, the solder bumps 116 are formed of one or more intermetallic compounds, such as a combination of tin (Sn) and lead (Pb), silver (Ag), Cu, or any other suitable metals thereof. For example, the solder bumps 116 are formed of a solder alloy such as Sn—Pb, Sn—Ag, Sn—Cu, or any other suitable materials or combinations thereof. In one embodiment, the solder bumps 116 include C4 (controlled collapse chip connection) bumps. In one embodiment, the solder bumps 116 include C2 (chip connection, such as a Cu-pillar with a solder cap) bumps. Utilization of C2 solder bumps enables a smaller pitch between contact pads and improved thermal and/or electrical properties for the 3-D MCM 100. In some embodiments, the solder bumps 116 have a diameter between about 10 μm and about 150 μm, such as a diameter between about 50 μm and about 100 μm. The solder bumps 116 may further be formed by any suitable wafer bumping processes, including but not limited to electrochemical deposition (ECD) and electroplating.



FIG. 1B illustrates another exemplary embodiment of a three-dimensional multichip module (3-D MCM) 100 that is formed by stacking four semiconductor packages 102 and directly bonding one or more interconnections 110 of each semiconductor package 102 with the interconnections 110 of one or more adjacent semiconductor packages 102. As depicted, the semiconductor packages 102 may be bonded by hybrid bonding, in which major surfaces 118 and 120 of adjacent packages are planarized and in full contact with each other. Thus, one or more interconnections 110 of each semiconductor package 102 are formed through the entire thickness of each semiconductor package 102 and are in contact with one or more interconnections 112 of at least another adjacent semiconductor package 102.



FIGS. 2A and 2B illustrate a die assembly 200 according to one embodiment. One or more semiconductor packages 102 described in relation to FIGS. 1A and 1B are formed by singulating (i.e., cutting or dicing) the die assembly 200 described herein in relation to FIGS. 2A and 2B, respectively.


The die assembly 200 includes one or more interconnections 110 formed through one or more through-assembly vias 202 that are drilled through the die assembly 200, forming channels through the entire thickness of the die assembly 200. In some embodiments, the through-assembly vias 202 have a diameter of between about 20 μm and about 70 μm, such as about 30 μm. The through-assembly vias 202 may be circumferentially laminated by a dielectric layer 210. The dielectric layer 210 may be an organic dielectric, such as Ajinomoto Build-up Film (ABF) and Mitsubishi BT Film and have a thickness of between about 20 μm and about 70 μm, such as such as about 30 μm. By having the dielectric layer 210 circumferentially surrounding the through-assembly vias 202, capacitive coupling between the conductive silicon-based substrate 106 and interconnections 110. Thus, capacitive coupling between adjacently positioned through-assembly via 202 and/or contact holes 204 in the through-assembly via 202 in FIG. 2A, and via 202, contact holes 204, and/or redistribution connections 114 in the die assembly 200 in FIG. 2B is formed.


The die assembly 200 further includes one or more interconnections 112 formed through one or more contact holes 204 drilled through the insulating layer 108 to expose one or more contacts 206 formed on the active surface 208 of each semiconductor die 104. The contact holes 204 are drilled through the insulating layer 108 by laser ablation, leaving all external surfaces of the semiconductor dies 104 covered and surrounded by the insulating layer 108 and the contacts 206 exposed. By having the ceramic-filler-containing epoxy resin material of the insulating layer 108 line the walls of the contact holes 204, capacitive coupling between the conductive silicon-based substrate 106 and interconnections 112, and thus capacitive coupling between adjacently positioned contact holes 204 and/or redistribution connections 114 is formed.



FIG. 3 illustrates a flow diagram of a method 300 for fabricating a frame to enclose one or more semiconductor dies during the formation of a semiconductor package. FIGS. 4A-4G schematically illustrate cross-sectional views of a substrate 106 at different stages of the frame fabrication process 300 represented in FIG. 3. Therefore, FIG. 3 and FIGS. 4A-4G are herein described together for clarity.


The method 300 begins with a first damage removal process at operation 310, corresponding to FIG. 4A. The substrate 106 is formed of any suitable frame material including but not limited to a III-V compound semiconductor material, silicon, crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, silicon germanium, doped or undoped silicon, doped or undoped polysilicon, silicon nitride, quartz, borosilicate glass, glass, sapphire, alumina, and ceramic. In some embodiments, the substrate 106 is a monocrystalline p-type or n-type silicon substrate. In some embodiments, the substrate 106 is a polycrystalline p-type or n-type silicon substrate. In another embodiment, the substrate 106 is a p-type or n-type silicon solar substrate. The substrate 106 may further have a polygonal or circular shape. For example, the substrate 106 may include a substantially square silicon substrate having lateral dimensions between about 25 mm and about 300 mm, for example, about 156 mm, with or without chamfered edges. In another example, the substrate 106 may include a circular silicon-containing wafer having a diameter between about 20 mm and about 700 mm, such as between about 100 mm and about 500 mm, for example, about 200 mm and about 300 mm. Unless otherwise noted, embodiments and examples described herein are conducted on substrates having a thickness between about 10 μm and about 1 mm.


Prior to the first damage removal process at operation 310, the substrate 106 may be sliced and separated from a bulk material by wire sawing, scribing and breaking, mechanical abrasive sawing, or laser cutting. Slicing typically causes mechanical defects or deformities in substrate surfaces formed therefrom, such as scratches, micro-cracking, chipping, and other mechanical defects. Thus, the substrate 106 is exposed to the first damage removal process at operation 310 to smoothen and planarize surfaces thereof and remove any mechanical defects in preparation for later structuring and packaging operations. In some embodiments, the substrate 106 may further be thinned by adjusting the process parameters of the first damage removal process at operation 310. For example, a thickness of the substrate 106 may be decreased with increased exposure to the first damage removal process at operation 310.


The first damage removal process at operation 310 includes exposing the substrate 106 to a substrate polishing process and/or an etch process followed by rinsing and drying processes. In some embodiments, operation 310 includes a chemical mechanical polishing (CMP) process. In some embodiments, the etch process is a wet etch process including a buffered etch process that is selective for the removal of undesired materials (e.g., contaminants and other undesirable compounds). In some other embodiments, the etch process is a wet etch process utilizing an isotropic aqueous etch process. Any suitable wet etchant or combination of wet etchants may be used for the wet etch process. In some embodiments, the substrate 106 is immersed in an aqueous HF etching solution for etching. In some other embodiments, the substrate 106 is immersed in an aqueous KOH etching solution for etching.


In some embodiments, the etching solution is heated to a temperature between about 30° C. and about 100° C. during the etch process, such as between about 40° C. and about 90° C. For example, the etching solution is heated to a temperature of about 70° C. In some other embodiments, the first removal process at operation 310 is a dry etch process. An example of a dry etch process includes a plasma-based dry etch process. The thickness of the substrate 106 is modulated by controlling the time of exposure of the substrate 106 to the etchants (e.g., the etching solution) used during the etch process. For example, a final thickness of the substrate 106 is reduced with increased exposure to the etchants. Alternatively, the substrate 106 may have a greater final thickness with decreased exposure to the etchants.


