LED lighting systems and methods

Information

  • Patent Grant
  • 10334735
  • Patent Number
    10,334,735
  • Date Filed
    Wednesday, August 22, 2012
    12 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
Embodiments of the invention include LED lighting systems and methods. For example, in some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure that can include a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, and a plurality of light emitting diodes mounted on the top layer. The LED lighting system can further include a housing substrate and a mounting structure. The mounting structure can be configured to suspend the layered circuit structure above the housing substrate with an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate. The distance between the layered circuit structure and the support layer can be at least about 0.5 mm. Other embodiments are also included herein.
Description
FIELD OF THE INVENTION

The present invention relates to light emitting diode (LED) lighting system and methods.


BACKGROUND OF THE INVENTION

Solid state lighting (SSL) circuits (or LED lighting systems) are predicted to achieve widespread adoption in commercial lighting applications. Solid state lighting is more efficient in converting electricity to light than incandescent, fluorescent, and compact fluorescent systems. As such solid state lighting stands to greatly increase the energy efficiency of many lighting applications including street lighting, sign lighting, residential lighting, commercial lighting, etc.


SUMMARY OF THE INVENTION

Embodiments of the invention include LED lighting systems and methods. For example, in some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure that can include a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, and a plurality of light emitting diodes mounted on the top layer. The LED lighting system can further include a housing substrate and a mounting structure. The mounting structure can be configured to suspend the layered circuit structure above the housing substrate with an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate. The distance between the layered circuit structure and the support layer can be at least about 0.5 mm. In some embodiments, the flexible layered circuit structure is attached to the mounting structure in a releasable manner. In some embodiments, the flexible layered circuit structure is releasable from the mounting structure without the use of tools. In some embodiments, the flexible layered circuit structure is configured for replacement.


In some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure can include a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, a plurality of light emitting diodes mounted on the bottom layer, a housing substrate, and a mounting structure. The mounting structure can be configured to suspend the layered circuit structure above the housing substrate with an air gap disposed in between bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the support layer is at least about 0.5 mm.


In some embodiments, a method for making an LED lighting system is included. The method for making an LED lighting system can include obtaining a flexible layered circuit structure that can include, a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer. The method can further include suspending the flexible layered circuit structure above a housing substrate with an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the housing substrate is at least about 0.5 mm, and connecting the flexible layered circuit structure to a power source.


In some embodiments, a method for operating an LED lighting system is included. The method for operating an LED lighting system can include providing electrical current to an LED lighting circuit, the LED lighting circuit including a plurality of light emitting diodes, the LED lighting circuit disposed upon a flexible layered circuit structure can include a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, and dissipating heat from the light emitting diodes to ambient air through the top surface of the top thermally conductive layer and the bottom surface of the bottom thermally conductive layer.


In some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure can include a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, a plurality of light emitting diodes mounted on the top layer, the flexible layered circuit structure formed into a loop. The loop can be disposed within a housing. The loop can be separated from the housing by an air gap. The loop can be disposed sideways to the support structure.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE FIGURES

The invention may be more completely understood in connection with the following drawings, in which:



FIG. 1A is a cross sectional schematic view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 1B is a cross sectional schematic view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 1C is a cross sectional schematic view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 1D is a cross sectional schematic view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 2 is a schematic side view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 3 is a schematic top view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 4 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 5 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 6 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 7 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 8 is a schematic cut away top view of an LED lighting system in accordance with various embodiments herein.



FIG. 9 is a schematic view of a portion of a mounting structure in accordance with various embodiments herein.



FIG. 10 is a schematic view of a portion of a mounting structure interfaced with a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 11 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 12 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 13 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 14 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 15 is a schematic cross sectional view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 16 is a schematic cross sectional view of a flexible layered circuit structure in accordance with various embodiments herein.



FIG. 17 is a schematic side view of an LED lighting system in accordance with various embodiments herein.



FIG. 18 is a flowchart of a method of making an LED lighting system in accordance with various embodiments herein.





While the invention is susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the invention is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION OF THE INVENTION

The embodiments of the present invention described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices of the present invention.


All publications and patents mentioned herein are hereby incorporated by reference. The publications and patents disclosed herein are provided solely for their disclosure. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate any publication and/or patent, including any publication and/or patent cited herein.


Solid state lighting stands to greatly increase the energy efficiency of many lighting applications including street lighting, sign lighting, residential lighting, commercial lighting, etc. However, one design challenge associated with LED lighting systems is the dissipation of heat. In particular, it is important consider the junction temperature in an LED (the p-n junction temperature) lighting system. If this temperature rises above the prescribed level recommended by the LED manufacturer, the lifetime of the LED as well as its intensity and color may be affected.


