The present disclosure relates to a laser device and an electronic device manufacturing method.
Recently, in a semiconductor exposure apparatus, improvement in resolution has been desired for miniaturization and high integration of semiconductor integrated circuits. For this purpose, an exposure light source that outputs light having a shorter wavelength has been developed. For example, as a gas laser device for exposure, a KrF excimer laser device for outputting laser light having a wavelength of about 248 nm and an ArF excimer laser device for outputting laser light having a wavelength of about 193 nm are used.
The KrF excimer laser device and the ArF excimer laser device each have a large spectral line width of about 350 to 400 pm in natural oscillation light. Therefore, when a projection lens is formed of a material that transmits ultraviolet rays such as KrF laser light and ArF laser light, there is a case in which chromatic aberration occurs. As a result, the resolution may decrease. Then, a spectral line width of laser light output from the gas laser device needs to be narrowed to the extent that the chromatic aberration can be ignored. For this purpose, there is a case in which a line narrowing module (LNM) including a line narrowing element (etalon, grating, and the like) is provided in a laser resonator of the gas laser device to narrow a spectral line width. In the following, a gas laser device with a narrowed spectral line width is referred to as a line narrowing gas laser device.
Patent Document 1: US Patent Application Publication No. 2002/0167975
Patent Document 2: US Patent Application Publication No. 2013/0230064
Patent Document 3: US Patent Application Publication No. 2005/0083983
Patent Document 4: Japanese Patent Application Publication No. H07-058393
Patent Document 5: US Patent Application Publication No. 2020/0301286
A laser device according to an aspect of the present disclosure includes a first actuator configured to adjust an oscillation wavelength of pulse laser light; a second actuator configured to adjust a spectral line width of the pulse laser light; and a processor configured to determine a target spectral line width by reading data specifying a number of irradiation pulses of the pulse laser light with which one location of an irradiation receiving object is irradiated and a difference between a shortest wavelength and a longest wavelength, control the second actuator based on the target spectral line width, and control the first actuator so that the oscillation wavelength periodically changes every number of the irradiation pulses between the shortest wavelength and the longest wavelength.
An electronic device manufacturing method according to an aspect of the present disclosure includes generating pulse laser light using a laser device, outputting the pulse laser light to an exposure apparatus, and exposing a photosensitive substrate to the pulse laser light in the exposure apparatus to manufacture an electronic device. Here, the laser device includes a first actuator configured to adjust an oscillation wavelength of the pulse laser light; a second actuator configured to adjust a spectral line width of the pulse laser light; and a processor configured to determine a target spectral line width by reading data specifying a number of irradiation pulses of the pulse laser light with which one location of an irradiation receiving object is irradiated and a difference between a shortest wavelength and a longest wavelength, control the second actuator based on the target spectral line width, and control the first actuator so that the oscillation wavelength periodically changes every number of the irradiation pulses between the shortest wavelength and the longest wavelength.
Embodiments of the present disclosure will be described below merely as examples with reference to the accompanying drawings.
1. Comparative example
1.1 Exposure system
1.2 Laser device 100
1.3 Line narrowing device 14
1.4 Number of irradiation pulses N
1.5 Example of periodic wavelength change
1.6 Problem of comparative example
2. Laser device 100a which brings moving integrated spectrum waveform close to preferred flat top shape by controlling spectral line width Δλ
2.1 Configuration
2.2 Operation
2.3 Example of optical system which changes spectral line width Δλ
2.4 Spectral line width control and wavelength control by laser control processor 130
2.5 Control of spectral line width Δλ
2.6 Effect
3. Laser device 100a in which target maximum spectral line width Δλmax is set
3.1 Configuration and operation
3.2 Effect
4. Laser device 100a which controls spectral line width Δλinto allowable range
4.1 Configuration and operation
4.2 Effect
5. Change of moving integrated spectrum waveform due to control of spectral line width Δλ
5.1 Case in which wavelength is controlled in sawtooth waveform
5.2 Case in which wavelength is controlled in triangular waveform
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below show some examples of the present disclosure and do not limit the contents of the present disclosure. Also, all configurations and operation described in the embodiments are not necessarily essential as configurations and operation of the present disclosure. Here, the same components are denoted by the same reference numerals, and duplicate description thereof is omitted.
The laser device 100 includes a laser control processor 130. The laser device 100 is configured to output pulse laser light toward the exposure apparatus 200. The laser control processor 130 is a processing device including a memory 132 in which a control program is stored, and a central processing unit (CPU) 131 for executing the control program. The laser control processor 130 is specifically configured or programmed to perform various processes included in the present disclosure.
