The present disclosure relates to a weld rework method and, more particularly, to a weld rework of a gas turbine engine component.
A gas turbine engine utilizes various relatively large, complex components cast from high temperature Nickel alloy. An example of such a component is the Mid Turbine Frame (MTF). The MTF includes a plurality of hollow vanes arranged in a ring-vane-ring structure in which the rings define inner and outer boundaries of a core combustion gas path while the vanes are disposed across the gas path. Tie rods often extend through the hollow vanes to interconnect an engine mount ring and a bearing compartment.
Casting components such as the MTF hollow vanes commonly result in flaws that are rework welded as part of the normal manufacture process. Various methods of rework with a filler alloy equivalent to that of the parent component non-fusion weldable base alloy, although effective, are relatively slow and expensive. In one rework example, a half-inch (13 mm) sized defect requires upward of ten hours to rework. Alternate methods of rework welding utilize an alternate filler alloy which is more weldable to facilitate a relatively quicker weld rework, but such an approach may face the cracking issue at the substrate alloy. The filler alloy may not be fully compatible with the material properties of the substrate alloy such as oxidation resistance or not be compatible with coatings and may shorten component service life.
A method of reworking a component, according to one disclosed non-limiting embodiment of the present disclosure, includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy is different than the non-fusion weldable base alloy.
In a further embodiment of the present disclosure, the method includes forming a wall that surrounds the cavity at an incline angle.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes forming the incline angle at about 30 to 75 degrees.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes forming the cavity with a generally rectilinear periphery.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes at least partially overlaying at least one of the multiple of laser powder deposition spots onto the wall.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes forming the cavity with a generally rectilinear periphery.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes laser powder deposition forming each of the multiple of laser powder deposition spots to a diameter of about 1.16 mm (0.045 inches).
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes at least partially overlapping each of the multiple of laser powder deposition spots by about 0.7 mm (0.028 inches).
In a further embodiment of any of the foregoing embodiments of the present disclosure, the non-fusion weldable base alloy is a high gamma prime nickel based alloy.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the non-fusion weldable base alloy is a polycrystalline cast nickel base superalloy.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the filler alloy is PWA 795 and the non-fusion weldable base alloy is MAR-M 247.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes applying a non-fusion weldable base alloy cap at least partially within the cavity and over the filler alloy.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes electro-spark depositing the non-fusion weldable base alloy cap.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the method includes applying a coating over the non-fusion weldable base alloy.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the non-fusion weldable base alloy cap is about 0.010 inches (0.25 mm) thick.
A cast component for a gas turbine engine, according to another disclosed non-limiting embodiment of the present disclosure, includes a non-fusion weldable base alloy with a cavity filled with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least another of the multiple of laser powder deposition spots. The filler alloy is different than the non-fusion weldable base alloy. A non-fusion weldable base alloy cap is at least partially within the cavity and over the filler alloy.
A further embodiment of any of the foregoing embodiments of the present disclosure, the filler alloy is PWA 795 and the non-fusion weldable base alloy is MAR-M 247.
In a further embodiment of any of the foregoing embodiments of the present disclosure, each of the multiple of laser powder deposition spots are of a diameter of about 1.16 mm (0.045 inches) and overlap at least one other of the multiple of laser powder deposition spots by about 0.7 mm (0.028 inches).
In a further embodiment of any of the foregoing embodiments of the present disclosure, the non-fusion weldable base alloy cap is about 0.010 inches (0.25 mm) thick.
In a further embodiment of any of the foregoing embodiments of the present disclosure, the component is a portion of a mid-turbine frame.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiments. The drawings that accompany the detailed description can be briefly described as follows:
The engine 20 generally includes a low spool 30 and a high spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine case assembly 36 via several bearing structures 38. The low spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor (“LPC”) 44 and a low pressure turbine (“LPT”) 46. The inner shaft 40 may drive the fan 42 directly or through a geared architecture 48 (see
The high spool 32 includes an outer shaft 50 that interconnects a high pressure compressor (“HPC”) 52 and a high pressure turbine (“HPT”) 54. A combustor 56 is arranged between the HPC 52 and the HPT 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
Core airflow is compressed by the LPC 44 then the HPC 52, mixed with the fuel and burned in the combustor 56, then expanded over the HPT 54 and the LPT 46. The LPT 46 and HPT 54 rotationally drive the respective low spool 30 and high spool 32 in response to the expansion. The main engine shafts 40, 50 are supported at a plurality of points by the bearing structures 38 within the engine case assembly 36.
