This invention relates to a lead foil loop formation tool for photovoltaic module manufacture. The lead foil loop formation tool includes a pair of rollers
Lead foil and other conductive strips are widely used in electrically connecting photovoltaic modules. In photovoltaic module manufacturing process, the lead foil operation procedure includes the step of forming a lead foil loop before attaching the back cover to the module.
A photovoltaic module can include a plurality of photovoltaic devices or photovoltaic cells formed on a substrate. Each photovoltaic cell can include a transparent conductive layer formed adjacent to a substrate, a semiconductor window layer adjacent to the transparent conductive layer, and a semiconductor absorber layer adjacent to the semiconductor window layer. Each photovoltaic cell can include a back contact adjacent to the semiconductor absorber layer. The photovoltaic cell back contacts of the plurality of photovoltaic cells can be electrically connected by any suitable configuration of electrical conductors (including, for example, two lead foils) to electrically connect the photovoltaic cells to at least one positive bus and one negative bus.
Lead foils can be positioned and formed into a loop before the back cover is positioned on the module. The lead foil loop can be positioned through a hole of the back cover. However, the formed loop may not be perpendicular to the surface of the plate and may cover a footprint sufficiently large to complicate threading the lead foil loop through the back cover hole. The lead foil loop can be covered by the back cover resulting in either rework or scrap. A lead foil loop formation tool and related method for photovoltaic module manufacture are developed to address this problem.
In one aspect, a method of forming lead foil loop for photovoltaic module manufacture can include positioning a lead foil adjacent to a photovoltaic module surface and pulling a portion of lead foil up. The method can include forming a lead foil loop by pushing a pair of loop formation rollers together against the portion of lead foil from opposite directions. The first roller in the pair can include a circumferential indentation and the second roller can include a corresponding circumferential protuberance. The indentation can interlock with the protuberance to form a rib in the length of the lead foil loop when the rollers come together with a lead foil loop in between.
The method can include positioning a back cover adjacent to the photovoltaic module surface. The back cover can have a hole and the lead foil loop can be positioned through the back cover hole. The ribbed lead foil loop can be more perpendicular to the back cover hole compared to an unribbed lead foil loop. The ribbed lead foil loop can have a smaller footprint than an unribbed lead foil loop. The lead foil can include a tin plated copper foil. The lead foil can include an adhesive backing.
In another aspect, a method of forming lead foil loop for photovoltaic module manufacture can include positioning a first lead foil adjacent to a photovoltaic module surface, pulling an end portion of the first lead foil up, positioning a second lead foil adjacent to a photovoltaic module surface, and pulling an end portion of the second lead foil up. The pull-up end portions of the first lead foil and the second lead foil can be opposite to each other. The method can include forming a lead foil loop by pushing a pair of loop formation rollers together against the pull-up lead foil end portions from opposite directions and attaching the end portions together. The first roller of the pair can include a circumferential indentation. The second roller can include a corresponding circumferential protuberance. The indentation can interlock with the protuberance to form a rib in the length of the lead foil loop when the rollers come together with a lead foil loop in between.
The method can include positioning a back cover adjacent to the photovoltaic module surface. The back cover can have a hole and the lead foil loop can be positioned through the back cover hole. The ribbed lead foil loop can be more perpendicular to the back cover hole compared to an unribbed lead foil loop. The ribbed lead foil loop can include a smaller footprint than an unribbed lead foil loop.
In another aspect, a lead foil forming tool can include a pair of loop formation rollers. The first roller of the pair can include a circumferential indentation and the second roller can include a corresponding circumferential protuberance. The indentation can interlock with the protuberance to form a rib in the length of a lead foil loop when the rollers come together with a lead foil loop in between.
The loop formation rollers can include a polymer. The loop formation rollers can include a metal. The first roller can have a diameter between 0.3 cm and 5 cm. The second roller can have a diameter between 0.3 cm and 5 cm. The circumferential protuberance can include an o-ring positioned around the first roller. The circumferential protuberance can include a molded feature on the first roller. The circumferential protuberance can include a machined feature on the first roller.
In another aspect, a method of manufacturing a photovoltaic module can include forming a plurality of photovoltaic cells adjacent to a substrate, forming a plurality of conductors electrically connecting the plurality of photovoltaic cells to a lead foil, positioning the lead foil adjacent to the photovoltaic cells, and pulling a portion of lead foil up. The method can include forming a lead foil loop by pushing a pair of loop formation rollers together against the portion of lead foil from opposite direction. The first roller of the pair can have a circumferential indentation and the second roller can have a corresponding circumferential protuberance. The indentation can interlock with the protuberance to form a rib in the length of the lead foil loop when the rollers come together with a lead foil loop in between. The method can include positioning a back cover adjacent to the photovoltaic module surface. The back cover can have a hole and the lead foil loop can be positioned through the back cover hole.
Referring to
Referring to
In some embodiments, the lead foil can include a tin plated copper foil. The lead foil can include an adhesive backing. In some embodiments, the loop formation rollers can include a plastic, metal, or any other suitable solid material. Indentation 20 can be a V-shape groove or any other suitable shape.
Referring to
Referring to
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. It should also be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention.
Number | Date | Country | |
---|---|---|---|
61360192 | Jun 2010 | US |