The present invention relates to illumination devices, and more particularly, is related to high-intensity arc lamps.
High intensity arc lamps are devices that emit a high intensity beam. The lamps generally include a gas containing chamber, for example, a glass bulb, with an anode and cathode that are used to excite the gas (ionizable medium) within the chamber. An electrical discharge is generated between the anode and cathode to provide power to the excited (e.g. ionized) gas to sustain the light emitted by the ionized gas during operation of the light source.
Referring to
The cathode struts 3c hold the cathode 3b rigidly in place and conduct current to the cathode 3b. The lamp window 3d may be ground and polished single-crystal sapphire (AlO2). Sapphire allows thermal expansion of the window 3d to match the flange thermal expansion of the flange 3c so that a hermetic seal is maintained over a wide operating temperature range. The thermal conductivity of sapphire transports heat to the flange 3c of the lamp and distributes the heat evenly to avoid cracking the window 3d. The getters 3e are wrapped around the cathode 3b and placed on the struts. The getters 3e absorb contaminant gases that evolve in the lamp during operation and extend lamp life by preventing the contaminants from poisoning the cathode 3b and transporting unwanted materials onto a reflector 3k and window 3d. The anode assembly 3f is composed of the anode 3g, a base 3h, and tabulation 3i. The anode 3g is generally constructed from pure tungsten and is much blunter in shape than the cathode 3b. This shape is mostly the result of the discharge physics that causes the arc to spread at its positive electrical attachment point. The arc is typically somewhat conical in shape, with the point of the cone touching the cathode 3b and the base of the cone resting on the anode 3g. The anode 3g is larger than the cathode 3b, to conduct more heat. About 80% of the conducted waste heat in the lamp is conducted out through the anode 3g, and 20% is conducted through the cathode 3b. The anode is generally configured to have a lower thermal resistance path to the lamp heat sinks, so the lamp base 3h is relatively massive. The base 3h is constructed of iron or other thermally conductive material to conduct heat loads from the lamp anode 3g. The tabulation 3i is the port for evacuating the lamp 100 and filling it with Xenon gas. After filling, the tabulation 3i is sealed, for example, pinched or cold-welded with a hydraulic tool, so the lamp 100 is simultaneously sealed and cut off from a filling and processing station. The reflector assembly 3j includes the reflector 3k and two sleeves 31. The reflector 3k may be a nearly pure polycrystalline alumina body that is glazed with a high temperature material to give the reflector a specular surface. The reflector 3k is then sealed to its sleeves 31 and a reflective coating is applied to the glazed inner surface.
The chamber 320 has an ingress window 326 where laser light from a laser source (not shown) may enter the chamber 320. Similarly the chamber 320 has an egress window 328 where high intensity light from energized plasma may exit the chamber 320. Light from the laser is focused on the excited gas (plasma) to provide sustaining energy. The ionized media may be added to or removed from the chamber with a controlled high pressure valve 398.
The heated gas may cause some turbulence within the chamber. Such turbulence may affect the plasma region, for example expanding, modulating or deforming the plasma region, or otherwise lead to some instability in the high intensity output light.
A significant amount of instability may be caused by the thermal gradients in the bulb and gravity, causing turbulence in the gas surrounding the plasma. Since the plasma itself typically reaches temperatures over 9,000 k, the surrounding xenon gas sees a significant temperature gradient which in combination with gravity contributes to heavy turbulence. This turbulence affects the spatial stability of the plasma and equally impacts the thermal energy exchange dynamics of the plasma which in turns directly modifies the conversion efficiency of the photons. Therefore, there is a need to address one or more of the above mentioned shortcomings.
Embodiments of the present invention provide a laser driven sealed beam lamp with improved stability. Briefly described, a first aspect is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source and method for making the same are disclosed. The device includes a sealed cylindrical chamber configured to contain an ionizable medium. The chamber has a cylindrical wall, with an ingress and an egress window disposed opposite the ingress window. A tube insert is disposed within the chamber formed of an insulating material. The insert is configured to receive the laser beam within the insert inner diameter.
A second aspect is directed to a sealed high intensity illumination device. The device is configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium, the chamber having a volumetric profile that is asymmetrical in at least two dimensions. A first electrode and a second electrode extend into the chamber. An ignition position located between the first electrode and the second electrode is offset from at least one point of symmetry within the chamber.
Other systems, methods and features of the present invention will be or become apparent to one having ordinary skill in the art upon examining the following drawings and detailed description. It is intended that all such additional systems, methods, and features be included in this description, be within the scope of the present invention and protected by the accompanying claims.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principals of the invention.
The following definitions are useful for interpreting terms applied to features of the embodiments disclosed herein, and are meant only to define elements within the disclosure.
As used within this disclosure, collimated light is light whose rays are parallel, and therefore will spread minimally as it propagates.
As used within this disclosure, “substantially” means “very nearly,” or within normal manufacturing tolerances. For example, a substantially flat window, while intended to be flat by design, may vary from being entirely flat based on variances due to manufacturing.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The chamber 420 has an ingress window 426 which conveys the laser light into the cavity 430, and may be formed of a suitable transparent material, for example quartz glass or sapphire. The chamber 420 is bounded by an exterior wall 421, as well as the ingress window 426 sealing a first side of the chamber 420 and an egress window 428 substantially opposite the ingress window 426 and sealing a second side of the chamber 420. The asymmetrical cavity 430 is formed as a region within the chamber 420, bounded by a cavity wall 431.