As shown in
The illumination optical system 201 illuminates a reticle pattern of a reticle (not shown) arranged on a reticle stage RT with the pulse laser light incident from the laser device 100.
The projection optical system 202 causes the pulse laser light transmitted through the reticle to be imaged as being reduced and projected on a workpiece (not shown) arranged on a workpiece table WT. The workpiece is a photosensitive substrate such as a semiconductor wafer on which a resist film is applied.
The exposure control processor 210 is a processing device including a memory 212 in which a control program is stored and a CPU 211 which executes the control program. The exposure control processor 210 is specifically configured or programmed to perform various processes included in the present disclosure.
The exposure control processor 210 transmits data, including the number of irradiation pulses N, a shortest wavelength λS, and a longest wavelength λL, and a trigger signal to the laser control processor 130. The laser control processor 130 controls the laser device 100 in accordance with the data and the signal received from the exposure control processor 210. The exposure control processor 210 synchronously translates the reticle stage RT and the workpiece table WT in opposite directions with each other. Thus, the workpiece is exposed to the pulse laser light reflecting the reticle pattern. By such an exposure process, the reticle pattern is transferred onto the semiconductor wafer. Thereafter, an electronic device can be manufactured through a plurality of processes.
The laser device 100 includes a laser chamber 10, a pulse power module (PPM) 13, a line narrowing device 14, and an output coupling mirror 15 in addition to the laser control processor 130. The line narrowing device 14 and the output coupling mirror 15 configure an optical resonator.
The laser chamber 10 is arranged on the optical path of the optical resonator. The laser chamber 10 is provided with two windows 10a, 10b. The laser chamber 10 accommodates a pair of electrodes 11a, 11b, and further laser gas. For example, the laser gas includes fluorine gas, argon gas, and neon gas. As another example, the laser gas includes fluorine gas, krypton gas, and neon gas. The −V direction and the +V direction coincide with the direction in which the electrodes 11a, 11b face each other. The −Z direction coincides with the travel direction of the light beam output from the window 10a. The +Z direction coincides with the travel direction of the pulse laser light output from the window 10b and output via the output coupling mirror 15.
The pulse power module 13 includes a switch (not shown) and is connected to a charger (not shown).
The line narrowing device 14 includes a beam expander 40 including first and second prisms 41, 42, and a grating 53. Details of the line narrowing device 14 will be described later. The output coupling mirror 15 is configured by a partial reflection mirror.
The laser control processor 130 receives data including the number of irradiation pulses N, the shortest wavelength λS, and the longest wavelength λL from the exposure control processor 210. The data may be received from a lithography control device (not shown) separate from the exposure apparatus 200. The lithography control device may control a plurality of the exposure apparatuses 200. The laser control processor 130 transmits a control signal to the line narrowing device 14 based on the number of irradiation pulses N, the shortest wavelength λS, and the longest wavelength λL.
The laser control processor 130 receives the trigger signal from the exposure control processor 210. The laser control processor 130 transmits an oscillation trigger signal based on the trigger signal to the pulse power module. The switch included in the pulse power module 13 is turned on when the oscillation trigger signal is received from the laser control unit 31. When the switch is turned on, the pulse power module 13 generates a pulse high voltage from the electric energy charged in the charger, and applies the high voltage to the electrodes 11a, 11b.
When the high voltage is applied between the electrodes 11a, 11b, discharge occurs between the electrodes 11a, 11b. The laser gas in the laser chamber 10 is excited by the energy of the discharge and shifts to a high energy level. When the excited laser gas then shifts to a low energy level, light having a wavelength corresponding to the difference between the energy levels is emitted.
The light generated in the laser chamber 10 is output to the outside of the laser chamber 10 through the windows 10a, 10b. The light output from the window 10a enters the line narrowing device 14. Among the light having entered the line narrowing device 14, the light having a wavelength near a desired wavelength is returned from the line narrowing device 14 to the laser chamber 10.
The output coupling mirror 15 transmits and outputs part of the light output from the window 10b, and reflects the other part back into the laser chamber 10.
