The present invention relates to a semiconductor element and then particularly to an improved semiconductor element especially for use in a transistor.
U.S. Pat. No. 5,146,298, for example, teaches a semiconductor element, particularly a high-voltage MOS-transistor, that includes a substrate of a first conductive type on which there is mounted a layer of material of a second conductive type that includes cells which are comprised of material of a first conductive type in which the electrical contact areas, source area and gate area, are placed and also an electric contact area of a second conductive type, drain area. According to this prior publication, the first type of conductive material is normally p-type silicon doped with about 5×1014 atoms per cm3, whereas the second conductive material is n-type silicon doped with about 3×1012 atoms per cm3. A further area formed by two layers of the first and the second conductive types of material respectively is disposed between drain area and the other two contact areas. The substrate has a typical thickness of from 100 to 500 μm. An effective breakdown voltage of about 300 V is obtained with these dimensions and doping levels. The semiconductor element also includes an insulating outer layer through which the electric contacts extend.
The object of the present invention is to provide an improved semiconductor element of this type, in which the dimensions of said semiconductor element can be reduced substantially without detracting from its performance.
The object of the invention is achieved with a semiconductor element in which the layer of said second conductive material is covered with an insulating layer on its side that lies distal from the surface layer.
By providing an insulating layer on the opposite side of the second conductive type of material in relation to the insulating surface layer, the layer of second conductive type material can be made thinner, in the order of magnitude of 1 μm or less, as distinct to present-day thicknesses of 4-5 μm. This enables the charge carrier concentration, doping, to be increased from about 1015 to about 1017.
The breakdown voltage is determined by the area that has the lowest critical field. In the case of the prior publication, the p-area doped with 5×1014 atoms per cm3 has a critical field of about 20V/μm, which is the determinant field. When the p-area is replaced with an insulating layer in accordance with the invention, the breakdown voltage will, instead, be determined by the doping and the critical field in the layer comprising said second type of conductive material surrounded by the insulating layer. According to the aforesaid prior patent publication, doping is about 5×1015 and the critical field is 30V/μm. The aforesaid significant improvement is achieved when this layer is made thinner, now about 0.3 μm, while retaining a total charge of 3×1012/cm2. Doping is thus increased to 1017 and the critical field to 80V/μm. The transistor breakdown voltage is herewith increased, determined by the critical field, from ≈20V/μm to ≈80V/μm, i.e. an increase by a factor of 4. The distance between source area and drain area LD, the operative distance, for a given voltage can be reduced to ¼ at the same time as the resistance of the active transistor, Ron, decreases to ¼. The quality factor, Ron*A (the surface), will thereby be improved by a factor of 16.
In another embodiment of the invention, there is disposed between the insulating layer and the layer of said second conductive type of material a thin layer of a first conductive type of material, therewith enabling doping in the layer of said second conductive type of material to be further increased by a factor of 2.
According to further embodiments of the invention, an IGBT-transistor (Insulated Gate Polar Transistor) and also a bipolar transistor can be constructed in a corresponding fashion.
The invention will now be described with reference to two non-limiting embodiments and with reference to the accompanying drawings, in which
The contact areas 5, 6 are overlaid with a layer 8 comprised of the second conductive type of material, normally an n-type material. The material is usually in the form of a thin silicon plate, Si. This layer or plate has a thickness in the order of 1 μm or less, and has a doping ratio of 1016 to 1011 atoms per cm3.
The contact areas 5, 6 are overlaid with a layer 8 comprised of the second conductive type of material, normally an n-type material. The material is usually in the form of a thin silicon plate, Si. This layer or plate has a thickness in the order of 1 μm or less, and has a doping ratio of 1016 to 1017 atoms per cm3.
A further area comprised of two layers 9, 10 of said first and said second conductive types of material, respectively, is disposed between the contact areas 5 and 6.
The layer 8 is overlaid with an insulating layer 11 on its side distal from the outer layer 1. The insulating layer 11 may suitably comprise silicon dioxide, SiO2.
The insulating layer 11 and therewith the remaining parts of the inventive semiconductor element may be supported by a carrier, a substrate 12, e.g. a silicon substrate Si. Shown in the drawings is a symmetry line 13 on whose other side a second half of a transistor is located as a mirror image of the transistor shown on the left of the symmetry line as seen in the drawings. It will be understood that the contact area 6 including the transistor drain connector 4 is common to the two transistors of the semiconductor element.
As before mentioned, the use of an insulator 11 overlying the doped layer 8 comprised of a material of the second conductive type enables the doped layer to be made thinner, and therewith enables the distance between contact area 5 and drain area 6, the operative distance LD to be reduced to ¼. This enables the dimensions of the semiconductor element as a whole to be reduced in the order of 1:16. In addition to space benefits, these reductions in dimensions also benefit manufacturing costs, which are essentially directly proportional to size.
The circuit illustrated in
The inclusion of the further thin layer 14 enables doping of the doped layer 8 of said second type of conductive material to be increased by a factor of 2. This enables the dimensions of the semiconductor element, and therewith the costs thereof, to be further reduced.
As with the first embodiment, the insulating layer 11 and therewith the remaining parts of the inventive semiconductive element may be supported by a carrier, a substrate 12, for instance a silicon (Si) substrate.
Similar to the embodiment shown in
Although the contact area 5 of the illustrated embodiments is covered by the layer 8, it will be understood that the contact area 5 may instead extend beyond the layer 8. However, the layer 8 must cover respective contact areas 6; 15; 6, 16, and the further contact area 9, 10.
Neither is it necessary for the insulating layer 11 to cover the layer 8, since it is sufficient for the insulating layer 11 to cover that side of the layer 8 which is distal from the surface layer 1.
It will be understood that the first and the second types of conductive materials in the inventive semiconductor element may exchange places in relation to what has been described above.
Number | Date | Country | Kind |
---|---|---|---|
9901575 | May 1999 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE00/00854 | 5/3/2000 | WO | 00 | 11/5/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/67329 | 11/9/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5059547 | Shirai | Oct 1991 | A |
5146298 | Eklund | Sep 1992 | A |
5241210 | Nakagawa et al. | Aug 1993 | A |
5313082 | Eklund | May 1994 | A |
5382818 | Pein | Jan 1995 | A |
5654561 | Watabe | Aug 1997 | A |
5710444 | Neubrand et al. | Jan 1998 | A |
5731603 | Nakagawa et al. | Mar 1998 | A |
5796125 | Matsudai et al. | Aug 1998 | A |
5874768 | Yamaguchi et al. | Feb 1999 | A |
5886384 | Soderbarg et al. | Mar 1999 | A |
5898201 | Hsu et al. | Apr 1999 | A |
5943579 | Tran | Aug 1999 | A |
6069396 | Funaki | May 2000 | A |
6191453 | Petruzzello et al. | Feb 2001 | B1 |
6198130 | Nobuto et al. | Mar 2001 | B1 |
6211551 | Suzumura et al. | Apr 2001 | B1 |
6303492 | Rhodes et al. | Oct 2001 | B1 |
6307224 | Shirai | Oct 2001 | B1 |
6380566 | Matsudai et al. | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
31 03 785 | Dec 1981 | DE |
0 550 015 | Jul 1993 | EP |
02-185067 | Jul 1990 | JP |
WO 9805076 | Feb 1998 | WO |