A high intensity egress light is output by the lamp 400. The high intensity light is emitted by a plasma formed of the ignited and energized ionizable medium within the cavity 430. The ionizable medium is ignited and/or excited within the cavity 430 at a plasma ignition region located between a pair of ignition electrodes 490, 491 within the cavity 430. The plasma is continuously generated and sustained within the cavity 430 by energy provided by laser light produced external to the chamber 420 and entering the chamber 420 via an ingress window 426. While
It should be noted that the asymmetrical cavity 430 is asymmetrical with respect to the chamber 420, but may be symmetrical unto itself. The asymmetrical cavity 430 may be, for example, cylindrical in shape, but having a smaller diameter than the chamber 420, where the center 432 of the cavity 430 is offset from the center 422 of the chamber 420. The electrodes 490, 491 may be positioned so that a midpoint between the electrodes 490, 491 is located substantially at the center 422 of the chamber 420, but offset with respect to the center 432 of the cavity 430, such that the midpoint is located near an upper wall (or ceiling) of the cavity 430. As shown by
Two arms 445, 446 protrude outward from the sealed chamber 420. The arms 445, 446 house the electrodes 490, 491, which protrude inward into the cavity 430, and provide an electric field for ignition and/or excitation of the ionizable medium within the cavity 430. Only the ends of the electrodes 490, 491 may protrude inward into the chamber 430 from the fill portion 435. Electrical connections for the electrodes 490, 491 are provided at the ends of the arms 445, 446.
Testing has shown that when the laser focus was moved closer to the upper wall of the chamber of a cylindrical lamp, the stability improves. Investigation showed the gas turbulence within the chamber is slowed down and decreased in magnitude by certain geometric chamber arrangements. By forming an offset cavity within the chamber, such arrangements may be formed within a cylindrical lamp configuration.
Therefore, it is desirable to use a cavity that is not symmetrical in horizontal orientation, vertical orientation, and/or depth, but instead to break-up or distribute the turbulent gas stream within the cavity 430 so the energy is dissipated at different rates. The result is that the magnitude of the disturbance is reduced as the energy is distributed over at least two resonant frequencies rather than one. These frequencies may be very close together in light of the overall volume of the cavity 430 but the broadening and flattening of the peaks results in a product that has a higher stability in the long term.
Testing of multiple cavity shapes show the typical 0.1% instability of prior art lamps between 100 Hz and 10 kHz to be reduced by a factor 1.5 to 2 with an asymmetrical cavity, depending on cavity shape and in a lesser extent to overall cavity size.
The most improved shapes were those where the symmetry was broken up in at least two dimensions and provisions were made for the colder gas in the cavity to interact with the hotter gas over a reduced volume, for example a dual parabolic cavity (or “egg shaped”) chamber. Locating the plasma away from the center in a lamp breaks up the symmetry, with improved performance when the plasma is located closer to the top of the cavity. Other cavity configurations are also possible, including, but not limited to an offset cavity with lower partial wall to shield the sapphire window, and a cavity with a D profile shape.
The cavity 430 within the chamber 420 is generally pressurized, for example to a pressure level in the range of 20-60 bars. At higher pressures the plasma spot may be smaller, which may be advantageous for coupling into small apertures, for example, a fiber aperture. The chamber 420 has an egress window 428 for emitting high intensity egress light. The egress window 428 may be formed of a suitable transparent material, for example quartz glass or sapphire, and may be coated with a reflective material to reflect specific wavelengths. The reflective coating may block the laser beam wavelengths from exiting the lamp 400, and/or prevent UV energy from exiting the lamp 400. The reflective coating may be configured to pass wavelengths in a certain range such as visible light.
The egress window 428 may also have an anti-reflective coated to increase the transmission of rays of the intended wavelengths. This may be a partial reflection or spectral reflection, for example to filter unwanted wavelengths from egress light emitted by the lamp 400. An egress window 428 coating that reflects the wavelength of the ingress laser light back into the chamber 420 may lower the amount of energy needed to maintain plasma within the chamber 420. The chamber 420 may have a body formed of metal, sapphire or glass, for example, quartz glass.
The laser light source (not shown) may be a single laser, for example, a single infrared (IR) laser diode, or may include two or more lasers, for example, a stack of IR laser diodes. The wavelength of the laser light source (not shown) is preferably selected to be in the near-IR to mid-IR region as to optimally pump the ionizable medium, for example, Xenon gas. A far-IR light source is also possible. A plurality of IR wavelengths may be applied for better coupling with the absorption bands of the gas. Of course, other laser light solutions are possible, but may not be desirable due to cost factors, heat emission, size, or energy requirements, among other factors.
It should be noted that while it is generally taught it is preferable to excite the ionizing gas within 10 nm of a strong absorption line, this is not required when creating a thermal plasma through inverse bremsstrahlung, instead of photo-resonance plasma. For example, ionizing gas may be excited CW at 1070 nm, 14 nm away from a very weak absorption line (1% point, 20 times weaker in general than lamps using flourescence plasma, for example, at 980 nm emission with the absorption line at 979.9 nm at the 20% point. However a 10.6 μm laser can ignite Xenon plasma even though there is no known absorption line near this wavelength. In particular, CO2 lasers can be used to ignite and sustain laser plasma in Xenon. See, for example, U.S. Pat. No. 3,900,803.
The lamp 400 may be formed of nickel-cobalt ferrous alloy, also known as Kovar™, without use of any copper in the construction, including braze materials. The use of relatively high pressure within the chamber 420 under the first embodiment provides for a smaller plasma focal point, resulting in improved coupling into smaller apertures, for example, an optical fiber egress.