Mounting an LED carrying circuit on a heat sink, or adding secondary heat sinks is one approach to heat dissipation. However, this can add additional cost to the finished product in addition to constraining design flexibility. Applicants have developed various embodiments of LED lighting systems that can provide sufficient heat dissipation without the need for directly mounting the LED carrying circuit onto a large heat sink or any substantial secondary heat sinks. Such embodiments can successfully maintain the junction temperature of the LEDs below the critical temperature.


Referring now to FIG. 1A, a cross sectional schematic view is shown of a flexible layered circuit structure 100 in accordance with various embodiments herein. The flexible layered circuit structure can include a top thermally conductive layer 102, a middle electrically insulating layer 104, and a bottom thermally conductive layer 106. In some embodiments, the top, middle, and bottom layers combined have a thermal resistance of less than 10 degrees Celsius per Watt. A plurality of light emitting diodes 108 can be mounted on the top thermally conductive layer 102. When electrical current is passed through the circuit on the top surface of the top thermally conductive layer, one or more of the LEDs can be energized and emit visible light.


In some embodiments, a commercially available FR4 material can be used as a starting material and is modified to create the layered circuit structure. The FR4 material preferably includes a layer of fiberglass sandwiched between two layers of copper. An example of a suitable FR4 material is FR406 manufactured by Isola Group of Chandler, Ariz. The top layer can include one of the two layers of copper, the intermediate layer can include a layer of fiberglass, and the bottom layer can include the other of the two layers of copper. It is recognized that other suitable FR4 materials could be used and that these layers could be either manufactured or purchased in this form.


Prior to modification, the top layer can be copper approximately 0.5 to 4.0 ounces per square foot and approximately 0.0007 to 0.0056 inch thick, 0.25 to 48.00 inches wide, and 0.50 to 48.00 inches long. Although copper is a preferred material, it is recognized that other suitable electrically conductive materials such as but not limited to aluminum could be used. The top, copper layer can be modified to include a thermally conductive printed or etched electrical circuit using standard electrical circuit design tools and techniques well known in the art and can then be coated with a protective coating using standard solder masking and labeling techniques. An example of a suitable protective coating that could be used is TechniMask ISR 1000 manufactured by Technic, Inc. of Cranston, R.I. The top layer can be designed in such a way as to provide receptacles and mounting surfaces for LEDs and other SMT electrical components proximate the top surface.


The intermediate layer can be an electrically insulating thermally conductive layer, in some embodiments made of fiberglass approximately 0.005 to 0.020 inch thick, 0.25 to 48.00 inches wide, and 0.50 to 48.00 inches long. The fiberglass has a breakdown voltage of greater than 5 kilovolts (kV), a tensile strength of 55 kips per square inch (ksi), and a flexural strength of 91 kips per square inch (ksi). The thermal conductivity of the fiberglass can be 0.3 to 0.4 Watts per meter per degrees Kelvin (W/mK). Although fiberglass is a preferred material, it is recognized that other suitable materials such as but not limited to polymer or ceramic blended dielectrics may be used.


Prior to modification, the bottom layer can be copper approximately 0.5 to 4.0 ounces per square foot and can be approximately 0.0007 to 0.0056 inch thick, 0.25 to 48.00 inches wide, and 0.50 to 48.00 inches long. Although copper is a preferred material, it is recognized that other suitable electrically conductive materials such as but not limited to aluminum could be used. The bottom, copper layer can be modified into a heat spreading copper circuit laterally and along its longitudinal axis proximate the bottom surface in order to rapidly spread the heat through the bottom layer. In some embodiments, the exposed copper proximate the bottom surface of the bottom layer can then be tinned. The bottom layer can include thermally conductive printed circuits, which are printed or etched using solder mask printing, photo etching, and solder masking techniques well known in the art for producing electrical circuits. In various embodiments, the bottom layer can include solid coverage of thermally conductive material (such as copper) across an area equal to a majority of the surface area with no direct electrical connection to the top layer.


The flexible layered circuit structure can be at least semi-flexible in some embodiments, not rigid. The flexible layered circuit structure can be any desired length, which could be as long as 250 feet or more. The strip can bend (for example along the lengthwise axis in a direction from the top of the flexible layered circuit structure to the bottom of the flexible layered circuit structure, or bottom to top) sufficiently to achieve a radius of curvature of 6 inches. In some embodiments, the strip can bend sufficiently to achieve a radius of curvature of 1 inch. In some embodiments, the flexible layered circuit structure can be wrapped about the hub of a reel for storage until use. The flexible layered circuit structure can also twist relative to its longitudinal axis up to 10 degrees per inch.


