The present invention relates to field of luminaires, more specifically to the field of luminaires suitable for use with LED modules.
Desktop luminaires are well known and have been used as a way to illuminate an area, typically the area on a desk (or table or the like). One issue with existing luminaires is that they tend to be relatively inflexible in their output. Typically about the most that can be accomplished with an existing luminaire is that it can be dimmed. Light emitting diodes (LED) based light sources have become more popular but most attempts to use LEDs have been based on attempting to package an LED bulb in a traditional luminaire. This can be accomplished but traditional luminaires were designed and intended to be used with incandescent bulbs and thus are not well optimized for use with LED-based modules. Consequentially, further improvements in lamps (and related fixtures) would be appreciated by certain individuals.
A fixture includes a rail with wings so as to provide an I-beam like shape. Powered contacts can extend along upper and lower surfaces of the rail. Modules are configured to be mated to the rail so as to be energized by the powered contacts. The modules can include a side configuration to facilitate moving of the module. The rail can be configured to provide powered contacts along a top surface and a bottom surface.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The detailed description that follows describes exemplary embodiments and is not intended to be limited to the expressly disclosed combination(s). Therefore, unless otherwise noted, features disclosed herein may be combined together to form additional combinations that were not otherwise shown for purposes of brevity.
Furthermore, if different LED modules are configured to emit light with different colors then a number of interesting decorative effects are possible. This provides a luminaire with greater flexibility that previously was possible. For example, patriotic colors could be used in combination with regular lights so as to provide a luminaire that was both functional and made a statement. Other applications include light colors that are based on holidays and the like. And with the use of dual-colored lenses it would be possible to further increase the potential illumination effects. Variations in light output in each LED module can also be used to provide further variations in the illumination effect.
Turning to details depicted in the figures, a luminaire 10 includes a base 15 with a vertical member 20 and a power cord 17. Conductors, not shown, can extend internally up the vertical member 20 to provide power to a rail 30. The vertical member 20 supports the rail 30 and a first cap 50 and a second cap 60 are configured to cover up the connection between the rail 30 and the vertical member 20. In an embodiment, a connector 68 can be provided to connect the conductors to the conductive members provided by the first cap 50. While the vertical member extends upward from the base 15 (as the luminaire is configured so that the base can rest on a surface such as a desk or table), it should be noted that the vertical member could also extend above the rail 30 if desired (although the aesthetics of such a configuration would likely be inferior to the depicted design). Furthermore, the use of more than one vertical member is possible and the vertical member could extend downward to the rail. Thus, a suspended luminaire version is also contemplated.
As can be appreciated, the rail 30 includes wings 31a, 31b that are positioned on opposite sides of surfaces 36a, 36b of the respective upper channel 30a and lower channel 30b. Powered contacts 34a, 34b, 35a and 35b are positioned in each channel and in an embodiment can be steel plated with a protective coating and can be adhered to the respective surface 36a, 36b with an insulating adhesive layer. Power is provided to the first and second caps 50, 60 and terminals supported by the caps (such as terminals 66a, which would be provided on both the first and second caps 50, 60) are electrically connected to the powered contacts 34a, 34b, 35a and 35b. As can be appreciated, an aperture 39 in the rail allows mating connectors 68 to electrically connect the first and second caps together (thus electrically connecting the powered contacts on both the upper and lower surfaces of the rail).
As depicted, the LED modules 70 are magnetically coupled to the rail 30. In an embodiment, the powered contacts 34a-35b can be formed of a ferrite-based material so as to allow for magnets 98 supported by the LED module 70 to be attracted to the powered contacts 34a-35b. This will allow terminals 92 supported by the LED module 70 to be electrically connected to the powered contacts 34a-35b.
As can be appreciated, the depicted LED module 70 has a main body 72 configured for gripping. In an embodiment, the main body 72 has sides 79a-79d and each side has an upper edge 77a-77d and a lower edge 78a-78d. In an embodiment, a distance A between upper edges 77a, 77b is greater than a distance B between lower edges 78a and 78b. Similarly, a distance C between upper edges 77c and 77d can be greater than a distance D between lower edges 78c and 78d. Thus, the sides 79a-79d can present an angled or tapered profile on all four sides. It should be noted that the particular ratio of A to B and C to D can be adjusted depending on aesthetic considerations but there is a benefit to having the surface area defined by distances B and D being less than a surface area defined by distances A and C as it helps keep the base 90 smaller. In addition, a benefit of having B less than A is that it has been determined such a configuration is useful for handling the LED module 70 as the resultant taper provides by sides 79a, 79b makes it easier to remove the LED module 70 from the rail 30. It should be noted, however, that the depicted angle in the sides 79a-79d of the LED module was selected for aesthetic reasons and a wide range of angles can be provided. To further improve the handling characteristics, a recess 73 can be provided on sides 79a, 79b. As can be appreciated, the actual shape of recess 73 was selected for aesthetic reasons and can varied as desired, thus the depicted recess 73 configuration is not intended to be limiting.