Under the first embodiment, the electrodes 490, 491 may be separated, for example, by a distance equal to or larger than 1 mm, to minimize the impact of plasma gas turbulence damaging the electrodes 490, 491. The electrodes 490, 491 may be symmetrically designed to minimize the impact on the plasma gas turbulence caused by asymmetrical electrodes.
The electrodes 490, 491 may also be offset with respect to the ingress window 426 and the egress window 428. For example, the electrodes may be positioned so that the ignition location is closer to the ingress window 426 than the egress window 428. Alternatively, the electrodes may be positioned so that the ignition location is closer to the egress window 428 than the ingress window 426.
The chamber 520 includes a second cavity 540 partially intersecting a first cavity 530, the second cavity 540 having a walled region 541 within chamber 520 having a second cavity diameter smaller than the first cavity diameter. A fill portion 535 fills the portion of the chamber 520 not occupied by the cavities 530, 540. The fill portion 535 may be formed of the same material as the housing for the lamp 500, for example, nickel-cobalt ferrous alloy.
A high intensity egress light is output by the lamp 500 from a plasma formed of the ignited and energized ionizable medium within the cavity 530. Two arms 545, 546 protrude outward from the sealed chamber 520. The arms 545, 546 house the electrodes 590, 591, which protrude inward into the cavity 530, and provide an electric field for ignition of the ionizable medium within the cavity 530. Electrical connections for the electrodes 590, 451 are provided at the ends of the arms 545, 546.
While
While the above embodiments have been described in the context of cylindrical lamps, alternative embodiments having pressurized high intensity lamps with offset and/or asymmetrical cavities may include sealed high intensity lamps in non-cylindrical configurations.
As mentioned above, a significant amount of instability may be caused by the thermal gradients in the bulb and gravity, causing turbulence in the gas surrounding the plasma. Accordingly, the following embodiment includes an insulating quartz tube which is inserted in the cylindrical cavity of the lamp.
The chamber 620 is sealed at an ingress window 626 which conveys laser light into the cavity 630, and the ingress window 626 may be formed of a suitable transparent material, for example quartz glass or sapphire, and framed by an ingress window ring 627. The chamber 620 is bounded by an exterior wall 621, as well as the ingress window 626 and an egress window 628 framed by an egress window ring 629. The cavity 630 is formed as a region within the chamber 620 formed of the exterior wall 621 and the windows 626, 628. The exterior wall 621 may include an optional extending portion 635 which extends at least partially into the chamber 620. The extending portion 635 may be formed of the same material as the main body 610, for example, nickel-cobalt ferrous alloy. A fill port 696 extends from the exterior of the main body 610 into the chamber 620, and is configured to accommodate a controlled high pressure valve 698 for adding or removing an ionizable medium from the chamber 620.
The insulating insert 650 is located within the chamber 620. The insulating insert 650 may be generally cylindrical in shape, although other shapes are possible, as described further below. In particular, the cross section shape of the insulating insert 650 may be circular or non-circular. The walls of the insulating insert 650 extend between the ingress window 626 and the egress window 628. An ingress end of the insulating insert 650 may abut the ingress window 626, such that the ingress end of the insulating insert 650 may be touching or nearly touching the ingress window 626. Likewise, an egress end of the insulating insert 650 may abut the egress window 628, such that the egress end of the insulating insert 650 may be touching or nearly touching the egress window 628. In particular, the insulating insert 650 need not be sealed against the ingress window 626 and/or the egress window 628. Therefore, the insulating insert 650 may move within the chamber 620, and the position of the insulating insert 650 within the chamber 620 may be affected by external forces, such as gravity.
The outside diameter of the insulating insert 650 may typically be smaller than the inside diameter of the cavity 630. For a non-limiting example, the insulating insert 650 may have an 8 mm inner diameter and a 10 mm outside diameter inside a cavity 630 having an 11 mm inside diameter, where the distance from ingress window 626 to the egress window 628 is 8 mm. Other configurations are also possible. For example, distances between windows may preferably be between 4 and 12 mm and cavity diameters may preferably range between 7-19 mm for some applications. For example, the quartz insert wall thicknesses may be between 0.2 and 2 mm.
The insulating insert 650 may be made of quartz, or another suitable insulating material. The material is preferably a thermal isolator with a thermal expansion coefficient that is smaller than the thermal expansion coefficient than the body material of the cavity. Using a material for the insulating insert 650 with a thermal expansion coefficient smaller than the thermal expansion coefficient of the body material ensures the quartz or other thermal isolating material does not crack due to thermo-mechanical stress.
A high intensity egress light is output by the lamp 600. The high intensity light is emitted by a plasma formed of the ignited and energized ionizable medium within the cavity 630 and the insulating insert 650. The ionizable medium is ignited and/or excited within the cavity 630 and the insulating insert 650 at a plasma ignition region located between a pair of active ignition electrodes 690, 691 within the cavity 630 and the insulating insert 650. The arms 645, 646 house the active electrodes 690, 691, which protrude inward into the cavity 630, and provide an electric field for ignition of the ionizable medium within the cavity 630. Electrical connections for the active electrodes 690, 691 are provided at the ends of the arms 645, 646. The active electrodes 690, 691 may protrude though the walls of the insulating insert 650, for example, through openings (not shown) in the walls of the insulating insert 650. Other ignition mechanisms are described below.
Once ignited and/or excited, the plasma is sustained by energy from the laser (external to the lamp 600). The laser is focused upon a location within the insulating insert 650, so that the walls of the insulating insert 650 insulate the walls of the chamber 620 from the heat emitted by the plasma. Since quartz is a good insulator, the ionizable medium, Xenon gas for example, is no longer directly cooled by the walls 621 of the lamp 600 during operation. This greatly reduces the turbulence of the Xenon gas in the lamp 600, in turn reducing the impact of the turbulence on the spatial position of the plasma with a reduced impact on the thermal exchange balance between plasma and surrounding Xenon gas.