The engine case assembly 36 generally includes a plurality of modules, including a fan case module 60, an intermediate case module 62, a Low Pressure Compressor (LPC) module 64, a High Pressure Compressor (HPC) module 66, a diffuser module 68, a High Pressure Turbine (HPT) module 70, a mid-turbine frame (MTF) module 72, a Low Pressure Turbine (LPT) module 74, and a Turbine Exhaust Case (TEC) module 76. It should be understood that additional or alternative modules might be utilized to form the engine case assembly 36.
With reference to
Each of the tie rods 86 are mounted to the inner case 90 and extend through a respective vanes 84 to be fastened to the outer turbine case 80 with the multiple of tie rod nuts 88. That is, each tie rod 86 is typically sheathed by a vane 84 through which the tie rod 86 passes. The other vanes 84 may alternatively or additionally provide other service paths. The multiple of centering pins 98 are circumferentially distributed between the vanes 84 to engage bosses 102 on the MTF 82 to locate the MTF 82 with respect to the inner case 90 and the outer turbine case 80. It should be understood that various attachment arrangements may alternatively or additionally be utilized.
With reference to
In some components, even under normal acceptable manufacture, the casting process may result in the formation of casting defects (illustrated schematically by area D; also shown in
With reference to
In another disclosed non-limiting embodiment, removal of a casting defect may result in a through hole CH (see
Next, a laser powder deposition system 300 (illustrated schematically in
The cavity C is filled with a multiple of layers of a multiple of laser powder deposition spots S applied with the laser powder deposition system 300 generally at room temperature. In one example, each laser powder spot S overlays the adjacent laser powder deposition spots S by about 50%. That is, the multiple of laser powder deposition spots S in each layer form a matrix of overlapping laser powder deposition spots S. The outer most laser powder deposition spots S are located at least partially on the wall W. That is, the incline angle of the wall W permits each layer to at least partially overlap the wall W as well as permit the laser from the laser powder deposition system 300 direct access into the cavity C. It should be appreciated that the incline angle may be at least partially adjusted by adjusting the angle of incidence of the laser beam to the workpiece. In one disclosed non-limiting embodiment the laser powder deposition system 300 is mounted to an automated end effector adapted to direct the focused laser beam and metal powder injection in a known orientation relative to the surface of the workpiece. It should be appreciated that the automated end effector, the workpiece, or both can be tilted or otherwise adjusted during the process to obtain a desired angle, however, even if the angle is changed during the process, an angle greater than about 15 degree may still be required for the laser energy to be effectively absorbed.
Additional layers of laser powder deposition spots S are progressively applied to at least partially fill the cavity C (see
In one specific disclosed non-limiting embodiment, a cavity C in a MTF 82 workpiece manufactured of a non-fusion weldable base alloy B of MAR-M 247 polycrystalline cast nickel base superalloy is filled with a filler alloy F of PWA 795. That is, the non-fusion weldable base alloy of the workpiece is of one material while the filler alloy F is of a different material.
If an application requires the use of a matching alloy at the surface to meet a required material property, a layer of non-fusion weldable base alloy BC may optionally be applied at least partially within the cavity C and over the filler alloy F (step206; see
Electro-spark deposition may also be referred to as “spark hardening”, “electrospark toughening” or “electrospark alloying. It should be appreciated that other techniques may be utilized as, since only a relatively thin cap of non-fusion weldable base alloy BC is applied, a relatively slow technique is still readily utilized. That is, a technique that may otherwise be too slow and expensive to fill the entire cavity C, is readily utilized to form the thin cap of non-fusion weldable base alloy B.