In this way, the light output from the laser chamber 10 reciprocates between the line narrowing device 14 and the output coupling mirror 15. The light is amplified each time when passing through a discharge space between the pair of electrodes 11a, 11b. Further, the light is narrowed each time when being turned back by the line narrowing device 14, and becomes light having a steep wavelength distribution with a part of a range of wavelength selected by the line narrowing device 14 as a center wavelength. Thus, the light having undergone laser oscillation and line narrowing is output as pulse laser light from the output coupling mirror 15. The wavelength of the pulse laser light refers to the center wavelength unless otherwise specified. The pulse laser light output from the laser device 100 enters the exposure apparatus 200.
The first prism 41 is arranged on the optical path of the light beam output from the window 10a. The first prism 41 is supported by a holder 411. The second prism 42 is arranged on the optical path of the light beam having passed through the first prism 41. The second prism 42 is supported by a holder 421.
The first and second prisms 41, 42 are arranged such that the surfaces of the first and second prisms 41, 42 on which the light beam is incident and from which the light beam exits are parallel to the V axis. The second prism 42 is rotatable about an axis parallel to the V axis by a rotation stage 422. Here, examples of the rotation stage 422 include a rotation stage having high responsiveness rotated by a piezoelectric element.
The grating 53 is arranged on the optical path of the light beam having passed through the second prism 42. The direction of the grooves of the grating 53 coincides with the direction of the V axis. The grating 53 is supported by a holder 531.
The travel direction of the light output from the window 10a is changed by each of the first and second prisms 41, 42 in a plane parallel to the HZ plane which is a plane perpendicular to the V axis, and the beam width is expanded in the plane parallel to the HZ plane. The travel direction of the light having passed through both the first and second prisms 41, 42 toward the grating 53 substantially coincides with, for example, the −Z direction.
The light incident on the grating 53 from the second prism 42 is reflected by a plurality of grooves of the grating 53 and is diffracted in a direction corresponding to the wavelength of the light. The grating 53 is arranged in the Littrow arrangement, which causes the incident angle of the light beam incident on the grating 53 from the second prism 42 to coincide with the diffraction angle of the diffracted light having the desired wavelength.
The second prism 42 and the first prism 41 reduce the beam width of the light returned from the grating 53 in the plane parallel to the HZ plane and return the light into the laser chamber 10 through the window 10a.
The rotation stage 422 is controlled by the laser control processor 130. When the rotation stage 422 slightly rotates the second prism 42, the travel direction of the light output from the second prism 42 toward the grating 53 slightly changes in the plane parallel to the HZ plane. Therefore, the incident angle of the light incident on the grating 53 from the second prism 42 is slightly changed. Thus, the wavelength selected by the line narrowing device 14 is adjusted, and the oscillation wavelength of the pulse laser light is adjusted. The rotation stage 422 corresponds to the first actuator in the present disclosure.
The laser control processor 130 controls the rotation stage 422 of the second prism 42 based on the shortest wavelength λS and the longest wavelength λL received from the exposure control processor 210. The laser control processor 130 controls the rotation stage 422 for each pulse so that the posture of the second prism 42 periodically changes for every plurality of pulses. As a result, the wavelength of the pulse laser light changes in multiple steps between the shortest wavelength λS and the longest wavelength λL, and periodically changes for evert plurality of pulses. As described above, the laser device 100 can perform multiple wavelength oscillation for outputting pulse laser light having a plurality of wavelengths by changing the wavelength over a plurality of pulses.
The focal length in the exposure apparatus 200 (see
The procedure of exposing the scan field SF with the pulse laser light is performed in the order of
The required time T for the scan field SF to move by the distance corresponding to the width W of the beam cross section B of the pulse laser light at the velocity V is as follows.
T=W/V
The number of irradiation pulses N of the pulse laser light radiated to any one location of the scan field SF is the same as the number of pulses of the pulse laser light generated in the required time T as follows.
N=F*T=F*W/V
Here, F is the repetition frequency of the pulse laser light.
The number of irradiation pulses N is also referred to as an N slit pulse number.
In the example shown in
The wavelength shift amount δλ is a value that defines a change amount of the wavelength for each pulse. In the case of controlling the wavelength in a sawtooth waveform, the wavelength shift amount δλ is calculated by the following equation.
δλ=(λL−λS)/(N−1)
When the number of irradiation pulses N is 30 (N=30), the wavelength shift amount δλ is a value obtained by dividing the difference λL−λS between the shortest wavelength λS and the longest wavelength λL by 29.
In the wavelength change shown in
In the case of controlling the wavelength in a triangular waveform as shown in
δλ=(λL−λS)/(N/2−1)
When the number of irradiation pulses N is 30 (N=30), the wavelength shift amount δλ is a value obtained by dividing the difference between the shortest wavelength λS and the longest wavelength λL by 14.