The cavity 630 within the chamber 620 is generally pressurized, for example to a pressure level in the range of 20-60 bars. The interior of the insulating insert 650 may not be sealed from the exterior of the insulating insert 650. At higher pressures the plasma spot may be smaller (in volume), which may be advantageous for coupling into small apertures, for example, a fiber aperture. The chamber 620 egress window 628 emits the high intensity egress light. The egress window 628 may be formed of a suitable transparent material, for example quartz glass or sapphire, and may be coated with a reflective material to reflect specific wavelengths. The reflective coating may block the laser beam wavelengths from exiting the lamp 600, and/or prevent UV energy from exiting the lamp 600. The reflective coating may be configured to pass wavelengths in a certain range such as visible light.
The egress window 628 may also have an anti-reflective coated to increase the transmission of rays of the intended wavelengths. This may be a partial reflection or spectral reflection, for example to filter unwanted wavelengths from egress light emitted by the lamp 600. An egress window 628 coating that reflects the wavelength of the ingress laser light back into the chamber 620 may lower the amount of energy needed to maintain plasma within the chamber 620.
Typical instabilities in lamps without an insulating insert measured in a specific measurement are rated as 0.07 to 0.1%, the latter being a cut-off spec limit. In contrast, a lamp 600 equipped with an insulating insert 650 measured in at 0.04% and the VIS light output was visible much more stable to the naked eye judging projected Schlieren effect flumes projected on the wall. The Sapphire window temperature increased by 25%, clearly confirming that the insulating insert 650 increases the internal Xenon temperature in the lamp 600. Further improvements resulted from reducing the internal volume of the lamp and/or removing the electrodes to remove cavity discontinuities. Measurements on a electrodeless lamp with quartz insert have shown the instability drop to below 0.02% with a light output increase of 10% over the no-quartz insert solution at the same Xenon fill pressure.
As shown by
The configuration of the fourth embodiment leaves enough room in the cavity 630 for the pump and fill process to proceed in a similar fashion as with a lamp not including an insulating insert 650. This allows normal operation of the lamp 900 with the plasma is operated closer to the top of the insert 650 than to the bottom, even if the plasma is operated on the cylindrical axis of the chamber 620 as the insulating insert 650 drops to the bottom of the cavity 630.
In an eighth embodiment of a lamp 1300, as shown in
An exemplary embodiment of an insulating insert 650 may include an embedded or inset ring of a copper/tungsten MIM construct, with inwardly pointing non-electrode igniting agents 1390 (pins) of thoriated tungsten, for example, two or 4 evenly spaced non-electrode igniting agents 1390 pointing to a plasma ignition region within the insulating insert 650. As mentioned previously, other alternative embodiments of the lamp 1300 may omit electrodes entirely, such that the ionizable medium is ignited/excited directly by the laser.
For the previous embodiments (other than the third embodiment), the location of the plasma sustaining location relative to the center of the chamber (first and second embodiments) or insulating insert (fourth through seventh embodiments) generally has an impact on plasma stability. For example, in a lamp with a cavity/insert having an inner diameter on the order of 10 mm, the plasma sustaining location is preferably at least 2 to 3 mm away from the cavity/insert wall. Any closer to the wall and the plasma may extinguish. A positive impact on plasma stability may be noticed as soon as the plasma sustaining location is moved 1 to 2 mm from the center axis of the cavity/insert. The exact distances are relative to the size of the cavity/insert, and are based on the thermal streams in the lamp based on the cooling of the ionizable medium when the ionizable medium hits the cavity walls. The plasma sustaining location may be positioned according to the stability and/or illumination needs of the application at hand. The plasma may initially be ignited and/or excited at a first location, for example, centered between electrodes or passive non-electrode igniting elements, and then relocated to a second location for sustaining high intensity light, for example, by slowly moving the focus location of the laser from the first location to the second location.
