1. Field of the Invention
The present invention relates to a protection device, and more particularly, to a high voltage electrostatic discharge (ESD) protection device.
2. Description of the Related Art
As the semiconductor manufacturing process develops, ESD protection has become one of the most critical reliability issues for integrated circuits (IC). In particular, as semiconductor process advances into the deep sub-micron stage, scaled-down devices and thinner gate oxides are more vulnerable to ESD stress. Generally, the input/output pads on IC chips must at least sustain 2 kVolt ESD stress of high Human Body Mode (HBM) or 200 V of Machine Mode. Thus, the input/output pads on IC chips usually include ESD protect devices or circuits protecting the core circuit from ESD damage.
The P substrate 100 is coupled to the grounded line VSS through the P+ region 116. The N+ region 112 is also coupled to the grounded line VSS. Through the N+ region 106, the drain is coupled to a pad. One parasitical SCR is composed with a P+ region 104, the N well 102, P substrate 100, and N+ region 112.
The parasitical SCR is turned on when positive ESD voltage is applied to the pad and the ground line VSS is grounded. Beginning at the pad, ESD current flows through the P+ region 104, N well 102, P substrate 100, and N+ region 112 and finally to the grounded line VSS to release ESD stress.
When ESD stress is not high enough to turn on the parasitical SCR, a secondary ESD current is discharged through the N+ region 106, N well 102, P substrate 100, and P+ region 116 to the grounded line VSS.
Since doped concentration of the N+ region 106 is higher, the impedance of the N+ region 106 is lower. On the contrary, the doped concentration of the N well 102 is lower such that the impedance of the N well 102 is higher. Most of the secondary ESD current discharges through a discharge path having minimum impedance. In
In the discharge path A, the secondary ESD current, reaching a field oxide region 108, changes direction. Since the secondary ESD current stays large, the change in direction generates a higher temperature in the turning point, easily damaging the field oxide region 108 and the discharge path.
It is therefore an object of the present invention to provide an electrostatic discharge (ESD) protection device to avoiding excess current focus along a signal discharge path.
The ESD protection device according to the present invention comprises a first substrate of a first conductive type, a well of a second conductive type, a first doped region of the second conductive type, a gate, a second doped region of the third conductive type, a field oxide region, and a gap. The well and the first doped region are formed in the substrate. The gate controls the electrical connection of the first doped region and the well. A field effect transistor comprises the gate, the first doped region, and the well. The second doped region, field oxide region, and gap are formed in the well. The field oxide region is located between the gate and the second doped region. The gap is located between the field oxide region and the second doped region. The first and the third conductivity types can be either N or P type. The second conductivity type can be either P or N type.
The present invention can be more fully understood by reading the subsequent detailed description and examples with reference made to the accompanying drawings, wherein:
The P substrate 200 is coupled to the grounded line VSS through a P+ region 216. The drain is coupled to a pad through the N+ region 206.
A field oxide region 214 isolates the N+ region 212 from P+ region 216. In order to protect a gate-oxide layer under the gate 210 from overstress, a field oxide region 208 is formed between an N+ region 206 and gate 210 isolating the gate 210 from N well 202. The field oxide region 208 and 214 are formed by shallow trench isolation (STI) or local oxidation of silicon (LOCOS). A gap separates field oxide region 208 and the N+ region 206.
The P+ region 204 is formed in the N well 202 and coupled to pad. The P+ region 204 can be located between the gap and the N+ region 206, or the N+ region 206 can be located between the gap and the P+ region 204. Since the P+ region 204 is formed, a parasitical SCR is also formed. The P+ region 204, N well 202, P substrate 200, and N+ region 212 all constitute the parasitical SCR.
A pn junction is formed between the P substrate 200 and the N well 202. The P substrate 200 is coupled to the grounded line VSS through the P+ region 216 and the N well 202 is coupled to the pad through the N+ region 206. When negative ESD voltage is applied to the pad and the grounded line VSS is grounded, the PN junction between the P substrate 200 and the N well 202 is forward biased and the pad and the grounded line VSS act as equivalent shorts, allowing release of ESD stress.
When positive ESD voltage is applied to the pad and the grounded line VSS is grounded, the parasitical SCR is turned on. ESD current flows through the pad, P+ region 204, N well 202, P substrate 200, N+ region 212, and finally to the grounded line VSS.
When ESD occurs in the pad but is insufficient to turn on the parasitical SCR, a secondary ESD current is discharged through the N+ region 206, the N well 202, the P substrate 200, and the P+ region 216 to the grounded line VSS as discharge paths B and C.
Since the gap is located between the field oxide region 208 and the N+ region 206, the secondary ESD current does not contact the field oxide region 208. If all region sizes are the same in
The gap is defined by mask pattern. After the field oxide region 208 is formed, the N+ region 206 is formed by a mask pattern, defining the N+ region separated from the field oxide region 208. If the gap is doped with positive P+, a high impedance region between the field oxide region 208 and the N+ region 206 further avoids secondary ESD current contact with the field oxide region 208.
Additionally, N-type and P-type elements are formed on P substrate shown in
Since, according to the present invention, a gap exists between a field oxide region and an N+ region, secondary ESD current occurring at the outset of an ESD event before activation of a parasitic SCR, is not focused along a single discharge path, such that danger of burnout along the path is avoided.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
093103468 | Feb 2004 | TW | national |