In some embodiments, light emitting diodes can be mounted on the bottom layer of the flexible layered circuit structure. Referring now to FIG. 1B, a cross sectional schematic view is shown of a flexible layered circuit structure 110 in accordance with various embodiments herein. The flexible layered circuit structure 110 can include a top thermally conductive layer 102, a middle electrically insulating layer 104, and a bottom thermally conductive layer 106. A plurality of light emitting diodes 108 can be mounted on the bottom thermally conductive layer 106.


In some embodiments, light emitting diodes can be mounted on both the top and the bottom layers of the flexible layered circuit structure. Referring now to FIG. 1C, a cross sectional schematic view is shown of a flexible layered circuit structure 120 in accordance with various embodiments herein. The flexible layered circuit structure 120 can include a top thermally conductive layer 102, a middle electrically insulating layer 104, and a bottom thermally conductive layer 106. A plurality of light emitting diodes 108 can be mounted on the top thermally conductive layer 102 and the bottom thermally conductive layer 106.


When light emitting diodes are mounted on both the top thermally conductive layer 102 and the bottom thermally conductive layer 106, it will be appreciated that the light emitting diodes can be placed directed opposite on another (such as in FIG. 1C) or they can be offset from one another to avoid the concentration of too much heat in a particular spot. Referring now to FIG. 1D, a cross sectional schematic view is shown of a flexible layered circuit structure 130 in accordance with various embodiments herein. The flexible layered circuit structure 130 can include a top thermally conductive layer 102, a middle electrically insulating layer 104, and a bottom thermally conductive layer 106. A plurality of light emitting diodes 108 can be mounted on the top thermally conductive layer 102 and the bottom thermally conductive layer 106, but offset such that the positions of the light emitting diodes 108 on the top do not match with the positions of the light emitting diodes 108 on the bottom.


It will be appreciated that flexible layered circuit structures as used in various embodiments herein can be either be unitary segments or can be formed of multiple segments that are bonded to on another at joints. Referring now to FIG. 2, a schematic side view is shown of a flexible layered circuit structure 200 in accordance with various embodiments herein. In this view, it can be seen that the flexible layered circuit structure is formed of a first segment 202, a second segment 204, and a third segment 206. The first segment 202 is bonded to the second segment 204 at a first overlapping joint 208. The first overlapping joint 208 can provide electrical communication between the circuitry on the first segment 202 and the circuitry on the second segment 204. The second segment 204 is bonded to the third segment 206 at a second overlapping joint 210. The second overlapping joint 210 can provide electrical communication between the circuitry on the second segment 204 and the circuitry on the third segment 206. Connections between segments can continue in this manner such that the overall length of the flexible layered circuit structure can be as long as it desired.


Referring now to FIG. 3, a schematic top view is shown of a portion 300 of the flexible layered circuit structure 200 of FIG. 2. The flexible layered circuit structure includes a top thermally conductive layer 302. A plurality of light emitting diodes 308 are mounted on the top thermally conductive layer 302. A variety of circuitry and/or components 330 can be etched into or mounted on the top thermally conductive layer 302. The circuitry and components 330 can include various items including, but not limited to, resistors, capacitors, traces, linear drivers, and the like. An example of a suitable LED is NS3W083A manufactured by Nichia Corporation of Detroit, Mich. An example of a suitable liner driver is NUD4001 manufactured by ON Semiconductor of Phoenix, Ariz.


In some embodiments, the light emitting diodes mounted on the top layer have a power of between 0.25 and 3 watts per inch squared of the surface area of the bottom layer.


In various embodiments, a mounting structure can be used to suspend the flexible layered circuit structure above a housing substrate. It will be appreciated that the mounting structure can take on many different forms. Referring now to FIG. 4, a schematic side view is shown of an LED lighting system 400 in accordance with various embodiments herein. The LED lighting system 400 can include a flexible layered circuit structure 402 and electrical leads 414 to provide electrical current to the flexible layered circuit structure 402. The flexible layered circuit structure 402 can be suspended above a housing substrate 408, such that there is an air gap 410 disposed in between the bottom thermally conductive layer of the flexible layered circuit structure 402 and the housing substrate 408. In some embodiments, the air gap 410 is present under at least about 80% of the surface area of the bottom of the flexible layered circuit structure 402. A mounting structure can be used to suspend the flexible layered circuit structure. In this embodiment, the mounting structure can include one or more posts 406 or standoffs. The posts 406 can serve to hold the flexible layered circuit structure 402 in place. In some embodiments, the posts can be configured to exert tension on the flexible layered circuit structure in the direction of the lengthwise axis of the flexible layered circuit structure such that it is maintained taut.