Other embodiments are also possible. While the drawings generally depict lamp embodiments with active electrodes, in alternative embodiments, each of the previously described lamp embodiments using active electrodes may instead be configured with passive non-electrode igniting agents or may omit electrodes entirely. In such embodiments, the arms 445, 446 (
A sealable cylindrical chamber 620 (
In summary it will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application is a divisional of U.S. application Ser. No. 15/069,242, filed Mar. 14, 2016, entitled “Laser Driven Sealed Beam Lamp With Improved Stability” which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/161,389, filed May 14, 2015, entitled “Laser Driven Sealed Beam Lamp With Improved Stability,” which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3502929 | Richter | Mar 1970 | A |
3515491 | Emary | Jun 1970 | A |
3619588 | Chambers | Nov 1971 | A |
3808496 | McRae et al. | Apr 1974 | A |
3826996 | Jaegle | Jul 1974 | A |
3900803 | Silfvast et al. | Aug 1975 | A |
4088966 | Samis | May 1978 | A |
4152625 | Conrad | May 1979 | A |
4420690 | Kuehl | Dec 1983 | A |
4498029 | Yoshizawa | Feb 1985 | A |
4622464 | Sukigara et al. | Nov 1986 | A |
4646215 | Levin | Feb 1987 | A |
RE32626 | Yoshizawa | Mar 1988 | E |
4738748 | Kisa | Apr 1988 | A |
4780608 | Cross et al. | Oct 1988 | A |
4789788 | Cox | Dec 1988 | A |
4866517 | Mochizuki et al. | Sep 1989 | A |
4901330 | Wolfram | Feb 1990 | A |
5432398 | Kogelschatz | Jul 1995 | A |
5747813 | Norton et al. | May 1998 | A |
5798805 | Ooi | Aug 1998 | A |
5905268 | Garcia | May 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
6184517 | Sawada | Feb 2001 | B1 |
6285743 | Hiroyuki | Sep 2001 | B1 |
6288780 | Fairley et al. | Sep 2001 | B1 |
6324255 | Kondo | Nov 2001 | B1 |
6325255 | Hiroyuki | Nov 2001 | B1 |
6356700 | Strobl | Mar 2002 | B1 |
6414436 | Eastlund | Jul 2002 | B1 |
6417625 | Brooks et al. | Jul 2002 | B1 |
6541924 | Kane et al. | Apr 2003 | B1 |
6679276 | Brown et al. | Jan 2004 | B1 |
6737809 | Espiau et al. | May 2004 | B2 |
6762849 | Rulkens | Jul 2004 | B1 |
6788404 | Lange | Sep 2004 | B2 |
6956329 | Brooks et al. | Oct 2005 | B2 |
6960872 | Beeson | Nov 2005 | B2 |
6972421 | Melnychuk | Dec 2005 | B2 |
7050149 | Owa et al. | May 2006 | B2 |
7294839 | Rich et al. | Nov 2007 | B2 |
7295739 | Solarz | Nov 2007 | B2 |
7307375 | Smith | Dec 2007 | B2 |
7390116 | Jain | Jun 2008 | B2 |
7427167 | Holder et al. | Sep 2008 | B2 |
7429818 | Chang et al. | Sep 2008 | B2 |
7435982 | Smith | Oct 2008 | B2 |
7439530 | Ershov | Oct 2008 | B2 |
7652430 | Delgado | Jan 2010 | B1 |
7679276 | Blondia | Mar 2010 | B2 |
7744241 | Xu | Jun 2010 | B2 |
7786455 | Smith | Aug 2010 | B2 |
7989786 | Smith | Aug 2011 | B2 |
8192053 | Owen et al. | Jun 2012 | B2 |
8242671 | Blondia et al. | Aug 2012 | B2 |
8242695 | Sumitomo | Aug 2012 | B2 |
8253926 | Sumitomo et al. | Aug 2012 | B2 |
8288947 | Yokota et al. | Oct 2012 | B2 |
8309943 | Smith | Nov 2012 | B2 |
8525138 | Smith | Sep 2013 | B2 |
8969841 | Smith | Mar 2015 | B2 |
9048000 | Smith | Jun 2015 | B2 |
9135786 | Smith | Nov 2015 | B2 |
20010016430 | Nakano | Aug 2001 | A1 |
20010035720 | Guthrie et al. | Nov 2001 | A1 |
20020017399 | Chang | Feb 2002 | A1 |
20020021508 | Ishihara | Feb 2002 | A1 |
20020044629 | Hertz | Apr 2002 | A1 |
20020080834 | Kusunose | Jun 2002 | A1 |
20030052609 | Eastlund | Mar 2003 | A1 |
20030068012 | Ahmad | Apr 2003 | A1 |
20030147499 | Kondo | Aug 2003 | A1 |
20030163982 | Kim | Sep 2003 | A1 |
20030231496 | Sato | Dec 2003 | A1 |
20040016894 | Wester | Jan 2004 | A1 |
20040026512 | Otsubo | Feb 2004 | A1 |
20040129896 | Schmidt | Jul 2004 | A1 |
20040183031 | Silverman | Sep 2004 | A1 |
20040183038 | Hiramoto et al. | Sep 2004 | A1 |
20040238762 | Mizoguchi et al. | Dec 2004 | A1 |
20040264512 | Hartlove et al. | Dec 2004 | A1 |
20050036314 | Kobayashi et al. | Feb 2005 | A1 |
20050167618 | Hoshino et al. | Aug 2005 | A1 |
20050205811 | Partlo et al. | Sep 2005 | A1 |
20050207454 | Starodoumov et al. | Sep 2005 | A1 |
20050225739 | Hiura | Oct 2005 | A1 |
20050243390 | Tejnil | Nov 2005 | A1 |
20060039435 | Cheymol | Feb 2006 | A1 |
20060097203 | Byankov et al. | May 2006 | A1 |
20060109455 | Haverlag | May 2006 | A1 |
20060131515 | Partlo | Jun 2006 | A1 |
20060152128 | Manning | Jul 2006 | A1 |
20060192152 | Ershov | Aug 2006 | A1 |
20060219957 | Ershov | Oct 2006 | A1 |
20070115468 | Barnard | May 2007 | A1 |
20070228288 | Smith | Oct 2007 | A1 |
20070228300 | Smith | Oct 2007 | A1 |
20070285921 | Zulim et al. | Dec 2007 | A1 |