In the sawtooth-waveform wavelength change shown in
In each wavelength change in
In the case of controlling the wavelength in the triangular waveform in which wavelengths are shifted between the first half and the second half of the cycle as shown in
δλ1=(λL−λS)/((N−1)/2)
Here, since the wavelengths are shifted when the first (n=1) and N/2+1th (n=N/2+1) pulses are output, the wavelength shift amount δλ2 is calculated by the following equation.
δλ2=δλ1/2=(λL−λS)/(N−1)
The moving integrated spectrum waveform in this case may have a shape close to a preferable flat top shape because the valleys of the peaks corresponding to the pulses in the first half of the cycle is filled with the peaks corresponding to the pulses in the second half of the cycle.
However, even in the wavelength change shown in
In the embodiments described below, by controlling the spectral line width Δλ of the pulse laser light, the moving integrated spectrum waveform is brought close to a preferred flat top shape.
The laser device 100a includes a wavefront adjuster 15a which transmits a part of the light in place of the output coupling mirror 15. The laser device 100a further includes a detector 17 and a shutter 18.
The wavefront adjuster 15a includes a cylindrical plano-convex lens 15b, a cylindrical plano-concave lens 15c, and a linear stage 15d. The cylindrical plano-concave lens 15c is located between the laser chamber 10 and the cylindrical plano-convex lens 15b. The cylindrical plano-convex lens 15b and the cylindrical plano-concave lens 15c are arranged such that the convex surface of the cylindrical plano-convex lens 15b and the concave surface of the cylindrical plano-concave lens 15c face each other. The convex surface of the cylindrical plano-convex lens 15b and the concave surface of the cylindrical plano-concave lens 15c each have a focal axis that is parallel to the V axis. The planar surface of the cylindrical plano-convex lens 15b opposite to the convex surface is coated with a partial reflection film. The wavefront adjuster 15a and the line narrowing device 14 configure an optical resonator.
A beam splitter 17a is arranged on the optical path of the pulse laser light transmitted and output through the wavefront adjuster 15a. The beam splitter 17a transmits part of the pulse laser light with high transmittance and reflects the other part. The detector 17 is arranged on the optical path of the pulse laser light reflected by the beam splitter 17a. A window 17b may be arranged between the beam splitter 17a and the detector 17.
The shutter 18 can be arranged on the optical path of the pulse laser light transmitted through the beam splitter 17a.
The linear stage 15d moves the cylindrical plano-concave lens 15c along the optical path between the laser chamber 10 and the cylindrical plano-convex lens 15b. Thus, the wavefront of the light from the wavefront adjuster 15a to the line narrowing device 14 is adjusted. By adjusting the wavefront, the spectral line width Δλ of the pulse laser light is adjusted. The wavefront adjuster 15a corresponds to the second actuator in the present disclosure.
The detector 17 acquires the measurement data of the spectral line width Δλ of the pulse laser light. The detector 17 may further acquire the measurement data of the wavelength and the pulse energy of the pulse laser light. The detector 17 transmits the measurement data to the laser control processor 130.
Due to being taken in and out of the optical path of the pulse laser light by the driving unit 18a, the shutter 18 is switched between a first state in which the pulse laser light is blocked and a second state in which the pulse laser light passes toward the exposure apparatus 200. The first state of the shutter 18 is referred to as “closing the shutter 18”, and the second state of the shutter 18 is referred to as “opening the shutter 18.”
The spectral line width control and the wavelength control by the laser control processor 130 will be described later with reference to
In
In
A beam splitter 15g as an output coupling mirror is arranged on the optical path between the wavefront adjuster 15h and the laser chamber 10. The beam splitter 15g transmits part of the light output from the window 10b, thereby allowing the light to reciprocate between the wavefront adjuster 15h and the line narrowing device 14. The beam splitter 15g reflects the other part of the light output from the window 10b and outputs the reflected light toward the exposure apparatus 200 as the pulse laser light.
In
The laser device 100e includes a line narrowing device 14e, and the line narrowing device 14e includes a grating 53a. The curvature of an envelope surface 53c of grooves of the grating 53a is to be changeable by the expansion and contraction of an expansion-contraction portion 53b. The envelope surface 53c of the grooves of the grating 53a is a cylindrical surface, and the focal axis of the envelope surface 53c is parallel to the V axis. The output coupling mirror 15 and the line narrowing device 14e configure an optical resonator. The spectral line width Δλ of the pulse laser light is changed by changing the curvature of the envelope surface 53c of the grooves of the grating 53a. The grating 53a corresponds to the second actuator in the present disclosure.
