1. Field of the Invention
The present invention relates to light emitting diode (“LED”) technology, particularly to connection of the LED to an associated reflector in a LED assembly.
2. Brief Description of Related Technology
LED assemblies are well-known and commercially available. Such assemblies are employed in a wide variety of applications, typically for the production of ultraviolet radiation, used, for example, in effecting the curing of photo initiated adhesives and coative compositions.
Several factors play into the fabrication of LED assemblies. One important factor is the connection of the reflector to the LED assembly. Typically, an aluminum reflector is press fit into the assembly. A LED chip is mounted in the assembly desirably positioned around at the center and partially or wholly surrounded by the reflector. The LED chip is further electrically isolated from the reflector. Additionally, a conductive metal pin such as a gold pin is pressed into the LED assembly. The LED is in electrical engagement with the metal pin. The pin protrudes into the optical path thus masking a small portion of the optical transmission. In addition the pin requires high precision of the pin, the hole for the pin, and difficulty in inserting the pin. One of the key elements of this connection is the fact that aluminum can be wire bonded to both gold and aluminum. Previously when the pin was inserted some of its gold was scraped off making wire bonding difficult.
One known method of fabrication of LED assembly is provided in a Patent Publication No. WO 2004/011848. This patent publication discloses a LED curing device having a LED surrounded by a reflector at one end of the device. The reflector is carved inside an insulated sleeve and a wire from the LED is bonded to the insulated sleeve with an electrically conductive adhesive. The wire is clamped into the sleeve which can damage the wire, even causing the wire to break. Additionally, the LED is mounted on a heat pipe extending from the one end to the other end of the device.
In order to overcome the above-noted disadvantages of known LED assemblies with the LED-reflector interconnect, there is a need to provide a LED assembly highly reliable, has a flexible design, easy to manufacture, and reduces assembly cost.
In one embodiment of the present invention, there is a disclosed a LED assembly having at least one LED, and a heat sink supporting the LED in electrical engagement therewith. A conductive reflector is mounted to the heat sink and in electrical engagement with the LED. The LED is surrounded by the reflector. The reflector includes a side wall having a cut machined into a portion of the side wall. Wire is bonded from the LED to the cut on the reflector. Additionally, an insulative member electrically isolates the conductive reflector from the heat sink. The heat sink and the reflector form an electrically conductive location for supplying power to the LED.
Referring to
A LED chip 14 is mounted in the electrode 20a, desirably positioned at the central opening 12a and partially or wholly surrounded by the reflector 12 by an adhesive bond (not shown). The LED chip 14 is further electrically isolated from the reflector 12. Because metal is a good electrical conductor, both the metal reflector 12 and the metal electrode 10a provide an electrical transfer path away from the LED chip 14.
As shown in
When current flows through a chip in an individual LED assembly, both light and heat are generated. Increasing the current through the chip raises the light output but increased current flow also raises the temperature of the chip in the individual LED assembly. This temperature increase lowers the efficiency of the chip. Overheating is the main cause of the failure of individual LED assemblies. To assure safe operation, either the current, and as a result the light output, must be kept at a low level or some other means of transferring heat away from the chip in the individual LED assembly must be provided. Therefore, lower electrode 10b may be defined by with an electrically conducting thermal heat sink 18 which also serves to carry heat away from the LED chip 14. The upper electrode 10a and the lower electrode 10b are held together by an electrically insulating material 19 such as a non-conductive adhesive. The heat sink 18 includes a planar surface at one end and the LED 14 is mounted onto the planar surface of the heat sink 18. The LED 14 is disposed in the assembly 10 in such a manner that the bottom surface of the LED 14 is bonded or soldered to the planar surface thermal heat sink 18 via the bond material 19. In order to allow the electrical connection through the LED 14, voltage is applied to both upper and lower electrodes 10a and 10b respectively. This causes the heat sink 18 to carry off heat and the curved surface of the reflector 12 forms the light from the LED 14 into a desired pattern. Even though only single LED 14 is shown in
Referring to
Referring to
The optical lens 22 in shape of a ball is partially located in the reflector 12 of the upper electrode 10a as shown in
The number of LED assemblies employed determines the size of a LED array and the desired output intensity. An end user can easily increase or decrease the output intensity by adding/removing LED assemblies to/from the LED array. Also, a user can change the operating wavelength of the assembly by replacing one or more LED assemblies of a first operating wavelength with one or more replacement assemblies having a second wavelength. In addition, a user can replace damaged or expired LED assemblies without replacing the entire LED array.