20080055712 | Noelscher | Mar 2008 | A1 |
20080280079 | Watanabe | Nov 2008 | A1 |
20090032740 | Smith et al. | Feb 2009 | A1 |
20090140651 | Hori | Jun 2009 | A1 |
20090230326 | Vaschenko et al. | Sep 2009 | A1 |
20100045197 | Kessels | Feb 2010 | A1 |
20100181503 | Yanagida et al. | Jul 2010 | A1 |
20100264820 | Sumitomo | Oct 2010 | A1 |
20110181191 | Smith | Jul 2011 | A1 |
20110204265 | Smith | Aug 2011 | A1 |
20120112624 | Jeong | May 2012 | A1 |
20130329204 | Pellemans et al. | Dec 2013 | A1 |
20140126043 | Senekerimyan | May 2014 | A1 |
20140362600 | Suckling | Dec 2014 | A1 |
20150262808 | Wang | Sep 2015 | A1 |
20160057845 | Smith | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
243629 | Mar 1987 | DE |
10 2011 113681 | Mar 2013 | DE |
1335640 | Aug 2003 | EP |
2554302 | May 1985 | FR |
S60202936 | Oct 1985 | JP |
S61-193358 | Aug 1986 | JP |
H04-144053 | May 1992 | JP |
08299951 | Nov 1996 | JP |
2003-317675 | Nov 2003 | JP |
2006010675 | Jan 2006 | JP |
2009070633 | Apr 2009 | JP |
2009152020 | Jul 2009 | JP |
2009532829 | Sep 2009 | JP |
8403294 | Jun 1985 | NL |
2004097520 | Nov 2004 | WO |
WO2007120521 | Oct 2007 | WO |
WO2010002766 | Jan 2010 | WO |
2010093903 | Aug 2010 | WO |
Entry |
---|
International Search Report for PCT Application No. PCT/US2016/030740 dated Oct. 20, 2015. |
Partial International Search Report for PCT Application No. PCT/US2015/030740, dated Aug. 11, 2015, 2 pages. |
Excelitas Technologies; Cermax® Xenon Lamp Engineering Guide, Copyright 2011, www.excelitas.com. |
Partial Search Report for PCT/US2016/031983 dated Aug, 16, 2016. |
International Search Report for PCT/US16/32022, dated Jun. 24, 2016. |
I.M. Beterov et al., “Resonance radiation plasma (photoresonance plasma)”, Sov. Phys. Usp. 31 (6), 535 (1988). |
D. Keefer, “Laser Sustained Plasmas,” Chapter 4, in Radziernski et al., “Laser-induced Plasmas and Applications,” CRC Press (1989). |
Norbert R. Böwering et al., “EUV Source Collector,” Proc. of SPIE vol. 6151, (Mar. 10, 2008). |
William T. Silfvast, Laser Fundamentais: 2d ed., pp. 1-6 (2004). |
Arp et al., Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission, published Jul. 30, 2004. |
J. Uhlenbusch and W. Viöl, “Hβ-Line Profile Measurements in Optical Discharges”, J. Quant. Spectrosc. Radiat. Transfer, vol. 44, No. 1, 47-56 (1990). |
Bussiahn, R. et al, “Experimental and theoretical investigations of a low-pressure He—Xe discharge for lighting purpose” Journal of Applied Physics, vol. 95, No. 9. May 1, 2004, pp. 4627-4634. |
Beck, Simple Pulse Generator for Pulsing Xenon Arcs with High Repetition Rate, Rev. Sci. Instrum., vol. 45, No. 2, Feb. 1974, pp. 318-319. |
Carlhoff, et al, “Continuous Optical Discharges at Very High Pressure,” Physica 103C, pp. 439-447. |
Fiedorowicz et al, X-Ray Emission from Laser-Irradiated Gas Puff Targets, Appl. Phys. Lett. 62 (22), May 31, 1993. |
Franzen, “CW Gas Breakdown in Argon Using 10.6-um Laser Radiation,” Appl. Phys. Lett. vol. 21, No. 2 Jul. 15, 1972 pp. 62-64. |
Generalov et al “Continuous Optical Discharge,” ZhETF Pis. Red. 11, No. 9, May 5, 1970, pp. 302-304. |
Jeng et al, Theoretical Investigation of Laser-sustained Argon Plasmas J.Appl.Phys. 60 (7), Oct. 1, 1986 pp. 2272-2279. |
Nakar, “Radiometric Characterization of Ultrahigh Radiance Xenon Short-arc Discharge Lamps” Applied Optics, vol. 47 No. 2, Jan. 9, 2008, pp. 224-229. |
Moody, “Maintenance of a Gas Breakdown in Argon Using 10.6-u cw Radiation,” Journal of Applied Physics, vol. 46 No. 6, Jun. 1975, pp. 2475-2482. |
Keefer, et al “Experimental Study of a Stationary Lesser-Sustained Air Plasma”, Journal of Applied Physics, vol. 46., No. 3, Mar. 1975, pp. 1080-1083. |
Nanometrics, Organic Growth Opportunities for Nanometrics in Process Control, Jan. 2016. |
M.J. Soileau et al., Laser-Induced Damage Measurements in CdTe and Other II-VI Materials, Applied Optics, vol. 21, No. 22, pp. 4059-4062; Nov. 15, 1982. |
DS004 EQ-10M—Data Sheet, Energetiq, 2005. |
John Powell and Claes Magnussen; Handbook of Laser Technoiogies and Applications vol. III Applications, Part D:1.2, pp. 1587-1611; 2004, published by Institute of Physics Publishing. |
Digonnet, Michel J.F., editor; Rare-Earth-Doped-Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded, pubiished by Marcel Dekker, Inc., 2001, pp. 144-170. |
Cremers, et al; Evaluation of the Continuous Optical Discharge for Spectrochemical Analysis; Spechtrochimica Acta, Part B. Atomic Spectroscspy; vol. 40B No. 4, 1985. |
ASML's customer magazine; 2014, ASML Holding BV. |
Raizer, Yuri P.; Gas Discharge Physics, Springer-Verlag 1991; pp. 35-51; 307-310. |