As depicted in FIG. 4A, the substrate 106 is placed on a stage 402 of a laser ablation system (not shown). The stage 402 may be any suitable rigid and planar or textured (e.g., structured) surface for providing mechanical support for the substrate 106 during laser ablation. In some embodiments, the stage 402 includes an electrostatic chuck for electrostatic chucking of the substrate 106 to the stage 402. In some embodiments, the stage 402 includes a vacuum chuck for vacuum chucking of the substrate 106 to the stage 402.


The method 300 continues to a first laser ablation process at operation 320, corresponding to FIGS. 4B and 4C. In the now planarized and substantially defect-free substrate 106 on the stage 402, one or more features 404 are formed in the substrate 106 by laser ablation, as depicted in FIG. 4B. The one or more features 404 includes through-vias 410 extending the entire thickness of the substrate 106, cavities 412, and contact holes 414. In the example shown in FIG. 4C, one cavity 412 and four through-vias 410 are depicted. The through-vias 410 are utilized to form through-assembly vias 202 to receive interconnections 110. The cavities 412 are utilized to receive and enclose one or more semiconductor dies 104 therein.


The through-vias 410 have a depth equal to the thickness of the substrate 106, thus forming holes on opposing surfaces of the substrate 106. For example, the through-vias 410 formed in the substrate 106 may have a depth of between about 10 μm and about 1 mm, depending on the thickness of the substrate 106. The cavities 412 and the contact holes 414 may have a depth less than the thickness of the substrate 106, thus forming holes in only one surface of the substrate 106. The cavities 412 may have a depth of between about 30 μm and 70 μm. The contact holes 414 may have a depth of between about 10 μm and 20 μm.



FIG. 5 illustrates a schematic top view of an exemplary structured substrate 106. The substrate 106 may be structured during the first laser ablation process at operation 310—as described above with reference to FIGS. 4B and 4C. The substrate 106 is illustrated as having two quadrilateral cavities 412, and each cavity 412 is surrounded by a plurality of through-vias 410. Contact holes 414 are not shown. In some embodiments, each cavity 412 is surrounded by two rows 502, 504 of through-vias 410 arranged along each edge 506a-d of the quadrilateral cavity 412. Although ten through-vias 410 are depicted in each row 502, 504, it is contemplated that any desired number of through-vias 410 may be formed in a row. Further, any desired number and arrangement of cavities 412 and through-vias 410 may be formed in the substrate 106 during the first laser ablation process at operation 320. For example, the substrate 106 may have more or less than two cavities 412 formed therein. In another example, the substrate 106 may have more or less than two rows of through-vias 410 formed along each edge 506a-d of the cavities 412. In another example, the substrate 106 may have two or more rows of through-vias 410 where the through-vias 410 in each row are staggered and unaligned with through-vias 410 of another row.


In some embodiments, each cavity 412 has lateral dimensions ranging between about 1 mm and about 50 mm, such as about 8.6 mm, depending on the size of one or more semiconductor dies 104 to be enclosed and embedded therein during fabrication of semiconductor packages 102. In some embodiments, the cavities 412 are sized to have lateral dimensions substantially similar to that of the semiconductor dies 104 to be embedded therein. For example, each cavity 412 is formed having lateral dimensions exceeding those of the semiconductor dies 104 by less than about 150 μm, such as less than about 120 μm, such as less than 100 μm. Having a reduced variance in the size of the cavities 412 and the semiconductor dies 104 to be embedded therein reduces the amount of gap-fill material utilized thereafter.


In some embodiments, each through-via 410 has a diameter ranging between about 50 μm and about 200 μm, such as about 90 μm. A minimum pitch 507 between the row 502 and the row 504 is between about 30 μm and about 170 μm, such as about 40 μm. Although embodiments are described with reference to FIG. 5, the substrate structuring processes described above with reference to operation 320 and FIGS. 4B and 4C may be utilized to form patterned features in the substrate 106 having any desired depth, lateral dimensions, and morphologies.


Referring back to the first laser ablation process at operation 320 and FIGS. 4B and 4C, the laser ablation system includes a laser source 406. In some embodiments, the laser source 406 is an infrared (IR) laser. The laser source 406 generates a continuous or pulsed laser beam 408 to irradiate the substrate 106 for forming one or more features 404. For example, the laser source 406 may generate a pulsed laser beam 408 having a frequency between 5 kHz and 200 kHz. In one example, the laser source 406 is configured to deliver a pulsed laser beam at a pulse duration between about 15 ns and 5 μs, with a pulse energy of between about 0.5 milli-joules (mJ) and about 10 mJ.


In the embodiments described herein, frequency, pulse width, and pulse energy of a pulsed laser beam 408 generated by the laser source 406 are tuned depending on a depth of the one or more features 404 that are drilled into the substrate 106.


For example, for drilling through-vias 410 having a diameter of about 90 μm through a thin silicon-based substrate 106, having a thickness of between about 100 μm and about 200 μm, the laser source 406 may be tuned to have the frequency of between about 5 kHz and about 100 kHz, the pulse energy of between about 0.5 mJ and between about 4.5 mJ, for example, between about 0.8 mJ and about 1.2 mJ at frequency of about 100 kHz, and between about 3.5 mJ and about 4.5 mJ at frequency of about 5 kHz, and the pulse width of between about 100 ns and about 1200 ns. For example, at frequency of about 5 kHz and a pulse width of about 600, material volume of between about 70,000 μm3 and about 110,000 μm3 is removed per laser pulse. At frequency of about 100 kHz and a pulse width of about 600 ns, material volume of between about 18,000 μm3 and about 26,000 μm3 is removed per laser pulse. The amount of energy supplied to the material per unit volume is between about 35 J/mm3 and 60 J/mm3.


For drilling through-vias 410 having a diameter of about 90 μm through a thick silicon substrate 106 having a thickness of between about 500 μm and about 1 mm, the laser source 406 may be tuned to have the frequency of between about 5 kHz and about 30 kHz, the pulse energy of between about 2 mJ and about 10 mJ, for example, between about 2 mJ and about 3.5 mJ at frequency of about 30 kHz, and between about 7 mJ and about 10 mJ at frequency of about 5 kHz, and the pulse width of between about 1 μs and about 5 μs. For drilling cavities 412 having lateral dimensions of about 8.6 mm and depth of between about 50 μm and 200 μm, the laser source 406 may be tuned to have the frequency of between about 5 kHz and about 40 kHz, the pulse energy of between about 0.5 mJ and about 4.5 mJ, and the pulse width of between about 15 ns and about 600 ns. For example, at frequency of about 5 kHz and a pulse width of about 600 ns, material volume of about 30,000 μm3 and 50,000 μm3 is removed per pulse. At frequency of about 5 kHz and a pulse width of about 2 is, material volume of about 220,000 μm3 and 400,000 μm3 is removed per pulse. At frequency of about 30 kHz and a pulse width of about 2 μs, material volume of about 95,000 μm3 and about 110,000 μm3 is removed per laser pulse. The amount of energy supplied to the material per unit removed is about 60 J/mm3 and 75 J/mm3.