The air gap 410 can be of various sizes. In some embodiments, the air gap can be at least about 0.5 mm. In some embodiments, the air gap can be from between 0.5 mm and 100 mm. In some embodiments, the air gap can be from between 1 mm and 50 mm. In some embodiments, the air gap can be from between 2 mm and 25 mm. In some embodiments, the air gap can be between about 40% and 60% of the width of the flexible layered circuit structure.


The air gap can serve to promote heat dissipation off of the bottom layer of the flexible layered circuit structure. In particular, the LED lighting system can be configured so as to have thermal transfer properties sufficient to allow the system to maintain a thermal equilibrium at or below the critical junction temperatures for the LEDs without the need for the addition of secondary heat sinking. The critical junction temperatures can vary based on the specific LED model and manufacturer. However, critical junction temperatures can range from 100 degrees Celsius or less for some LED models to 150 degrees Celsius or more for others. In some embodiments, the junction temperature can be kept below 150 degrees Celsius. In some embodiments, the junction temperature can be kept below 140 degrees Celsius. In some embodiments, the junction temperature can be kept below 130 degrees Celsius. In some embodiments, the junction temperature can be kept below 120 degrees Celsius. In some embodiments, the junction temperature can be kept below 110 degrees Celsius. In some embodiments, the junction temperature can be kept below 100 degrees Celsius. In some embodiments, the junction temperature can be kept below 90 degrees Celsius.


In various embodiments, the mounting structure can include many different specific structural elements. By way of example, in some embodiments, the mounting structure can include a fastener, a hook, a pin, a clip, a spring clip, a tab and/or tab receptacle. In various embodiments, the mounting structure can be directly or indirectly attached to the housing substrate. In some embodiments, the flexible layered circuit structure can be attached to the mounting structure in a releasable manner. In some embodiments, the flexible layered circuit structure can be releasable form the mounting structure in such a way that specialized tools are not required and thus the flexible layered circuit structure can be released from the mounting structure by hand. In this manner, the flexible layered circuit structure can be configured for replacement. In some embodiments, the mounting structure can be used to align the flexible layered circuit structure with secondary optics or a diffuser.


The housing substrate can include many different materials. In some embodiments, the housing substrate can include organic or inorganic structural materials. In some embodiments, the housing substrate can be a material including, but not limited to, metals, polymers, cellulosic materials, composites, glass, stone and the like. In various embodiments, the housing substrate can be opaque, transparent, or semi-transparent.


It will be appreciated that the mounting structure can be attached to the flexible layered circuit structure in many different ways. For example, in the context of posts, the posts can attach to the bottom, side, or ends of the flexible layered circuit structure. In some embodiments, the flexible layered circuit structure can include structural features so as to facilitate connection with the mounting structure. By way of example, in some embodiments the flexible layered circuit structure can define notches or apertures in order to facilitate connection with the mounting structure. Referring now to FIG. 5, a schematic top view is shown of a portion of an LED lighting system in accordance with various embodiments herein. The flexible layered circuit structure includes a top thermally conductive layer 502. A plurality of light emitting diodes 508 are mounted on the top thermally conductive layer 502. A variety of circuitry 530 can be etched into or disposed on the top thermally conductive layer 502. In addition, a plurality of apertures 532 are formed in the flexible layered circuit structure. These apertures 532 can be configured to engage a mounting structure, or a portion thereof.


Referring now to FIG. 6, a schematic side view is shown of an LED lighting system 600 in accordance with various embodiments herein. In this embodiment, the flexible layered circuit structure 602 carrying the light emitting diodes 608 is oriented on its side (or lateral side or lateral edge) relative to posts 606, which can serve as a mounting structure to maintain an air gap in between the flexible layered circuit structure 602 and the housing substrate 610. As such, in this embodiment the mounting structure can engage a lateral side of the flexible layered circuit structure.


Referring now to FIG. 7, a schematic side view is shown of an LED lighting system 700 in accordance with various embodiments herein. In this view, the flexible layered circuit structure 702 is suspended above the housing substrate through mounting structure elements 706. In this case, the ends of the flexible layered circuit structure interface with the mounting structure elements 706, however, it will be appreciated that other portions of the flexible layered circuit structure 702 can interface with the mounting structure elements 706.