It should be noted that while it is desirable to have two opposing sides have angled sides to facilitate holding the module, in an alternative embodiment just one side 79c or 79d could be angled inwardly. Of course, the angle of the side might be different than what is depicted but, as can be appreciated, even having one angled side can provide noticeable assistance in aiding the removal of the LED module from the rail. Naturally, to obtain the full benefits of the improvements in handling, one of the sides that is not going to be facing the wings 31a-31b should have the angled side (e.g., side 79c or 79d in the depicted configuration). The depicted LED module 70 is rectangular in shape and that is helpful in ensuring the LED module 70 is positioned correctly in the rail. While LEDs are directional and thus don't work when facing an inverted current, the inclusion of a bridge rectifier in the LED module can help mitigate potential polarity issues.
The depicted LED module 70 includes a cover 71 that can function as a lens if desired and can be heat stacked to the main body 72. The main body 72 includes an upper pocket 82 and a reflector 79 that is configured to direct light from an LED engine 100 that includes phosphor block 102 over a plurality of LEDs mounted on a substrate 105. A base 90 attaches to the main body 72 and be secured in position with stakes 84 (that can be heat staked), although other conventional fastening systems can also be used if desired. A thermal interface 120 can then be applied to a lower side of the base 90 so as to provide thermal coupling between the LED engine 100 and the resulting rail 30 surface. It should be noted that the LED engine 100 is a chip-on-board (COB) style LED and any similar suitable configuration, including LED engine designs with remote phosphor blocks, could be used. The substrate 105 is positioned in a recess in the base 90 that includes a lower pocket 97 that, together with the upper pocket 82, forms a magnet box 110. The base further supports terminals 92 that are configured with a mating contact 92a and a tail 92b. The terminals 92 electrically connect components 93 (and the LED engine 100) to the powered contacts 34a-35b. As can be appreciated, the components 93 can include resistors, capacitors, controllers (including wireless controllers that are separately addressable), bridge rectifiers drivers and other known components that are useful to provide a desired energy input to the LED engine 100. Thus, the LED module can configured to include a driver that coverts lower voltage AC to DC or it can be configured to provide constant current based on an input voltage. In an embodiment the LED engine can be attached directly to the base 90 via solder attach and in an embodiment the LED engine and the components can be mated together via a single soldering operation (e.g., by running the components through a solder oven). It should be noted that the base 90 can be formed of an LCP material with traces provided on the surface (e.g., using a laser direct structuring or LDS technology).
As can be appreciated from the schematic representation of
It should be noted that one potential issue with the depicted rail design is that the number of LED modules placed on the rail might cause the thermal load to exceed the recommended design level. For example, a particular rail might be configured and sized so that it can dissipate 25 watts in a 22 C room while maintaining a temperature below 40 C. If each LED module is configured to output 6 watts, then placing 5 modules on the rail could potentially exceed the thermal dissipation capability of the rail. To avoid potential issues with thermal load, a resistor can be provided in series with the power contacts 34a-35b and the resister can be used to help limit the amount of power that is delivered to the rail by decreasing the voltage as addition modules are added (as additional current draw will increase the voltage drop provided by the resistor). In other words, the fixture 10 can be configured so that increasing the number of LED modules will decrease the amount of power used by each individual LED module, thus ensuring that the total number of watts used by the LED modules does not exceed the thermal limits of the rail. As it is difficult to perceive small drops in illumination, the resistor can be sized so that there negligible impact for some desired number of modules and the addition of additional modules will decrease the amount of light emitted by each module in a more perceptable manner.
The disclosure provided herein describes features in terms of preferred and exemplary embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.
This application claims priority to U.S. Provisional Application No. 61/728,615, filed Nov. 20, 2012, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/071028 | 11/20/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/081842 | 5/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3341702 | Neumann | Sep 1967 | A |
5154509 | Wulfman | Oct 1992 | A |
6716042 | Lin | Apr 2004 | B2 |
6776496 | Cok | Aug 2004 | B2 |
7503778 | Lehman | Mar 2009 | B2 |
7726974 | Shah | Jun 2010 | B2 |
8172429 | Ko | May 2012 | B2 |
8348492 | Mier-Langner | Jan 2013 | B2 |
8651711 | Rudisill | Feb 2014 | B2 |
8680774 | Van Hoof | Mar 2014 | B2 |
9109791 | Lin | Aug 2015 | B2 |
9301416 | Zaderej | Mar 2016 | B2 |
20080212324 | Lin | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
2009-140669 | Jun 2009 | JP |
2012-048944 | Mar 2012 | JP |
10-2007-0119128 | Dec 2007 | KR |
10-1024430 | Mar 2011 | KR |
WO 2012-030536 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150300613 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61728615 | Nov 2012 | US |