Raizer, Yuri P.; Gas Discharge Physics, Springer-Verlag corrected and printing 1997; pp. 35-51; 307-310. |
V. P. Zimakov, et al; Interaction of Near-IR Laser Radiation with Piasma of a Continuous Optical Discharge; Plasma Physics Reports, 2016, vol. 42; No. 1, pp. 68-73. |
Bezel, et al “High Power Laser-Sustained Plasma Light Sources for KLA-Tencor Broadband Inspection Tool”; Conference Paper ⋅ May 2015, KLATencor, Milpitas, California. |
Energetiq Technology, Inc.; LDLS™ Laser-Driven Light Source EQ-1000 High Brightness DUV Light Source Data Sheet 2008; Woburn, Massachusetts. |
Rudoy, et al; Xenon Piasma Sustained by Pulse-Periodic Laser Radiation; Plasma Physics Reports, 2015, vol. 41, No. 10, pp. 858-861. Pleiades Pubiishing, Ltd., 2015. |
Knecht et al; Optical pumping of the XeF(C-+A) and iodine 1.315-pm lasers by a compact surface discharge system; Opt. Eng. 42(12) 3612-3621 (Dec. 2003). |
Fridman, et al, Plasma Physics and Engineering; Published in 2004 by Taylor & Francis, pp. 404-419; 618-619. |
Model EQ-99 LDLS™ Laser-Driven Light Souce; Operation and Maintenance Manual Revision Mar. 2, 2012. |
Martin van den Brink; Many ways to shrink; The right moves to 10 nanometer and beyond; Presentation at ASML SmallTalk 2014; London; Nov. 2014. |
Laser Pumped Plasma Broadband Light Source by RnD Isan (no date). |
Toumanov; Plasma and High Frequency Processes for Obtaining and Processing Materials in The Nuclear Fuel Cycle; Nova Science Publishers, Inc, New York, 2003, p. 60. |
Klauminzer; Cost Considerations for Industrial Excimer Lasers; Laser Focus. The Magazine of Electro-Optics Technology; Dec. 1985. |
S. C. Tidwell, ; Highly efficient 60-W TEMoo cw diode-end-pumped Nd:YAG laser; Optics Letters / vol. 18, No. 2 / Jan. 15, 1993, pp. 116-118. |
R. J. Shine, Jr; 40-W cw, TEM00-mode, diode-laser-pumped; Nd:YAG miniature-slab laser; Mar. 1, 1995 / vol. 20, No. 5 / Optics Letters; pp. 459-461. |
W. Schone, et al; Diode-Pumped High-Power cw Nd:YAG Lasers; W. Waldelich, et al (eds.); Laser in Forschung and Technik; 1996. |
Diogiovanni, et al; High Power Fiber Lasers and Amplifiers; Optics & Photonics News, Jan. 1999. |
ASML YieldStar T-250D product sheet; ASML Product Catalog; Jan. 20, 2014. |
ASML YieldStar S-250D product sheet; SML Product Catalog; Jan. 20, 2014. |
Energetiq Technology Inc; Operation manual for LDLS™ Laser-Driven Light Source; Aug. 2009. |
Bussiahn; Experimental and theoretical investigations of a low-pressure HE-Xe discharge for lighting purpose; Jounral of Applied Physics vol. 95, No. 9 May 1, 2004. |
V.P, Zimakov, et al; Bistable behavior of a continuous optical discharge as a laser beam propagation effect; Laser Resonators; Microresonators, and Beam Control XV; vol. 8600, 860002 ⋅ © 2013 SPIE. |
Fridman, et al; Plasma Physics and Engineering, Second Edition; Published in 2011 by Taylor & Francis, pp. 409-424; 639-640. |
Energetiq Technology; Inc.; Model EQ-1500, LDLS™ Laser-Driven Light Source, Operation Manual, May 2011. |
Energetiq Technology, Inc.; Model EQ-77 LDLS™ Laser-Driven Light Source, Operation Manual, Dec. 2015. |
Energetiq Technology, Inc.; Model EQ-90-FC, LDLS™, Laser-Driven Light Source, Operation and Maintenance Manual, Jan. 2014. |
Raizer, “Optical discharges,” Soviet Physics Uspekhi 23(11) (1980). |
Energetiq Technology, Inc.; Operation and Maintenance Manual, Model EQ-99X, LDLS Laser-Driven, Light Source, Rev. 1 (Jan. 2014). |
Energetiq Technology, Inc.; Operation and Maintenance Manual, Model EQ-99-FC; LDLS Laser-Driven Light Source, Rev. 2 (Mar. 2012). |
Energetiq Technology, Inc.; Operation and Maintenance Manual, Model EQ-99X-FC, LDLS Laser Driven Light Source, Rev. 1 (Jan. 2014). |
Energetiq Technology, Inc.; Operation and Maintenance Manual, Model EQ-9-N, LDLS Laser-Driven Light Source, Rev. 6 (Sep. 2015). |
Energetiq Technology, Inc.; A presentation titled “EQ-400 LDLS Laser-Driven Light Source,” dated Feb. 2, 2015. |
A presentation titled “Energetiq Laser-Driven Light Sources,” dated Apr. 21, 2015. |
A presentation titled “ASML BV LDLS Roadmap,” dated Jun. 11, 2013. |
Nanometrics, Organic Growth Opportunities for Nanometrics in Process Control. |
A presentation titled “LDLS Laser-Driven Light Source,” dated Jul. 8, 2011. |
Castellano “Are the Brains at ASML Hurting Investors With High and Ambitious R&D Costs?” Jul. 20, 2015. |
M. W. P. Cann, Light Sources in the 0.15-20-μ Spectral Range, vol. 8 No. 8 Applied Optics (1969). |
Kuhn, Kelin; Laser Engineering; Prentice-hall Inc, 1998; pp. 384-440. |
Moulton, Peter F.; Tunable Solid-State Lasers; Proceedings of the IEEE, vol. 80, No. 3, Mar. 1992. |