A first prism 41 is rotatable about an axis parallel to the V axis by a rotation stage 412. In
By adjusting each of the rotation angles of the first and second prisms 41, 42, it is also possible to change both the incident angle of the light on the grating 53 and the beam expansion rate of the light due to the first and second prisms 41, 42. Thus, both the wavelength and the spectral line width Δλ of the pulse laser light can be changed. The rotation stages 412, 422 configure both the first actuator and the second actuator in the present disclosure. A laser device including such a line narrowing device 14f also corresponds to the laser device including the first actuator and the second actuator in the present disclosure.
2.3.6 Prism 47 Which Changes Beam Expansion Rate by Replacement
As shown in
The prism 44 and the prism 47 are arranged on a uniaxial stage 48. As shown in
By replacing the prism 47 and the prism 44, the incident angle of the light incident on the grating 53 from the prism 46 does not change significantly, but the beam width of the light incident on the grating 53 from the prism 46 changes. That is, the expansion rate of the beam width of the beam expander 40 changes. Therefore, before and after the replacement of the prism 47 and the prism 44, the wavelength of the pulse laser light does not change significantly, but the spectral line width Δλ of the pulse laser light changes. The uniaxial stage 48 corresponds to the second actuator in the present disclosure.
In S100, the laser control processor 130 reads data of control parameters received from the exposure control processor 210. The data read by the laser control processor 130 includes the number of irradiation pulses N with which one location of the irradiation receiving object is irradiated, and the combination of the shortest wavelength λS and the longest wavelength λL. The combination of the shortest wavelength λS and the longest wavelength λL is an example of data specifying the difference λL−λS between the shortest wavelength λS and the longest wavelength λL in the present disclosure.
Alternatively, the laser control processor 130 may read any of the combination of the shortest wavelength λS and the difference λL−λS, the combination of the longest wavelength λL and the difference λL−λS, and the combination of the average wavelength (λS+λL)/2 and the difference λL−λS, instead of the combination of the shortest wavelength λS and the longest wavelength λL.
In S110, the laser control processor 130 calculates the wavelength shift amount δλ by the following equation.
δλ=(λL−λS)/(N−1)
In S120, the laser control processor 130 controls the spectral line width Δλ. Details of S120 will be described later with reference to
S130 to S200 are processes of controlling the rotation stage 422 so that the oscillation wavelength periodically changes every number of irradiation pulses N between the shortest wavelength λS and the longest wavelength λL. In S130, the laser control processor 130 sets the value of the pulse number n to 1.
In S140, the laser control processor 130 calculates a target wavelength λt by the following equation.
λt=λS+(n−1)*δλ
The target wavelength λt has the same value as the shortest wavelength λS when the pulse number n is 1, and the wavelength shift amount δλ is added to the target wavelength λt each time the value of the pulse number n increases by 1.
In S150, the laser control processor 130 controls the rotation stage 422 based on the target wavelength λt. By controlling the rotation stage 422, the second prism 42 is rotated and the selected wavelength by the line narrowing device 14 is changed.
In S160, the laser control processor 130 determines whether or not laser oscillation has been performed. Whether or not laser oscillation has been performed is determined based on data received from the detector 17. Alternatively, it may be determined by whether or not an oscillation trigger signal has been transmitted to the pulse power module 13.
In S170, the laser control processor 130 determines whether or not the value of the pulse number n is equal to or more than the number of irradiation pulses N. When the value of the pulse number n is less than the number of irradiation pulses N (S170:NO), the laser control processor 130 advances processing to S180. When the value of the pulse number n is equal to or more then the number of irradiation pulses N (S170:YES), the laser control processor 130 advances processing to S190.
In S180, the laser control processor 130 updates the value of the pulse number n by adding 1 to the value of n. After S180, the laser control processor 130 returns processing to S140.
In S190, the laser control processor 130 determines whether or not to terminate the wavelength control. When the wavelength control is not to be terminated (S190:NO), the laser control processor 130 returns processing to S200. When the wavelength control is to be terminated (S190:YES), the laser control processor 130 ends processing of the present flowchart.