While not intending to be bound by theory, it is believed that during laser ablation processes, material being drilled melts and a fraction of the molten material in a liquid state vaporizes to develop hot plasma. This plasma plume tends to be opaque to laser beams and thus for laser drilling, and thus the rate that laser beams can be delivered to the material being drilled is limited by this “plasma screening” effect. However, this plasma screening effect can be reduced if a laser pulse energy required for laser drilling is distributed over a longer pulse duration and a significant amount of the pulse energy is used to melt the material being drilled without vaporizing the molten material. Thus, the rate of laser drilling is enhanced with laser pulses with a longer pulse width as compared with laser pulses with a shorter pulse width.


In some embodiments, pulsed laser beams 408 delivered from the laser source 407 are programmed to generate a rectangular temporal profile 602 of instantaneous laser power, as shown in FIG. 6, by methods known in the art. The rectangular temporal profile 602 of instantaneous laser power ensures a moderate heating rate to avoid overheating (i.e., vaporizing molten material) and enhances the efficiency of laser drilling. In some embodiments, pulsed laser beams 408 delivered from the laser source 406 are programmed to generate a chair-shaped temporal profile 604 of instantaneous laser power, as shown in FIG. 6, by methods known in the art, which may further enhance the efficiency of laser drilling. It has been shown by the inventors of the present application that vias drilled by pulsed laser beams 408 having a rectangular temporal profile 602 have straighter and smoother inner walls as compared to vias drilled by laser pulses having a classical Q-switch temporal profile 608, as shown in FIG. 6.


As noted above, excess laser energy beyond the requirement for melting the material results in partial vaporization. Thus, weighting the pulse energy content toward the back end of the laser pulse may have a beneficial effect. In the early part of the pulse, slow energy delivery due to a moderate heating rate melts a larger volume of the material being drilled. This compares and contrasts with laser drilling with laser pulse having a classical Q-switch temporal profile 608, in which the temporal profile peaks relatively early in the pulse, delivering high energy at a time (early in the pulse) when lower energy is required. Thus, a larger fraction of the laser pulse energy is consumed in excess vaporization and possible ionization of the ablation plume. Laser pulses with the temporal profile 602 or the chair-shaped temporal profile 604 allow efficient laser drilling without consuming the laser energy early in the pulses in vaporizing molten materials that are being drilled.


When drilling a large array of features 404, there are two commonly used methods, percussion drilling and on-the-fly drilling. Percussion drilling is a process where multiple laser pulses are applied to the substrate 106 per feature 404 until the feature 404 is formed. On-the-fly drilling is a process where one laser pulse is applied to the substrate 106 per feature 404 in a sub-set of features 404 and repeated until the features 404 in the sub-set are formed, while the substrate 106 moves at high speed with respect to the laser beam and the laser continuously applies pulses to form the features 404. In some embodiments, in an on-the-fly drilling process, a pulsed laser beam 408 is positioned synchronically with a scan motion of a galvo-scanner for high speed beam positioning, for example, at a speed of about 10 m/s, and repeatedly over the sub-set of features 404. The “plasma screening” effect is reduced compared with one-the-fly drilling in which each feature 404 (e.g., hole) is completely drilled with successive laser pulses at a very high repetition rate, and the pulsed laser beam 408 is then moved on to the location of the next feature 404 (e.g., hole). This is due to reduction in effective drilling repetition rate on any one feature 404 with the on-the-fly drilling, thus avoiding “plasma screening” effect. The effective drilling repetition rate on any one feature 404 is approximately the laser repetition rate divided by the total number of feature 404 being drilled. In some embodiments, the sub-set of features 404 includes between about 1000 and about 2,500,000 features 404 that are drilled by synchronous drilling.


The inventors of the present disclosure have found that straightness and smoothness of inner walls of a hole, such as a via, are largely related to an ablation depth per laser pulse. The ablation depth increases with optical penetration depth, thermal penetration depth, and laser fluence (i.e., energy per unit area). With a near infrared laser having a wavelength of about 1.0 μm used in the example embodiments described herein, a long pulse width ensures the optical penetration depth (that is proportional to a square root of a pulse width) to be sufficiently large. Therefore, the laser pulse energy is more uniformly distributed over a long distance through a substrate, so as to simultaneously heat up and melt a thick substrate material, leading to more efficient ablation. Ablated material has a large momentum (i.e., mass multiplied by speed) and a more directional motion that favors ejecting out of the hole without being re-deposited on the inner walls. This leads to straighter and smoother inner walls of a hole being drilled. This is in contrast with an intensive ablation by a laser with a shorter wavelength (such as a 355 nm UV laser) and a shorter pulse width, in which only a surface of a substrate is ablated. In ablation with a laser with such short pulse width, a much smaller amount of material is ablated, but ablated explosively as a mixture of overheated melt, vapor, and plasma, having a much less directional ejection out of a hole being drilled and inducing re-deposition on inner walls of the hole.


The method 300 continues to a second damage removal process at operation 330, corresponding to FIG. 4D. The first laser ablation process at operation 320 described above for forming one or more features 404 in the substrate 106 may cause unwanted mechanical defects on the surfaces of the substrate 106, such as chipping and cracking. Therefore, after performing the first laser ablation process at operation 320 to form desired features 404 in the substrate 106, the substrate 106 is exposed to the second damage removal and cleaning process at operation 330 to smoothen the surfaces of the substrate 106 and remove unwanted debris.


The second damage removal process at operation 330 is substantially similar to the first damage removal process at operation 310 and includes exposing the substrate 106 to an etch process, followed by rinsing and drying. FIGS. 4C and 4D illustrate the structured substrate 106 before and after performing the second damage removal and cleaning process, resulting in a smoothened substrate 106 having a cavity 412 and four through-vias 410 formed therein.


The method 300 continues to an oxidation process at operation 340, corresponding to FIG. 4E. After removal of mechanical defects in the substrate 106 in the second damage removal process at operation 330, an insulating oxide film (i.e., layer) 416 is deposited on the substrate 106. For example, the oxide film 416 may be formed on all surfaces of the substrate 106 such that it surrounds the substrate 106. The insulating oxide film 416 acts as a passivating layer on the substrate 106 and provides a protective outer barrier against corrosion and other forms of damage. In some embodiments, the oxidation process is a thermal oxidation process. The thermal oxidation process is performed at a temperature of between about 800° C. and about 1200° C., such as between about 850° C. and about 1150° C. For example, the thermal oxidation process is performed at a temperature of between about 900° C. and about 1100° C., such as a temperature of between about 950° C. and about 1050° C. In some embodiments, the thermal oxidation process is a wet oxidation process utilizing water vapor as an oxidant. In some embodiments, the thermal oxidation process is a dry process utilizing molecular oxygen as the oxidant. It is contemplated that the substrate 106 may be exposed to any suitable oxidation process at operation 340 to form the oxide film 416 thereon. The oxide film 416 generally has a thickness between about 100 nm and about 3 μm, such as about 0.7 μm.