Referring now to FIG. 8, a schematic cut away top view is shown of an LED lighting system 700 in accordance with various embodiments herein. In this view, one example of how the flexible layered circuit structure 702 can be attached to the mounting structure elements 706 is shown. The flexible layered circuit structure 702 can define notches 703 near the ends of the flexible layered circuit structure 702. The mounting structure elements 706 can include an engagement member 710 that passes into the notches 703 in order to grip the flexible layered circuit structure 702. The mounting structure elements 706 can also include a tensioner 712. The tensioner 712 can provide spring force in order to apply tension to the flexible layered circuit structure in order to make it taut. In some embodiments, the tensioner 712 can be configured to maintain a tension force of at least about one ounce (0.28 N). The tensioner 712 can be configured to maintain a tension force on the flexible layered circuit structure despite thermal expansion of the flexible layered circuit structure. By way of example, in some embodiments, the tensioner can be configured to maintain a tension force of at least one ounce (0.28 N) despite thermal expansion of the flexible layered circuit structure of up to 1 millimeter per meter in length of the flexible layered circuit structure. In some embodiments, the tensioner 712 can include a spring. In some embodiments, the mounting structure is used to take up variable length or mechanical tolerances in the construction of the flexible layered circuit structure.


Referring now to FIG. 9, a schematic view of a portion of a mounting structure 800 is shown in accordance with various embodiments herein. The mounting structure 800 can include tabs 824 (or projections). The mounting structure 800 can include a body portion 822 and an aperture 828 to facilitate mounting to another component such as a housing substrate. Referring now to FIG. 10, a schematic view of a portion of a mounting structure 800 interfaced with a flexible layered circuit structure 802 is shown in accordance with various embodiments herein. In this view, it can be seen that the tabs 824 fit within the notches 830 in the flexible layered circuit structure to support it and hold it in place. In addition, the body portion 822 can be capable of being flexed to generate a spring force that can be exerted on the flexible layered circuit structure 802. In this embodiment, the mounting structure for a single end of the flexible layered circuit structure can be formed of a single piece of material, such as a metal or a polymer. However, in other embodiments the mounting structure can include multiple pieces of material.


Referring now to FIG. 11, a schematic side view is shown of an LED lighting system 900 in accordance with various embodiments herein. The LED lighting system 900 can include a flexible layered circuit structure 902. The flexible layered circuit structure 902 can be suspended above a housing substrate 910, such that there is an air gap 914 disposed in between the bottom thermally conductive layer of the flexible layered circuit structure 902 and the housing substrate 910. A mounting structure can be used to suspend the flexible layered circuit structure. In this embodiment, the mounting structure can include one or more blocks 906. The blocks 906 can serve to hold the flexible layered circuit structure 902 in place. In some embodiments, the posts can be configured to exert tension on the flexible layered circuit structure in the direction of the lengthwise axis of the flexible layered circuit structure such that it is maintained taut (e.g., the tension is exerted in a direction away from the middle of the flexible layered circuit structure). In some embodiments, a tensioner 912 can be disposed between the block 906 and the flexible layered circuit structure 902. In this embodiment, for example, the tensioner 912 can include a spring-loaded connection point (such as a hook or tab receptacle) to exert tension on the flexible layered circuit structure 902. In some embodiments, the tensioner 912 can be configured to move with respect to the block 906 in order to apply tension to the flexible layered circuit structure 902. By way of example, the block 906 can move within a channel formed in the block 906.


Referring now to FIG. 12, a schematic side view is shown of an LED lighting system 1000 in accordance with various embodiments herein. The LED lighting system 1000 can include a flexible layered circuit structure 1002. Light emitting diodes 1008 can be mounted on the flexible layered circuit structure 1002. The flexible layered circuit structure 1002 can be suspended inside a cavity defined by a housing substrate 1010. There can be an air gap 1016 disposed in between the flexible layered circuit structure 1002 and the housing substrate 1010. Leads 1014 can be arranged to provide electrical current to the flexible layered circuit structure 1002.


Referring now to FIG. 13, a schematic side view is shown of an LED lighting system 1100 in accordance with various embodiments herein. The LED lighting system 1100 can include a flexible layered circuit structure 1102. Light emitting diodes 1108 can be mounted on the flexible layered circuit structure 1102. In this embodiment, the flexible layered circuit structure 1102 can assume a U shape such that the first end 1118 and the second end 1120 are disposed adjacent to one another. The flexible layered circuit structure 1102 can be suspended inside a cavity defined by a housing substrate 1110. There can be an air gap 1116 disposed in between the flexible layered circuit structure 1102 and the housing substrate 1110. Leads 1114 can be arranged to provide electrical current to the flexible layered circuit structure 1102.