In S200, the laser control processor 130 determines whether or not to change the control parameters. When the control parameters are not to be changed (S200:NO), the laser control processor 130 returns processing to S130. By returning the pulse number n to 1 in S130 and repeating the above-described operation, the wavelength changes in the sawtooth waveform. When the control parameters are to be changed (S200:YES), the laser control processor 130 returns processing to S100.
In S121, the laser control processor 130 determines a target minimum spectral line width Δλmin to be a value calculated by the following equation. The target minimum spectral line width Δλmin is a lower limit value of the spectral line width control, and is an example of the target spectral line width in the present disclosure.
Δλmin=Dmin*(λL−λS)/(N−1)
Here, Dmin is a coefficient and is preferably 1 or more.
The range of Dmin will be described later with reference to
Δλmin=Dmin*(λL−λS)/(N/2−1)
The target minimum spectral line width Δλmin corresponds to a value obtained by multiplying the wavelength difference (λL−λS)/(N/2−1) between the peaks in the moving integrated spectrum waveform by the coefficient Dmin. Therefore, the target minimum spectral line width Δλmin is set such that the spectral line width Δλ increases as the wavelength difference (λL−λS)/(N/2−1) between the peaks increases.
In the case of controlling the wavelength in the triangular waveform in which wavelengths are shifted between the first half and the second half of the cycle as shown in
Δλmin=Dmin*(λL−λS)/(N−1)
The target minimum spectral line width Δλmin corresponds to a value obtained by multiplying the wavelength difference (λL−λS)/(N−1) between the peaks in the moving integrated spectrum waveform by the coefficient Dmin.
By determining the target spectral line width in this manner, the target spectral line width in a case in which the difference λL−λS between the shortest wavelength λS and the longest wavelength λL is a third value which is more than a first value and the number of irradiation pulses N is a fourth value which is equal to or less than a second value is larger than that in a case in which the difference λL−λS is the first value and the number of irradiation pulses N is the second value. Alternatively, the target spectral line width in a case in which the difference λL−λS between the shortest wavelength λS and the longest wavelength λL is a third value which is equal to or more than the first value and the number of irradiation pulses N is a fourth value which is less than the second value is larger than that in a case in which the difference λL−λS is the first value and the number of irradiation pulses N is the second value.
After S121, in S123, the laser control processor 130 closes the shutter 18 to start adjustment oscillation. In S124, the laser control processor 130 receives measurement data of the spectral line width Δλ from the detector 17 and calculates a measurement value of the spectral line width Δλ from the measurement data.
In S125, the laser control processor 130 determines whether or not the measurement value of the spectral line width Δλ is equal to or more than the target minimum spectral line width Δλmin.
When the measurement value of the spectral line width Δλ is less than the target minimum spectral line width Δλmin (S125:NO), the laser control processor 130 advances processing to S126. In S126, the laser control processor 130 controls the wavefront adjuster 15a to increase the spectral line width Δλ. After S126, the laser control processor 130 returns processing to S124.
When the measurement value of the spectral line width Δλ is equal to or more than the target minimum spectral line width Δλmin (S125:YES), the laser control processor 130 advances processing to S129. In S129, the laser control processor 130 terminates the adjustment oscillation and opens the shutter 18. After S129, the laser control processor 130 terminates the processing of the present flowchart and returns to processing shown in
According to the first embodiment, the laser device 100a includes the rotation stage 422 for adjusting the oscillation wavelength of the pulse laser light, the wavefront adjuster 15a for adjusting the spectral line width Δλ of the pulse laser light, and the laser control processor 130. The laser control processor 130 determines the target minimum spectral line width Δλmin by reading data specifying the number of irradiation pulses N of the pulse laser light with which one location of the irradiation receiving object is irradiated and the difference λL−λS between the shortest wavelength λS and the longest wavelength λL, controls the wavefront adjuster 15a based on the target minimum spectral line width Δλmin, and controls the rotation stage 422 so that the oscillation wavelength periodically changes every number of irradiation pulses N between the shortest wavelength λS and the longest wavelength λL. Accordingly, the spectral line width Δλ is controlled based on the number of irradiation pulses N and the difference λL−λS between the shortest wavelength λS and the longest wavelength λL, and a plurality of steep peaks in the moving integrated spectrum can be moderated.