The method 300 continues to a filling process at operation 350, corresponding to FIG. 4F. A dielectric layer 210 is deposited on surfaces of the oxide film 416 and fills the through-vias 410. The dielectric material for the dielectric layer 210 may be an organic dielectric, such as Ajionomoto ABF Series Bonding Sheets and Mitsubishi BT Film.


The method 300 continues to a second laser ablation process at operation 360, corresponding to FIG. 4G. A through-assembly via (referred to also as a “via-in-via”) 202 is formed in the dielectric layer 210 by laser ablation. The through-assembly vias 202 receive interconnections 110 therewithin. The second laser drilling process at operation 360 is similar to the first laser drilling process at operation 320, but performed with an ultraviolet (UV) laser light with a much lower pulse energy than the first laser ablation process at operation 320. In the embodiments described herein, frequency, pulse width, and pulse energy of a pulsed laser beam 408 generated by the laser source 406 to irradiate the dielectric layer 210 are tuned depending on a depth of through-assembly vias 202 that are drilled into the dielectric layer 210. For example, for drilling through-assembly vias 202 having a diameter of about 30 μm through a dielectric layer 210, having a thickness of between about 100 μm and about 200 μm, the laser source 406 may be tuned to have the frequency of between about 10 kHz and about 1000 kHz, the pulse energy of between about 25 μJ and between about 250 μJ, and the pulse width of between 3 ns and 60 ns. For drilling through-assembly vias 202 having a diameter of about 30 μm through dielectric layer 210 having a thickness of between about 500 μm and about 1 mm, the laser source 406 may be tuned to have the frequency of between about 5 kHz and about 100 kHz, the pulse energy of between about 0.100 mJ and about 0.400 mJ, and the pulse width of between about 3 ns and about 60 ns. For example, at frequency of about 100 kHz, material volume of about 1,000 μm3 and 3,000 μm3 is removed per laser pulse. The amount of energy supplied to the dielectric layer 210 per unit volume is between about 0.5 J/mm3 and 3.0 J/mm3. At frequency of about 10 kHz, material volume of between about 4,000 μm3 and 5,500 μm3 is removed per laser pulse. The amount of energy supplied to the dielectric layer 210 per unit volume is between about 0.1 J/mm3 and 0.3 J/mm3.


The methods disclosed herein include methods for forming a semiconductor package. In one embodiment, a substrate is patterned, by laser ablation to enable formation of interconnections therethrough. The substrate is thereafter utilized as a package frame for forming one or more semiconductor packages with semiconductor dies disposed therein. The methods disclosed herein include tuning of pulsed laser beams used for forming features in a substrate. Specifically, frequency, pulse width, and pulse energy of pulsed laser beams are tuned based on sizes of the features and the material in which the features are formed. The appropriate tuning of pulsed laser beams used for laser beams allows rapid formation of features in semiconductor substrates with controlled depth and topography.