Referring now to FIG. 14, a schematic side view is shown of an LED lighting system 1200 in accordance with various embodiments herein. The LED lighting system 1200 can include a flexible layered circuit structure 1202 and electrical leads to provide electrical current to the flexible layered circuit structure 1202. Material can be disposed over the top of flexible layered circuit structure 1202 (and thus over the top of LEDs in various embodiments) such as optics 1210, secondary optics, or a diffuser. The flexible layered circuit structure 1202 can be suspended above a housing substrate 1208, such that there is an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure 1202 and the housing substrate 1208. A mounting structure can be used to suspend the flexible layered circuit structure. In this embodiment, the mounting structure can include one or more posts 1206 or standoffs.


It will be appreciated that various modifications can be made in order to enhance heat dissipation in the system. By way of example, various modifications can be made to the flexible layered circuit structure in order to enhance heat dissipation. Referring now to FIG. 15, a schematic cross sectional view is shown of a flexible layered circuit structure 1300 in accordance with various embodiments herein. The flexible layered circuit structure can include a top thermally conductive layer 1302, a middle electrically insulating layer 1304, and a bottom thermally conductive layer 1306. A plurality of light emitting diodes 1308 can be mounted on the top thermally conductive layer 1302. A coating 1310 can be disposed on the bottom thermally conductive layer 1306, the coating 1310 comprising a material with properties that enhance heat transfer. For example, in some embodiments, the coating can be a thermally conductive and emissive material. In some embodiments, the coating can be a material such as tinning.


In some embodiments, additional structural features can be disposed on the bottom layer in order to assist in heat dissipation. By way of example, structural features including, but not limited to, heat slugs, cooling fins, heat conductive projections, and the like can be mounted on the bottom surface of the bottom layer in order to aid in heat dissipation.


In some embodiments, the flexible layered circuit structure can be altered in order to enhance heat transfer. Referring now to FIG. 16, a schematic cross sectional view is shown of a flexible layered circuit structure 1400 in accordance with various embodiments herein in accordance with various embodiments herein. The flexible layered circuit structure can include a top thermally conductive layer 1402, a middle electrically insulating layer 1404, and a bottom thermally conductive layer 1406. A plurality of light emitting diodes 1408 can be mounted on the top thermally conductive layer 1402. In this embodiment, the bottom surface 1420 of the bottom thermally conductive layer 1406 can have a surface topology that is different than a standard flat surface. By way of example, the surface can have numerous peaks and valleys (or be textured) in order to increase the surface area.


In some embodiments, the textured surface can have a surface area at least 10 percent greater than an equally sized substantially flat surface. In some embodiments, the textured surface can have a surface area at least 20 percent greater than an equally sized substantially flat surface. In some embodiments, the textured surface can have a surface area at least 30 percent greater than an equally sized substantially flat surface. In some embodiments, the textured surface can have a surface area at least 40 percent greater than an equally sized substantially flat surface. In some embodiments, the textured surface can have a surface area at least 80 percent greater than an equally sized substantially flat surface. In some embodiments, the textured surface can have a surface area at least 100 percent greater than an equally sized substantially flat surface.


Referring now to FIG. 17, a schematic side view is shown of an LED lighting system 1500 in accordance with various embodiments herein. The LED lighting system 1500 can include a flexible layered circuit structure 1502 and electrical leads to provide electrical current to the flexible layered circuit structure 1502. The flexible layered circuit structure 1502 can be suspended above a housing substrate 1508, such that there is an air gap 1510. The top surface 1524 of the housing substrate 1508 can be coated with a layer of material 1522 to enhance heat flow across the air gap 1510.


In some embodiments, a fan can be included to enhance heat dissipation by causing movement of air over surfaces of the flexible layered circuit structure.


It will be appreciated that various methods are also included herein. The method for making an LED lighting system can include obtaining a flexible layered circuit structure that can include, a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer. The method can further include suspending the flexible layered circuit structure above a housing substrate with an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the housing substrate is at least about 0.5 mm, and connecting the flexible layered circuit structure to a power source.


In some embodiments, suspending includes attaching the flexible layered circuit structure to a mounting structure. In some embodiments, the mounting structure provides the connection to the power source. In some embodiments, the method can further include cutting the flexible layered circuit structure to a desired length. In some embodiments, the method can include unwinding the flexible layered circuit structure from a storage reel prior to cutting. In some embodiments, suspending can include attaching the flexible layered circuit structure to a mounting structure that provides a tension force along the length of the flexible layered circuit structure. In some embodiments, the method can further include applying a tension force of at least one ounce (0.28 N) to the flexible layered circuit structure. In some embodiments, the method can further include removing the flexible layered circuit structure from the position suspended above a housing substrate. In some embodiments, the action of removing the flexible layered circuit structure can be accomplished without tools. In some embodiments, the method can further include replacing the flexible layered circuit structure with another flexible layered circuit structure.