Koch, K.K.; Sodium Plasma Produced by Milliwatt cw Laser Irradiation; Journal of the Optical Society of America; vol. 70, No. 6; Jun. 1980. |
E. B. Salornan; Energy Levels and Observed Spectral Lines of Xenon, Xel through XeLIV; J. Phys. Chem. Ref. Data, vol. 33, No. 3, 2004. |
Lothar Klein; Measurements of Spectral Emission and Absorption of a High Pressure Xenon Arc in the Stationary and the Flashed Modes; Apr. 1968; vol. 7, No. 4, Applied Optics. |
Hailang Zhou, et al; Conductively cooled high-power, high-brightness bars and fiber coupled arrays; High-Power Diode Laser Technology and Applications III, edited by Mark S. Zediker, Proc. of SPIE vol. 5711 (SPIE, Bellingham, WA, 2005). |
Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power; Y. Jeong, et al; Electronics Letters Apr. 15, 2004 vol. 40 No. 8. |
H.M. Pask, et al; Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 um Region; IEEE Journal of Selected Topics in Quantum Electronics vol. 1, No. 1; Apr. 1993. |
Christian Stewen; A 1-kW CW Thin Disc Laser; IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, No. 4, Jul./Aug. 2000. |
Hecht, Eugene; Optics, 4ed; Pearson Addison Wesley; 2002; pp. 149-171, 243-273, 385-442. |
KLA-Tencor; High Power Laser-Sustained Plasma Light Sources for KLA-Tencor Broadband Inspection Tools; Conference Paper ⋅ May 2015. |
Davis, Christopher C.; Lasers and Electro-Optics; Fundamentals and Engineering; 1996, Cambridge University Press, pp. 14-35. |
Tam, Quasiresonant laser-produced plasma: an efficient mechanism for localized breakdown; J. Appl. Phys. 51(9), Sep. 1980, p. 4682. |
Measures, et al; Laser Interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma; Applied Optics, vol. 18, No. 11, Jun. 1, 1979. |
Eletskii et al; Formation kinetics and parameters of a pholoresonant plasma; Sov. Phys. JETP 67 (5); May 1988. |
Ballman, et al; Synthetic Quartz with High Ultraviolet Transmission; Applied Optics; Jul. 1968, vol. 7, No. 7. |
Energetiq Technology, Inc; LDLS™ Laser-Driven Light Source Data Sheet; 2008. |
Patel and Zaidi, The suitability of sapphire for laser windows, MEas, Sci. Technol. 10 (1999). |
Waynant, et al; Electro-Optics Handbook, Second Edition; Chapter 10; published by McGraw-Hill, 2000. |
Excelitas Technologies Corp.; Cermax® Xenon Lamp Engineering Guide, 2011. |
Perkinelmer Optoelectronics; Cermax® Xenon Lamp Engineering Guide, 1998. |
G C Wei; Transparent ceramic lamp envelope materials; J. Phys. D: Appl. Phys. 38 (2005) 3057-3065. |
PASCO Scientific; Instruction Sheet for the PASCO Model OS-9286A Mercury Vapor Light Source; 1990. |
Kozlov et al; “Radiative Losses by Argon Plasma and the Emissive Model of a Continuous Optical Discharge”; Sov. Phys.JETP, vol. 39, No. 3, Sep. 1974, pp. 463-468. |
Wilbers et al, “The Continuum Emission of an Arc Plasma,” J. Quant. Spectrosc. Radiat. Transfer, vol. 45, No. 1, 1991, pp. 1-10. |
Wilbers, et al “The VUV Emissitivty of a High-Pressure Cascade Argon Arc from 125 to 200 nm,” J.Quant. Spectrosc. Radiat. Transfer, vol. 46, 1991, pp. 299-308. |
Luxtell LLC CeraLux Xenon Lamps Product Data Sheet; 2003-2004. |
Laufer, Gabriel; Introduction to Optics and Lasers in Engineering; pp. 449-454; Cambridge University Press, 1996. |
Yu, et al; LED-Based Projection Systems; Journal of Display Technology, vol. 3, No. 3, Sep. 2007. |
Derra et al; UHP lamp systems for projection applications; J. Phys. D: Appl. Phys. 38 (2005) 2995-3010. |
Ingle, James D., et al; Spectrochernical Analysis; 1988, Prentice-Hall Inc.; p. 59. |
M.J. Soileau et al., Laser-Induced Damage Measurements in CdTe and Other II-VI Materials; Applied Optics, vol. 21, No. 22, pp. 4059-4062. |
Roy Henderson et al., Laser Safety, pp. 435-443 (2004). |
Turan Erdogan, Ph.D., CTO Semrock, Inc., A Unit of IDEX Corp; letter dated Feb. 28, 2011 regarding Energetiq Technology's EQ-99 system. |
Winners of 2010 Prism Awards Announced, Jan. 27, 2011; webpage from photonics.com. |
http://www.rdmag.com/award-winners/2011/08/light-source-lifetime-lifted-laser-tech; The EQ-99 LDLS Laser-Driven Light Source, produced by Energetig Technology Inc. 2011. |
Energetiq Technology Inc. Press Release: Energetiq Announces Ultra-Compact Light Source for Next Generation HPLC and Advanced Microscopy; Jan. 21, 2010. |
KLA-Tencor Launches 2830 and Puma 9500 Series, eDR-5210 | Product Releases | Press Releases; Jul. 13, 2009. |
Number | Date | Country | |
---|---|---|---|
20180301330 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62161389 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15069242 | Mar 2016 | US |
Child | 16014808 | US |