While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of fabricating a frame to enclose one or more semiconductor dies, comprising: forming one or more features in a substrate by a first laser ablation process, the one or more features comprising: one or more cavities configured to enclose one or more semiconductor dies therein; andone or more through-vias extending through the substrate;filling the one or more through-vias with a dielectric material; andforming a via-in-via in the dielectric material filled in each of the one or more through-vias by a second laser ablation process, wherein: in the first laser ablation process, frequency, pulse width, and pulse energy of a first pulsed laser beam to irradiate the substrate are tuned based on a depth of the one or more features, andin the second laser ablation process, frequency, pulse width, and pulse energy of a second pulsed laser beam to irradiate the dielectric material are tuned based on a depth of the via-in-via.
  • 2. The method of claim 1, wherein the substrate comprises silicon.
  • 3. The method of claim 2, wherein: the one or more cavities have a lateral dimension of between 3 mm and 50 mm and a depth of between 50 μm and 200 μm, andthe first pulsed laser beam is tuned to have the frequency of 5 kHz and 40 kHz, the pulse energy of between 0.5 mJ and 4.5 mJ, and the pulse width of between 15 ns and 600 ns.
  • 4. The method of claim 2, wherein: the one or more through-vias have a diameter between 50 μm and 200 μm, andthe via-in-via in each of the one or more through-vias has a diameter of between 20 μm and 70 μm.
  • 5. The method of claim 4, wherein: the substrate has a thickness of between 100 μm and 200 μm, andthe first pulsed laser beam is tuned to have the frequency of between 5 kHz and 100 kHz, the pulse energy of between 0.5 mJ and between 4.5 mJ, and the pulse width of between 100 ns and 1200 ns.
  • 6. The method of claim 5, wherein: the second pulsed laser beam is tuned to have the frequency of between 10 kHz and 1000 kHz, the pulse energy of between 25 μJ and between 250 μJ, and the pulse width of between 3 ns and 60 ns.
  • 7. The method of claim 4, wherein: the substrate has a thickness of between 500 μm and 1 mm, andthe first pulsed laser beam is tuned to have the frequency of between 5 kHz and 30 kHz, the pulse energy of between 2 mJ and 10 mJ, and the pulse width of between 1 μs and 5 μs.
  • 8. The method of claim 7, wherein: the second pulsed laser beam is tuned to have the frequency of between 5 kHz and 100 kHz, the pulse energy of between 0.1 mJ and between 0.4 mJ, and the pulse width of between 3 ns and 60 ns.
  • 9. A method of patterning a substrate, comprising: forming one or more features in a substrate by irradiating the substrate with a pulsed laser beam, wherein the substrate comprises silicon, and wherein the one or more features have a diameter between 50 μm and 200 μm and a depth of between 100 μm and 200 μm; andtuning frequency, pulse width, and pulse energy of the pulsed laser beam based on a depth of the one or more features, wherein the pulsed laser beam is tuned to have the frequency of between 5 kHz and 100 kHz, the pulse energy of between 0.5 mJ and between 4.5 mJ, and the pulse width of between 100 ns and 1200 ns.
  • 10. The method of claim 9, wherein a sub-set of the one or more features is formed by on-the-fly drilling.
  • 11. A method of patterning a substrate, comprising: forming one or more features in a substrate by irradiating the substrate with a pulsed laser beam, wherein the substrate comprises silicon, and wherein the one or more features have a diameter between 50 μm and 200 μm and a depth of between 500 μm and 1 mm; andtuning frequency, pulse width, and pulse energy of the pulsed laser beam based on a depth of the one or more features, wherein the pulsed laser beam is tuned to have the frequency of between 5 kHz and 30 kHz, the pulse energy of between 2 mJ and 10 mJ, and the pulse width of between 1 μs and 5 μs.
  • 12. The method of claim 11, wherein a sub-set of the one or more features is formed by on-the-fly drilling.
  • 13. A method of patterning a substrate, comprising: forming one or more features in a substrate by irradiating the substrate with a pulsed laser beam, wherein the substrate comprises silicon, and wherein the one or more features have a lateral dimension of between 3 mm and 50 mm and a depth of between 50 μm and 200 μm; andtuning frequency, pulse width, and pulse energy of the pulsed laser beam based on a depth of the one or more features, wherein the pulsed laser beam is tuned to have the frequency of 5 kHz and 40 kHz, the pulse energy of between 0.5 mJ and 4.5 mJ, and the pulse width of between 15 ns and 600 ns.
  • 14. The method of claim 13, wherein a sub-set of the one or more features is formed by on-the-fly drilling.
  • 15. A method of fabricating a die assembly, comprising: forming a frame, comprising: forming one or more features in a substrate by a first laser ablation process, the one or more features comprising one or more cavities and one or more through-vias extending through the substrate;filling the one or more through-vias with a dielectric material; andforming a via-in-via in the dielectric material filled in each of the one or more through-vias by a second laser ablation process;disposing one or more semiconductor dies within the one or more cavities; anddisposing an interconnection within the via-in-via, wherein: in the first laser ablation process, frequency, pulse width, and pulse energy of a first pulsed laser beam to irradiate the substrate are tuned based on a depth of the one or more features, andin the second laser ablation process, frequency, pulse width, and pulse energy of a second pulsed laser beam to irradiate the dielectric material are tuned based on a depth of the via-in-via.
  • 16. The method of claim 15, wherein the substrate comprises silicon.
  • 17. The method of claim 16, wherein: the one or more cavities have a lateral dimension of between 3 mm and 50 mm and a depth of between 50 μm and 200 μm, andthe first pulsed laser beam is tuned to have the frequency of 5 kHz and 40 kHz, the pulse energy of between 0.5 mJ and 4.5 mJ, and the pulse width of between 15 ns and 600 ns.
  • 18. The method of claim 16, wherein: the one or more through-vias have a diameter between 50 μm and 200 μm, andthe via-in-via in each of the one or more through-vias has a diameter of between 20 μm and 70 μm.