Once the cavity C is filled or at least partially filled with a multiple of layers of the multiple of laser powder deposition spots S and the optional cap of non-fusion weldable base alloy BC is applied, the filler alloy F may be post weld treated (step 208). Examples of post weld treatment include, but are not limited to, heat treatment, hot isostatic pressing, and/or others.
Next, the multiple of laser powder deposition spots S and/or cap of non-fusion weldable base alloy BC may be blended into the workpiece to form a desired profile (step 210; see
Finally, as the cap of non-fusion weldable base alloy BC provides the contiguous surface, the workpiece may be readily coated with a coating T (see
The method may reduce the typical repair time down from several hours to, for example, several minutes. This reduces the overall expense to cast components of high gamma prime nickel based alloy such as MAR-M 247 polycrystalline cast nickel base superalloy as well as the repair and remanufacture of other nickel alloy castings.
The use of the terms “a” and “an” and “the” and similar references in the context of description (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or specifically contradicted by context. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity). All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. It should be appreciated that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
Although the different non-limiting embodiments have specific illustrated components, the embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be appreciated that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be appreciated that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.
The foregoing description is exemplary rather than defined by the features within. Various non-limiting embodiments are disclosed herein; however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be appreciated that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
This application claims priority to PCT Patent Application No. PCT/US14/62194 filed Oct. 24, 2014, which claims priority to U.S. Provisional Application Ser. No. 61/897,616 filed Oct. 30, 2013, which are hereby incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/062194 | 10/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/065847 | 5/7/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5071054 | Dzugan | Dec 1991 | A |
5284290 | Moore et al. | Feb 1994 | A |
5405272 | Rapoza | Apr 1995 | A |
6000601 | Walak | Dec 1999 | A |
6046426 | Jeantette et al. | Apr 2000 | A |
6110199 | Walak | Aug 2000 | A |
6143378 | Harwell et al. | Nov 2000 | A |
6379392 | Walak | Apr 2002 | B1 |
6429402 | Dixon et al. | Aug 2002 | B1 |
6463349 | White et al. | Oct 2002 | B2 |
6483069 | Coleman et al. | Nov 2002 | B2 |
6554920 | Jackson et al. | Apr 2003 | B1 |
6609894 | Jackson et al. | Aug 2003 | B2 |
6659332 | Smashey | Dec 2003 | B2 |
6696176 | Allen et al. | Feb 2004 | B2 |
6709766 | Coleman et al. | Mar 2004 | B2 |
6799626 | Ray et al. | Oct 2004 | B2 |
6872912 | Wos | Mar 2005 | B1 |
7278315 | Klein et al. | Oct 2007 | B1 |
7874472 | Lee et al. | Jan 2011 | B2 |
8413877 | Bischof et al. | Apr 2013 | B2 |
8442665 | Krause | May 2013 | B2 |
20020148817 | Tewari | Oct 2002 | A1 |
20060163323 | Pietruska | Jul 2006 | A1 |
20080017280 | Vargas et al. | Jan 2008 | A1 |
20080017694 | Schnell | Jan 2008 | A1 |
20080028605 | Lutz et al. | Feb 2008 | A1 |
20080085368 | Gauthier | Apr 2008 | A1 |
20080199344 | Chau | Aug 2008 | A1 |
20080230156 | Abriles et al. | Sep 2008 | A1 |
20090057275 | Chen et al. | Mar 2009 | A1 |
20090297701 | Jabado | Dec 2009 | A1 |
20100074755 | Richter | Mar 2010 | A1 |
20100236067 | Hu et al. | Sep 2010 | A1 |
20110226390 | Chen | Sep 2011 | A1 |
20110253680 | Clark | Oct 2011 | A1 |
20120103950 | Arjakine | May 2012 | A1 |
20130232749 | Bruck | Sep 2013 | A1 |
20140163717 | Das | Jun 2014 | A1 |
20150033559 | Bruck | Feb 2015 | A1 |
20160271731 | Lin | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
WO-9704914 | Feb 1997 | WO |
Entry |
---|
EP search report for EP14857767.9 dated Dec. 21, 2016. |
Number | Date | Country | |
---|---|---|---|
20160236298 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61897616 | Oct 2013 | US |