According to the first embodiment, the laser device 100a further includes the shutter 18 arranged on the optical path of the pulse laser light. The laser control processor 130 determines the target minimum spectral line width Δλmin as the target spectral line width, closes the shutter 18, controls the wavefront adjuster 15a so that the spectral line width Δλ gradually increases, and opens the shutter 18 when the measurement value of the spectral line width Δλ becomes equal to or more than the target minimum spectral line width Δλmin. Accordingly, output of the pulse laser light to the exposure apparatus 200 is stopped until the pulse laser light having the target minimum spectral line width Δλmin or more is obtained, and when the pulse laser light having the target minimum spectral line width Δλmin or more can be output, output to the exposure apparatus 200 can be performed.
According to the first embodiment, the moving integrated spectrum waveform for every number of irradiation pulses N of the pulse laser light includes a plurality of peaks, and the laser control processor 130 determines the target minimum spectral line width Δλmin such that the spectral line width Δλ increases as the wavelength difference (λL−λS)/(N−1) between the peaks increases. Accordingly, the target minimum spectral line width Δλmin can be determined to be an appropriate value in accordance with the wavelength difference (λL−λS)/(N−1) between the peaks. In other respects, the first embodiment is similar to the comparative example.
The process of S121 is similar to the corresponding process in the first embodiment. After S121, in S122a, the laser control processor 130 determines a target maximum spectral line width Δλmax to be a value calculated by the following equation. The target maximum spectral line width Δλmax is an upper limit value of the spectral line width control, and is an example of the target spectral line width in the present disclosure.
Δλmax=Dmax*(λ−λS)/(N−1)
Here, Dmax is a coefficient and is preferably 2.5 or less. The range of Dmax will be described later with reference to
Δλmax=Dmax*(λL−λS)/(N/2−1)
That is, the target maximum spectral line width Δλmax is set such that the spectral line width Δλ increases as the wavelength difference (λL−λS)/(N/2−1) between the peaks increases.
In the case of controlling the wavelength in the triangular waveform in which wavelengths are shifted between the first half and the second half of the cycle as shown in
Δλmax=Dmax*(λL−λS)/(N−1)
The processes of S123 to S126 after S122a are similar to the corresponding processes in the first embodiment.
When the determination in S125 is YES, the laser control processor 130 advances processing to S127a. In S127a, the laser control processor 130 determines whether or not the measurement value of the spectral line width Δλ is equal to or less than the target maximum spectral line width Δλmax.
When the measurement value of the spectral line width Δλ is more than the target maximum spectral line width Δλmax (S127a:NO), the laser control processor 130 advances processing to S128a. In S128a, the laser control processor 130 controls the wavefront adjuster 15a so that the spectral line width Δλ decreases. After S128a, the laser control processor 130 returns processing to S124.
When the measurement value of the spectral line width Δλ is equal to or less than the target maximum spectral line width Δλmax (S127a:YES), the laser control processor 130 advances processing to S129. The process of S129 is similar to the corresponding process in the first embodiment. After S129, the laser control processor 130 terminates the processing of the present flowchart and returns to processing shown in
According to the second embodiment, the spectral line width can be controlled between the target minimum spectral line width Δλmin and the target maximum spectral line width Δλmax. In other respects, the second embodiment is similar to the first embodiment.
In S121b, the laser control processor 130 determines a target spectral line width Δλt to be a value calculated by the following equation.
Δλt=D*(λL−λS)/(N−1)
Here, D is a coefficient and is preferably 1 or more and 2.5 or less. The range of D will be described later with reference to
Δλt=D*(λL−λS)/(N/2−1)
That is, the target spectral line width Δλt is set such that the spectral line width Δλ increases as the wavelength difference (λL−λS)/(N/2−1) between the peaks increases.
In the case of controlling the wavelength in the triangular waveform in which wavelengths are shifted between the first half and the second half of the cycle as shown in
Δλt=D*(λL−λS)/(N−1)
The processes of S123 and S124 after S121b are similar to the corresponding processes in the first embodiment. After S124, in S125b, the laser control processor 130 determines whether or not the measurement value of the spectral line width Δλ is equal to or more than a lower limit value of the allowable range by the following equation.
Δλ≥Δλt−Δλerror
Here, Δλerror is an allowable error, and the lower limit value of the allowable range is obtained by subtracting the allowable error Δλerror from the target spectral line width Δλt.
When the measurement value of the spectral line width Δλ is less than the lower limit value of the allowable range (S125b:NO), the laser control processor 130 advances processing to S126. The process of S126 is similar to the corresponding process in the first embodiment. After S126, the laser control processor 130 returns processing to S124.