Referring now to FIG. 18, a flow chart is shown of a method of making an LED lighting system in accordance with various embodiments herein. The method can include an operation of obtaining a flexible layered circuit structure 1602. Optionally, in some embodiments, the method can further include an operation of cutting the flexible layered circuit structure to a desired length 1604. In various embodiments, the method can further include an operation of suspending the flexible layered circuit structure above a housing substrate 1606. In some embodiments, the method can further include an operation of connecting the flexible layered circuit structure to a power source 1608. Optionally, in some embodiments, the method can include a step of replacing the flexible layered circuit structure with another flexible layered circuit structure 1610. In various embodiments the flexible layer circuit structure can be removed, and optionally replaced, without the use of tools (for example without the need to remove soldering from elements of the system).


In some embodiments, a method for operating an LED lighting system is included. The method for operating an LED lighting system can include providing electrical current to an LED lighting circuit, the LED lighting circuit including a plurality of light emitting diodes, the LED lighting circuit disposed upon a flexible layered circuit structure can include a top thermally conductive layer, a middle electrically insulating layer, and a bottom thermally conductive layer. The method can further include dissipating heat from the light emitting diodes to ambient air through the top surface of the top thermally conductive layer and the bottom surface of the bottom thermally conductive layer.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration to. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.


All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.


The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.


Further Embodiments

In some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure including a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, and a plurality of light emitting diodes mounted on the top layer. The system can further include a housing substrate and a mounting structure. The mounting structure can be configured to suspend the layered circuit structure above the housing substrate with an air gap disposed in between bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate. The distance between the layered circuit structure and the support layer can be at least about 0.5 mm. The system can further include a plurality of light emitting diodes mounted on the bottom layer. The system can further include an optically translucent material layer disposed over the top thermally conductive layer. The distance between the layered circuit structure and the support layer can be between about 0.5 mm and 100 mm. The distance between the layered circuit structure and the support layer can be between about 40% and 60% of the width of the flexible layered circuit structure. The mounting structure can include a tensioner to apply tension to the flexible layered circuit structure. The tensioner can provide a spring force applied to the flexible layered circuit structure. The tensioner can include a spring. The tensioner can be configured to maintain a tension force of at least one ounce (0.28 N). The tensioner can be configured to maintain a tension force of at least one ounce (0.28 N) despite thermal expansion of the flexible layered circuit structure of up to 1 millimeter per meter in length of the flexible circuit structure. The mounting structure can include a fastener. The mounting structure can include a hook. The mounting structure can include a pin. The mounting structure can include a clip. The mounting structure can include a spring clip. The mounting structure can include a tab or tab receptacle. The mounting structure can be direct or indirectly attached to the housing substrate. The flexible layered circuit structure can include a first end and a second end, wherein the mounting structure engages the first end and the second end. The flexible layered circuit structure can be in a U shape such that the first end and the second end are disposed adjacent to one another. The flexible layered circuit structure can have a first lateral side and a second lateral side, wherein the mounting structure can engage at least one of the first lateral side and the second lateral side. The housing substrate can include a material that can be selected from the group consisting of organic and inorganic structural materials. The housing substrate can include a material that can be selected from the group consisting of a polymer, a cellulosic material, a composite, a glass, and stone. The housing substrate can include a metal. The light emitting diodes mounted on the top layer can have a power of between 0.25 and 3 watts per inch squared of the surface area of the bottom layer. The flexible circuit structure can have sufficient flexibility to achieve bending with a radius of curvature of at least 1 inch. The flexible layered circuit structure can define apertures, the mounting structure can be configured to engage the apertures to support the flexible layered circuit structure. The bottom thermally conductive layer can include a textured surface having a surface area greater than an equally sized substantially flat surface. The bottom thermally conductive layer can include a plurality of heat sink fins mounted thereon. The bottom thermally conductive layer can include a textured surface having a surface area at least 20 percent greater than an equally sized substantially flat surface. The system can further include a coating over the bottom thermally conductive layer, the coating can include a material with properties that enhance heat transfer. The coating can include tinning. The bottom layer can be covered with a thermally conductive and emissive material. The housing substrate can be coated with a material to enhance heat flow across the air gap. The top layer can include 0.5 to 4.0 ounces per square foot of copper, the intermediate layer can include fiberglass 0.005 to 0.020 inches thick, and the bottom layer can include 0.5 to 4.0 ounces per square foot of copper. The top, intermediate, and bottom layers, together, can have a thermal resistance of less than 10 degrees Celsius per Watt. The system can be configured to have thermal transfer properties sufficient to allow the system to maintain a thermal equilibrium at or below the critical junction temperatures for the LEDs without the addition of secondary heat sinking. The flexible layered circuit structure is attached to the mounting structure in a releasable manner. The flexible layered circuit structure can be releasable from the mounting structure without the use of tools. The flexible layered circuit structure can be configured for replacement.