Regarding the electro optical properties of the optical assembly 20, each LED 14, emits diffuse light at a predetermined optical power and a predetermined optical wavelength. Exemplary LEDs 14 according to the present invention emit preferably greater than 500 mw of optical power at desirably 405 nm. The reflective cavity collimates a majority of the diffuse light emitted by the LED 14 when the LED 14 is placed at the desired location within the reflective cavity. The reflector 12 represents an exemplary reflective cavity that collimates the majority of the light when the LED 14 is placed at or near the focal point of elliptic reflector 12, as shown in
Furthermore, in order to hold the optic lens 22 in place and also provide a path for electrical conduction a generally cylindrical electric sleeve 24 is provided in the LED electro optic assembly 24 of
Individual alignment of the LED 14 or multiple LEDs is required because no two individual LED assemblies are exactly the same. Differences arise from the positioning of the chip 14 inside the reflector 12, the positioning of the reflector cup 12, the positioning of the electrodes 10a and 10b, and the positioning of the optic lens 22. All of these factors affect the geometry and direction of the beam of light. Due to the manufacturing process of individual LED assemblies, the components in individual LED assemblies exhibit a very wide range of positional relationships. Therefore, for any application that requires illumination of a specific area, each individual LED assembly must be manually aligned and then permanently held in place by some means of mechanical support.
While a single LED is used herein to illustrate the invention, it will be understood by those skilled in the art that the invention described herein applies to a plurality of LEDs or LED array. A plurality of LEDs may be arranged in any manner as desired for illumination.
Even though, in the present invention the LED 14 is shown to be a rectangular frame, those of ordinary skill in the art will understand that according to the disclosed invention, LED illuminators may be formed in any shape suitable to provide light for a wide array of applications, including but not limited to photocuring, video, shop windows, photography or specialty product displays. Because of the durability and rugged construction of the disclosed LED illuminator, it may be used in outdoor settings, marine applications, or hostile environments.
Similar to the LED assembly of
Individual alignment of the LED 14 or multiple LEDs is required because no two individual LED assemblies are exactly the same. Differences arise from the positioning of the chip 14 inside the reflector 12, the positioning of the reflector cup 12, the positioning of the electrodes 10a and 10b, and the positioning of the optic lens 22. All of these factors affect the geometry and direction of the beam of light. Due to the manufacturing process of individual LED assemblies, the components in individual LED assemblies exhibit a very wide range of positional relationships. Therefore, for any application that requires illumination of a specific area, each individual LED assembly must be manually aligned and then permanently held in place by some means of mechanical support.
While a single LED is used herein to illustrate the invention, it will be understood by those skilled in the art that the invention described herein applies to a plurality of LEDs or LED array. A plurality of LEDs may be arranged in any manner as desired for illumination.
Even though, in the present invention the LED 14 is shown to be a rectangular frame, those of ordinary skill in the art will understand that according to the disclosed invention, LED illuminators may be formed in any shape suitable to provide light for a wide array of applications, including but not limited to photocuring, video, shop windows, photography or specialty product displays. Because of the durability and rugged construction of the disclosed LED illuminator, it may be used in outdoor settings, marine applications, or hostile environments.
While a single LED is used herein to illustrate the invention, it will be understood by those skilled in the art that the invention described herein applies to a plurality of LEDs or LED array. A plurality of LEDs may be arranged in any manner as desired for illumination.
Even though, in the present invention the LED 14 is shown to be a rectangular frame, those of ordinary skill in the art will understand that according to the disclosed invention, LED illuminators may be formed in any shape suitable to provide light for a wide array of applications, including but not limited to photocuring, video, shop windows, photography or specialty product displays. Because of the durability and rugged construction of the disclosed LED illuminator, it may be used in outdoor settings, marine applications, or hostile environments.
This application claims the benefit of U.S. Provisional Application No. 60/622,830 filed on Oct. 28, 2004 entitled “LED ASSEMBLY WITH LED-REFLECTOR INTERCONNECT”.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/US2005/032442 | 9/9/2005 | WO | 00 | 10/10/2008 |
| Number | Date | Country | |
|---|---|---|---|
| 60622830 | Oct 2004 | US |