  • 19. The method of claim 18, wherein: the substrate has a thickness of between 500 μm and 1 mm, andthe first pulsed laser beam is tuned to have the frequency of between 5 kHz and 30 kHz, the pulse energy of between 2 mJ and 10 mJ, and the pulse width of between 1 μs and 5 μs.
  • 20. The method of claim 19, wherein: the second pulsed laser beam is tuned to have the frequency of between 5 kHz and 100 kHz, the pulse energy of between 0.1 mJ and between 0.4 mJ, and the pulse width of between 3 ns and 60 ns.
US Referenced Citations (285)
Number Name Date Kind
4073610 Cox Feb 1978 A
5126016 Glenning et al. Jun 1992 A
5268194 Kawakami et al. Dec 1993 A
5353195 Fillion et al. Oct 1994 A
5367143 White, Jr. Nov 1994 A
5374788 Endoh et al. Dec 1994 A
5474834 Tanahashi et al. Dec 1995 A
5670262 Dalman Sep 1997 A
5767480 Anglin et al. Jun 1998 A
5783870 Mostafazadeh et al. Jul 1998 A
5841102 Noddin Nov 1998 A
5878485 Wood et al. Mar 1999 A
6039889 Zhang et al. Mar 2000 A
6087719 Tsunashima Jul 2000 A
6117704 Yamaguchi et al. Sep 2000 A
6211485 Burgess Apr 2001 B1
6384473 Peterson et al. May 2002 B1
6388202 Swirbel et al. May 2002 B1
6388207 Figueroa et al. May 2002 B1
6459046 Ochi et al. Oct 2002 B1
6465084 Curcio et al. Oct 2002 B1
6489670 Peterson et al. Dec 2002 B1
6495895 Peterson et al. Dec 2002 B1
6506632 Cheng et al. Jan 2003 B1
6512182 Takeuchi et al. Jan 2003 B2
6538312 Peterson et al. Mar 2003 B1
6555906 Towle et al. Apr 2003 B2
6576869 Gower et al. Jun 2003 B1
6593240 Page Jul 2003 B1
6631558 Burgess Oct 2003 B2
6661084 Peterson et al. Dec 2003 B1
6713719 De Steur et al. Mar 2004 B1
6724638 Inagaki et al. Apr 2004 B1
6775907 Boyko et al. Aug 2004 B1
6781093 Conlon et al. Aug 2004 B2
6799369 Ochi et al. Oct 2004 B2
6894399 Vu et al. May 2005 B2
7028400 Hiner et al. Apr 2006 B1
7062845 Burgess Jun 2006 B2
7064069 Draney et al. Jun 2006 B2
7078788 Vu et al. Jul 2006 B2
7091589 Mori et al. Aug 2006 B2
7091593 Ishimaru et al. Aug 2006 B2
7105931 Attarwala Sep 2006 B2
7129117 Hsu Oct 2006 B2
7166914 DiStefano et al. Jan 2007 B2
7170152 Huang et al. Jan 2007 B2
7192807 Huemoeller et al. Mar 2007 B1
7211899 Taniguchi et al. May 2007 B2
7271012 Anderson Sep 2007 B2
7274099 Hsu Sep 2007 B2
7276446 Robinson et al. Oct 2007 B2
7279357 Shimoishizaka et al. Oct 2007 B2
7312405 Hsu Dec 2007 B2
7321164 Hsu Jan 2008 B2
7449363 Hsu Nov 2008 B2
7458794 Schwaighofer et al. Dec 2008 B2
7511365 Wu et al. Mar 2009 B2
7690109 Mori et al. Apr 2010 B2
7714431 Huemoeller et al. May 2010 B1
7723838 Takeuchi et al. May 2010 B2
7754530 Wu et al. Jul 2010 B2
7808799 Kawabe et al. Oct 2010 B2
7839649 Hsu Nov 2010 B2
7843064 Kuo et al. Nov 2010 B2
7852634 Sakamoto et al. Dec 2010 B2
7855460 Kuwajima Dec 2010 B2
7868464 Kawabata et al. Jan 2011 B2
7887712 Boyle et al. Feb 2011 B2
7914693 Jeong et al. Mar 2011 B2
7915737 Nakasato et al. Mar 2011 B2
7932595 Huemoeller et al. Apr 2011 B1
7932608 Tseng et al. Apr 2011 B2
7955942 Pagaila et al. Jun 2011 B2
7978478 Inagaki et al. Jul 2011 B2
7982305 Railkar et al. Jul 2011 B1
7988446 Yeh et al. Aug 2011 B2
8069560 Mori et al. Dec 2011 B2
8137497 Sunohara et al. Mar 2012 B2
8283778 Trezza Oct 2012 B2
8314343 Inoue et al. Nov 2012 B2
8367943 Wu et al. Feb 2013 B2
8384203 Toh et al. Feb 2013 B2
8390125 Tseng et al. Mar 2013 B2
8426246 Toh et al. Apr 2013 B2
8476769 Chen et al. Jul 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8536695 Liu et al. Sep 2013 B2
8628383 Starling et al. Jan 2014 B2
8633397 Jeong et al. Jan 2014 B2
8698293 Otremba et al. Apr 2014 B2
8704359 Tuominen et al. Apr 2014 B2
8710402 Lei et al. Apr 2014 B2
8710649 Huemoeller et al. Apr 2014 B1
8728341 Ryuzaki et al. May 2014 B2
8772087 Barth et al. Jul 2014 B2
8786098 Wang Jul 2014 B2
8877554 Tsai et al. Nov 2014 B2
8890628 Nair et al. Nov 2014 B2
8907471 Beyne et al. Dec 2014 B2
8921995 Railkar et al. Dec 2014 B1
8952544 Lin et al. Feb 2015 B2
8980691 Lin Mar 2015 B2
8990754 Bird et al. Mar 2015 B2
8994185 Lin et al. Mar 2015 B2
8999759 Chia Apr 2015 B2
9059186 Shim et al. Jun 2015 B2
9064936 Lin et al. Jun 2015 B2
9070637 Yoda et al. Jun 2015 B2
9099313 Lee et al. Aug 2015 B2
9111914 Lin et al. Aug 2015 B2
9142487 Toh et al. Sep 2015 B2
9159678 Cheng et al. Oct 2015 B2
9161453 Koyanagi Oct 2015 B2
9210809 Mallik et al. Dec 2015 B2
9224674 Malatkar et al. Dec 2015 B2
9275934 Sundaram et al. Mar 2016 B2
9318376 Holm et al. Apr 2016 B1
9355881 Goller et al. May 2016 B2
9363898 Tuominen et al. Jun 2016 B2
9396999 Yap et al. Jul 2016 B2
9406645 Huemoeller et al. Aug 2016 B1
9499397 Bowles et al. Nov 2016 B2
9530752 Nikitin et al. Dec 2016 B2
9554469 Hurwitz et al. Jan 2017 B2
9660037 Zechmann et al. May 2017 B1
9698104 Yap et al. Jul 2017 B2
9704726 Toh et al. Jul 2017 B2
9735134 Chen Aug 2017 B2
9748167 Lin Aug 2017 B1
9754849 Huang et al. Sep 2017 B2
9837352 Chang et al. Dec 2017 B2
9837484 Jung et al. Dec 2017 B2
9859258 Chen et al. Jan 2018 B2
9875970 Yi et al. Jan 2018 B2
9887103 Scanlan et al. Feb 2018 B2
9887167 Lee et al. Feb 2018 B1
9893045 Pagaila et al. Feb 2018 B2
9978720 Theuss et al. May 2018 B2
9997444 Meyer et al. Jun 2018 B2
10014292 Or-Bach et al. Jul 2018 B2
10037975 Hsieh et al. Jul 2018 B2
10053359 Bowles et al. Aug 2018 B2
10090284 Chen et al. Oct 2018 B2
10109588 Jeong et al. Oct 2018 B2
10128177 Kamgaing et al. Nov 2018 B2
10153219 Jeon et al. Dec 2018 B2
10163803 Chen et al. Dec 2018 B1
10170386 Kang et al. Jan 2019 B2
10177083 Kim et al. Jan 2019 B2
10211072 Chen et al. Feb 2019 B2
10229827 Chen et al. Mar 2019 B2
10256180 Liu et al. Apr 2019 B2
10269773 Yu et al. Apr 2019 B1
10297518 Lin et al. May 2019 B2
10297586 Or-Bach et al. May 2019 B2
10304765 Chen et al. May 2019 B2
10347585 Shin et al. Jul 2019 B2
10410971 Rae et al. Sep 2019 B2
10424530 Alur et al. Sep 2019 B1
10515912 Lim et al. Dec 2019 B2
10522483 Shuto Dec 2019 B2
10553515 Chew Feb 2020 B2
10570257 Sun et al. Feb 2020 B2
10658337 Yu et al. May 2020 B2
20010020548 Burgess Sep 2001 A1
20010030059 Sugaya et al. Oct 2001 A1
20020036054 Nakatani et al. Mar 2002 A1
20020048715 Walczynski Apr 2002 A1
20020070443 Mu et al. Jun 2002 A1
20020074615 Honda Jun 2002 A1
20020135058 Asahi et al. Sep 2002 A1
20020158334 Vu et al. Oct 2002 A1
20020170891 Boyle et al. Nov 2002 A1
20030059976 Nathan et al. Mar 2003 A1
20030221864 Bergstedt et al. Dec 2003 A1
20030222330 Sun et al. Dec 2003 A1
20040080040 Dotta et al. Apr 2004 A1
20040118824 Burgess Jun 2004 A1
20040134682 En et al. Jul 2004 A1
20040248412 Liu et al. Dec 2004 A1
20050012217 Mori et al. Jan 2005 A1
20050170292 Tsai et al. Aug 2005 A1
20060014532 Seligmann et al. Jan 2006 A1