When the measurement value of the spectral line width Δλ becomes equal to or more than the lower limit value of the allowable range (S125b:YES), the laser control processor 130 advances processing to S127b.
In S127b, the laser control processor 130 determines whether or not the measurement value of the spectral line width Δλ is equal to or more than an upper limit value of the allowable range by the following equation.
Δλ≤Δλt+Δλerror
The upper limit value of the allowable range is obtained by adding the allowable error Δλerror to the target spectral line width Δλt.
When the measurement value of the spectral line width Δλ is more than the upper limit value of the allowable range (S127b:NO), the laser control processor 130 advances processing to S128a. In S128a, the laser control processor 130 controls the wavefront adjuster 15a so that the spectral line width Δλ decreases. After S128a, the laser control processor 130 returns processing to S124.
When the measurement value of the spectral line width Δλ is equal to or less than the upper limit value of the allowable range (S127b:YES), the laser control processor 130 advances processing to S129. The process of S129 is similar to the corresponding process in the first embodiment. After S129, the laser control processor 130 terminates the processing of the present flowchart and returns to processing shown in
According to the third embodiment, the spectral line width Δλ can be controlled into the allowable range defined by the allowable error Δλerror around the target spectral line width Δλt. In other respects, the third embodiment is similar to the first embodiment.
The spectral line width Δλ is the full width at half maximum.
As shown in
In each of
As shown in
In each of
In
The higher the light intensity ratio Imin/Imax is, the more the steepness of the moving integrated spectrum waveform is moderated. In order to obtain stable exposure performance, the light intensity ratio Imin/Imax is preferably equal to or more than 0.71, and more preferably equal to or more than 0.90.
As shown in
As the light intensity ratio Imin2/Imax becomes higher, not only the steepness of the peaks corresponding to the respective pulses in the moving integrated spectrum waveform becomes moderated, but also the slope at the wavelength region in the vicinity of each of the shortest wavelength λS and the longest wavelength λL in the moving integrated spectrum waveform becomes steep, so that a preferable flat top shape is obtained. In order to obtain stable exposure performance, the light intensity ratio Imin2/Imax is preferably equal to or more than 0.71.
As shown in
Based on the preferable range of the normalized spectral line width Δλ/((λL−λS)/(N−1)), the above-described coefficients Dmin, Dmax, D can be determined, and the target minimum spectral line width Δλmin, the target maximum spectral line width Δλmax, and the target spectral line width Δλt can be determined.
As shown in
In
As shown in
In order to obtain stable exposure performance, the light intensity ratio Imin/Imax is preferably equal to or more than 0.71, and more preferably equal to or more than 0.90.
In order to set the light intensity ratio Imin/Imax to be equal to or more than 0.71, the normalized spectral line width Δλ/((λL−λS)/(N/2−1)) is preferably equal to or more than 1. In order to set the light intensity ratio Imin/Imax to be equal to or more than 0.90, the normalized spectral line width Δλ/((λL−λS)/(N/2−1)) is preferably equal to or more than 1.2.
Although the relationship between the spectral line width Δλ and the light intensity ratio Imin2/Imax in the case in which the wavelength is controlled in the triangular waveform is not shown, similarly to the description with reference to
Based on the preferable range of the normalized spectral line width Δλ/((λL−λS)/(N/2−1)), the above-described coefficients Dmin, Dmax, D can be determined, and the target minimum spectral line width Δλmin, the target maximum spectral line width Δλmax, and the target spectral line width Δλt can be determined.
The description above is intended to be illustrative and the present disclosure is not limited thereto. Therefore, it would be obvious to those skilled in the art that various modifications to the embodiments of the present disclosure would be possible without departing from the spirit and the scope of the appended claims. Further, it would be also obvious to those skilled in the art that embodiments of the present disclosure would be appropriately combined.
The terms used throughout the present specification and the appended claims should be interpreted as non-limiting terms unless clearly described. For example, terms such as “comprise”, “include”, “have”, and “contain” should not be interpreted to be exclusive of other structural elements. Further, indefinite articles “a/an” described in the present specification and the appended claims should be interpreted to mean “at least one” or “one or more.” Further, “at least one of A, B, and C” should be interpreted to mean any of A, B, C, A+B, A+C, B+C, and A+B+C as well as to include combinations of any thereof and any other than A, B, and C.
The present application claims the benefit of International Application No. PCT/JP2020/039674, filed on Oct. 22, 2020 the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/039674 | Oct 2020 | US |
Child | 18177088 | US |