20060073234 Williams Apr 2006 A1
20060128069 Hsu Jun 2006 A1
20060145328 Hsu Jul 2006 A1
20060160332 Gu et al. Jul 2006 A1
20060270242 Verhaverbeke et al. Nov 2006 A1
20060283716 Hafezi et al. Dec 2006 A1
20070035033 Ozguz et al. Feb 2007 A1
20070042563 Wang et al. Feb 2007 A1
20070077865 Dysard et al. Apr 2007 A1
20070111401 Kataoka et al. May 2007 A1
20070130761 Kang et al. Jun 2007 A1
20080006945 Lin et al. Jan 2008 A1
20080011852 Gu et al. Jan 2008 A1
20080090095 Nagata et al. Apr 2008 A1
20080113283 Ghoshal et al. May 2008 A1
20080119041 Magera et al. May 2008 A1
20080173792 Yang et al. Jul 2008 A1
20080173999 Chung et al. Jul 2008 A1
20080296273 Lei et al. Dec 2008 A1
20090084596 Inoue et al. Apr 2009 A1
20090243065 Sugino et al. Oct 2009 A1
20090250823 Racz et al. Oct 2009 A1
20090278126 Yang et al. Nov 2009 A1
20100013081 Toh et al. Jan 2010 A1
20100062287 Beresford et al. Mar 2010 A1
20100144101 Chow et al. Jun 2010 A1
20100148305 Yun Jun 2010 A1
20100160170 Horimoto et al. Jun 2010 A1
20100248451 Pirogovsky Sep 2010 A1
20100264538 Swinnen et al. Oct 2010 A1
20100301023 Unrath et al. Dec 2010 A1
20100307798 Izadian Dec 2010 A1
20110062594 Maekawa et al. Mar 2011 A1
20110097432 Yu et al. Apr 2011 A1
20110111300 DelHagen et al. May 2011 A1
20110204505 Pagaila et al. Aug 2011 A1
20110259631 Rumsby Oct 2011 A1
20110291293 Tuominen et al. Dec 2011 A1
20110304024 Renna Dec 2011 A1
20110316147 Shih et al. Dec 2011 A1
20120128891 Takei et al. May 2012 A1
20120146209 Hu et al. Jun 2012 A1
20120164827 Rajagopalan et al. Jun 2012 A1
20120261805 Sundaram et al. Oct 2012 A1
20130074332 Suzuki Mar 2013 A1
20130105329 Matejat et al. May 2013 A1
20130196501 Sulfridge Aug 2013 A1
20130203190 Reed et al. Aug 2013 A1
20130286615 Inagaki et al. Oct 2013 A1
20130341738 Reinmuth et al. Dec 2013 A1
20140054075 Hu Feb 2014 A1
20140092519 Yang Apr 2014 A1
20140094094 Rizzuto et al. Apr 2014 A1
20140103499 Andry et al. Apr 2014 A1
20140252655 Tran et al. Sep 2014 A1
20140353019 Arora et al. Dec 2014 A1
20150228416 Hurwitz et al. Aug 2015 A1
20150296610 Daghighian et al. Oct 2015 A1
20150311093 Li et al. Oct 2015 A1
20150359098 Ock Dec 2015 A1
20150380356 Chauhan et al. Dec 2015 A1
20160013135 He et al. Jan 2016 A1
20160020163 Shimizu et al. Jan 2016 A1
20160049371 Lee et al. Feb 2016 A1
20160088729 Kobuke et al. Mar 2016 A1
20160095203 Min et al. Mar 2016 A1
20160118337 Yoon et al. Apr 2016 A1
20160270242 Kim et al. Sep 2016 A1
20160276325 Nair et al. Sep 2016 A1
20160329299 Lin et al. Nov 2016 A1
20160336296 Jeong et al. Nov 2016 A1
20170047308 Ho et al. Feb 2017 A1
20170064835 Ishihara et al. Mar 2017 A1
20170223842 Chujo et al. Aug 2017 A1
20170229432 Lin et al. Aug 2017 A1
20170338254 Reit et al. Nov 2017 A1
20180019197 Boyapati et al. Jan 2018 A1
20180116057 Kajihara et al. Apr 2018 A1
20180182727 Yu Jun 2018 A1
20180197831 Kim et al. Jul 2018 A1
20180204802 Lin et al. Jul 2018 A1
20180308792 Raghunathan et al. Oct 2018 A1
20180352658 Yang Dec 2018 A1
20180374696 Chen et al. Dec 2018 A1
20180376589 Harazono Dec 2018 A1
20190088603 Marimuthu et al. Mar 2019 A1
20190131224 Choi et al. May 2019 A1
20190131270 Lee et al. May 2019 A1
20190131284 Jeng et al. May 2019 A1
20190189561 Rusli Jun 2019 A1
20190229046 Tsai et al. Jul 2019 A1
20190237430 England Aug 2019 A1
20190285981 Cunningham et al. Sep 2019 A1
20190306988 Grober et al. Oct 2019 A1
20190355680 Chuang et al. Nov 2019 A1
20190369321 Young et al. Dec 2019 A1
20200003936 Fu et al. Jan 2020 A1
20200039002 Sercel et al. Feb 2020 A1
20200130131 Togawa et al. Apr 2020 A1
20200357947 Chen et al. Nov 2020 A1
20200358163 See et al. Nov 2020 A1
Foreign Referenced Citations (56)
Number Date Country
2481616 Jan 2013 CA
1971894 May 2007 CN
100463128 Feb 2009 CN
100502040 Jun 2009 CN
100524717 Aug 2009 CN
100561696 Nov 2009 CN
104637912 May 2015 CN
105436718 Mar 2016 CN
106531647 Mar 2017 CN
106653703 May 2017 CN
108028225 May 2018 CN
111492472 Aug 2020 CN
0264134 Apr 1988 EP
1536673 Jun 2005 EP
1478021 Jul 2008 EP
1845762 May 2011 EP
2942808 Nov 2015 EP
2001244591 Sep 2001 JP
2002246755 Aug 2002 JP
2003188340 Jul 2003 JP
2004311788 Nov 2004 JP
2004335641 Nov 2004 JP
4108285 Jun 2008 JP
2012069926 Apr 2012 JP
5004378 Aug 2012 JP
5111342 Jan 2013 JP
5693977 Apr 2015 JP
5700241 Apr 2015 JP
5981232 Aug 2016 JP
6394136 Sep 2018 JP
6542616 Jul 2019 JP
6626697 Dec 2019 JP
100714196 May 2007 KR
100731112 Jun 2007 KR
10-2008-0037296 Apr 2008 KR
2008052491 Jun 2008 KR
20100097893 Sep 2010 KR
101301507 Sep 2013 KR
20140086375 Jul 2014 KR
101494413 Feb 2015 KR
20160013706 Feb 2016 KR
20180113885 Oct 2018 KR
101922884 Nov 2018 KR
101975302 Aug 2019 KR
102012443 Aug 2019 KR
I594397 Aug 2017 TW
2011130300 Oct 2011 WO
2013008415 Jan 2013 WO
2013126927 Aug 2013 WO
2015126438 Aug 2015 WO
2017111957 Jun 2017 WO
2018013122 Jan 2018 WO
2018125184 Jul 2018 WO
2019023213 Jan 2019 WO
2019066988 Apr 2019 WO
2019177742 Sep 2019 WO
Non-Patent Literature Citations (51)
Entry
PCT International Search Report and Written Opinion dated Feb. 17, 2021 for International Application No. PCT/US2020/057787.
PCT International Search Report and Written Opinion dated Feb. 19, 2021, for International Application No. PCT/US2020/057788.
U.S. Office Action dated May 13, 2021, in U.S. Appl. No. 16/870,843.
Shen, Qiao—“Modeling, Design and Demonstration of Through-Package-Vias in Panel-Based Polycrystalline Silicon Interposers for High Performance, High Reliability and Low Cost,” a Dissertation presented to the Academic Faculty, Georgia Institute of Technology, May 2015, 168 pages.
Lannon, John Jr., et al.—“Fabrication and Testing of a TSV-Enabled Si Interposer with Cu- and Polymer-Based Multilevel Metallization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 1, Jan. 2014, pp. 153-157.
Malta, D., et al.—“Fabrication of TSV-Based Silicon Interposers,” 3D Systems Integration Conference (3DIC), 2010 IEEE International, Nov. 16-18, 2010, 6 pages.
Allresist Gmbh—Strausberg et al: “Resist-Wiki: Adhesion promoter HMDS and diphenylsilanedio (AR 300-80)—. . . -ALLRESIST GmbH—Strausberg, Germany”, Apr. 12, 2019 (Apr. 12, 2019), XP055663206, Retrieved from the Internet: URL:https://web.archive.org/web/2019041220micals-adhesion-promoter-hmds-and-diphenyl2908/https://www.allresist.com/process-chemicals-adhesion-promoter-hmds-and-diphenylsilanedio/, [retrieved on Jan. 29, 2020].
Amit Kelkar, et al. “Novel Mold-free Fan-out Wafer Level Package using Silicon Wafer”, IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages. (IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages.).
Arifur Rahman. “System-Level Performance Evaluation of Three-Dimensional Integrated Circuits”, vol. 8, No. 6, Dec. 2000. pp. 671-678.
Chien-Wei Chien et al “Chip Embedded Wafer Level Packaging Technology for Stacked RF-SiP Application”,2007 IEEE, pp. 305-310.
Chien-Wei Chien et al. “3D Chip Stack With Wafer Through Hole Technology”. 6 pages.
Doany, F.E., et al.—“Laser release process to obtain freestanding multilayer metal-poly imide circuits,” IBM Journal of Research and Development, vol. 41, Issue 1/2, Jan./Mar. 1997, pp. 151-157.
Dyer, P.E., et al.—“Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Applied Physics Letters, vol. 48, No. 6, Feb. 10, 1986, pp. 445-447.
Han et al.—“Process Feasibility and Reliability Performance of Fine Pitch Si Bare Chip Embedded in Through Cavity of Substrate Core,” IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015. [Han et al. IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015.].
Han et al.—“Through Cavity Core Device Embedded Substrate for Ultra-Fine-Pitch Si Bare Chips; (Fabrication feasibility and residual stress evaluation)”, ICEP-IAAC, 2015, pp. 174-179. [Han et al., ICEP-IAAC, 2015, pp. 174-179.].
Han, Younggun, et al.—“Evaluation of Residual Stress and Warpage of Device Embedded Substrates with Piezo-Resistive Sensor Silicon Chips” technical paper, Jul. 31, 2015, pp. 81-94.
International Search Report and the Written Opinion for International Application No. PCT/US2019/064280 dated Mar. 20, 2020, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/026832 dated Jul. 23, 2020.
Italian search report and written opinion for Application No. IT 201900006736 dated Mar. 2, 2020.
Italian Search Report and Written Opinion for Application No. IT 201900006740 dated Mar. 4, 2020.
Junghoon Yeom', et al. “Critical Aspect Ratio Dependence in Deep Reactive Ion Etching of Silicon”, 2003 IEEE. pp. 1631-1634.
K. Sakuma et al. “3D Stacking Technology with Low-Volume Lead-Free Interconnections”, IBM T.J. Watson Research Center. 2007 IEEE, pp. 627-632.
Kenji Takahashi et al. “Current Status of Research and Development for Three-Dimensional Chip Stack Technology”, Jpn. J. Appl. Phys. vol. 40 (2001) pp. 3032-3037, Part 1, No. 4B, Apr. 2001. 6 pages.
Kim et al. “A Study on the Adhesion Properties of Reactive Sputtered Molybdenum Thin Films with Nitrogen Gas on Polyimide Substrate as a Cu Barrier Layer,” 2015, Journal of Nanoscience and Nanotechnology, vol. 15, No. 11, pp. 8743-8748, doi: 10.1166/jnn.2015.11493.
Knickerbocker, J.U., et al.—“Development of next-generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection,” IBM Journal of Research and Development, vol. 49, Issue 4/5, Jul./Sep. 2005, pp. 725-753.
Knickerbocker, John U., et al.—“3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, vol. 41, No. 8, Aug. 2006, pp. 1718-1725.
L. Wang, et al. “High aspect ratio through-wafer interconnections for 3Dmicrosystems”, 2003 IEEE. pp. 634-637.
Lee et al. “Effect of sputtering parameters on the adhesion force of copper/molybdenum metal on polymer substrate,” 2011, Current Applied Physics, vol. 11, pp. S12-S15, doi: 10.1016/j.cap.2011.06.019.
Narayan, C., et al.—“Thin Film Transfer Process for Low Cost MCM's,” Proceedings of 1993 IEEE/CHMT International Electronic Manufacturing Technology Symposium, Oct. 4-6, 1993, pp. 373-380.
NT Nguyen et al. “Through-Wafer Copper Electroplating for Three-Dimensional Interconnects”, Journal of Micromechanics and Microengineering. 12 (2002) 395-399. 2002 IOP.
PCT International Search Report and Written Opinion dated Aug. 28, 2020, for International Application No. PCT/US2020/032245.
PCT International Search Report and Written Opinion dated Sep. 15, 2020, for International Application No. PCT/US2020/035778.
Ronald Hon et al. “Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection”, 2005 IEEE pp. 384-389.
S. W. Ricky Lee et al. “3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling”, 2005 IEEE, pp. 798-801.
Shen, Li-Cheng, et al.—“A Clamped Through Silicon via (TSV) Interconnection for Stacked Chip Bonding Using Metal Cap on Pad and Metal Column Forming in via,” Proceedings of 2008 Electronic Components and Technology Conference, pp. 544-549.
Shi, Tailong, et al.—“First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-chip Integration,” Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference, May 30-Jun. 2, 2017, pp. 41-46.
Srinivasan, R., et al.—“Ultraviolet Laser Ablation of Organic Polymers,” Chemical Reviews, 1989, vol. 89, No. 6, pp. 1303-1316.
Taiwan Office Action dated Oct. 27, 2020 for Application No. 108148588.
Wu et al., Microelect. Eng., vol. 87 2010, pp. 505-509.
Yu et al. “High Performance, High Density RDL for Advanced Packaging,” 2018 IEEE 68th Electronic Components and Technology Conference, pp. 587-593, DOI 10.1109/ETCC.2018.0009.
Yu, Daquan—“Embedded Silicon Fan-out (eSiFO) Technology for Wafer-Level System Integration,” Advances in Embedded and Fan-Out Wafer-Level Packaging Technologies, First Edition, edited by Beth Keser and Steffen Kroehnert, published 2019 by John Wiley & Sons, Inc., pp. 169-184.
Tecnisco, Ltd.—“Company Profile” presentation with product introduction, date unknown, 26 pages.
Wang et al. “Study of Direct Cu Electrodeposition on Ultra-Thin Mo for Copper Interconnect”, State key lab of ASIC and system, School of microelectronics, Fudan University, Shanghai, China; 36 pages.
International Search Report and Written Opinion dated Oct. 7, 2021 for Application No. PCT/US2021037375.
PCT International Search Report and Written Opinion dated Oct. 19, 2021, for International Application No. PCT/US2021/038690.
Trusheim, D. et al., Investigation of the Influence of Pulse Duration in Laser Processes for Solar Cells, Physics Procedia Dec. 2011, 278-285, 9 pages.
Knorz, A. et al., High Speed Laser Drilling: Parameter Evaluation and Characterisation, Presented at the 25th European PV Solar Energy Conference and Exhibition, Sep. 6-10, 2010, Valencia, Spain, 7 pages.
Baier, T. et al., Theoretical Approach to Estimate Laser Process Parameters for Drilling in Crystalline Silicon, Prog. Photovolt: Res. Appl. 18 (2010) 603-606, 5 pages.
Liu, C.Y. et al., Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation, Journal of Physics: Conference Series 59 (2007) 338-342, 6 pages.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053830.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053821.
Related Publications (1)
Number Date Country
20210346983 A1 Nov 2021 US