In some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure including a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, a plurality of light emitting diodes mounted on the bottom layer, a housing substrate, and a mounting structure. The mounting structure can be configured to suspend the layered circuit structure above the housing substrate with an air gap disposed in between bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the support layer is at least about 0.5 mm.


In some embodiments, a method for making an LED lighting system is included. The method for making an LED lighting system can include obtaining a flexible layered circuit structure that includes, a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer. The method can also include suspending the flexible layered circuit structure above a housing substrate with an air gap disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the housing substrate is at least about 0.5 mm, and connecting the flexible layered circuit structure to a power source. Suspending can include attaching the flexible layered circuit structure to a mounting structure. The mounting structure can provide the connection to the power source. The method can further include cutting the flexible layered circuit structure to a desired length. The method can further include unwinding the flexible layered circuit structure from a storage reel prior to cutting. Suspending can include attaching the flexible layered circuit structure to a mounting structure that provides a tension force along the length of the flexible layered circuit structure. The method can further include applying a tension force of at least one ounce (0.28 N) to the flexible layered circuit structure. The method can further include removing the flexible layered circuit structure from the position suspended above a housing substrate. The step of removing can be accomplished without tools. The method can further include replacing the flexible layered circuit structure with another flexible layered circuit structure.


In some embodiments, a method for operating an LED lighting system is included. The method for operating an LED lighting system can include providing electrical current to an LED lighting circuit, the LED lighting circuit including a plurality of light emitting diodes, the LED lighting circuit disposed upon a flexible layered circuit structure. The flexible layered circuit structure can include a top thermally conductive layer, a middle electrically insulating layer, and a bottom thermally conductive layer. The method can further include dissipating heat from the light emitting diodes to ambient air through the top surface of the top thermally conductive layer and the bottom surface of the bottom thermally conductive layer.


In some embodiments, an LED lighting system is included. The LED lighting system can include a flexible layered circuit structure including a top thermally conductive layer, a middle electrically insulating layer, a bottom thermally conductive layer, and a plurality of light emitting diodes mounted on the top layer. The flexible layered circuit structure can be formed into a loop. The loop can be disposed within a housing. The loop can be separated from the housing by an air gap. The loop can be disposed sideways to the support structure.

Claims
  • 1. An LED lighting system comprising: a flexible layered circuit structure comprising a top thermally conductive layer;a middle electrically insulating layer;a bottom thermally conductive layer;a plurality of light emitting diodes mounted on the top layer;a housing substrate;a mounting structure, the mounting structure comprising an engagement member that grips the flexible layered circuit structure, the mounting structure suspending the layered circuit structure above the housing substrate such that an air gap is disposed in between the bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, the air gap having a long dimension and a short dimension approximately orthogonal to the long dimension such that the long dimension is longer than the short dimension, where the air gap is open to at least one side of the long dimension of the flexible layered circuit structure, and wherein the distance between the layered circuit structure and the housing substrate is at least about 0.5 mm; andwherein the mounting structure exerts tension outward on the flexible layered circuit structure along the lengthwise axis of the flexible layered circuit structure away from a middle of the flexible layered circuit structure.
  • 2. The LED lighting system of claim 1, further comprising a plurality of light emitting diodes mounted on the bottom layer.
  • 3. The LED lighting system of claim 1, further comprising an optically translucent material layer disposed over the top thermally conductive layer.
  • 4. The LED lighting system of claim 1, wherein the distance between the layered circuit structure and the housing substrate is between about 0.5 mm and 100 mm.
  • 5. The LED lighting system of claim 1, wherein the distance between the layered circuit structure and the housing substrate is between about 40% and 60% of the width of the flexible layered circuit structure.
  • 6. The LED lighting system of claim 1, the mounting structure comprising a tensioner to apply tension to the flexible layered circuit structure.
  • 7. The LED lighting system of claim 6, the tensioner providing a spring force applied to the flexible layered circuit structure.
  • 8. The LED lighting system of claim 7, wherein the tensioner comprises a first spring and a second spring.
  • 9. The LED lighting system of claim 6, the tensioner configured to maintain a tension force of at least one ounce (0.28 N).
  • 10. The LED lighting system of claim 6, the tensioner configured to maintain a tension force of at least one ounce (0.28 N) despite thermal expansion of the flexible layered circuit structure of up to 1 millimeter per meter in length of the flexible circuit structure.
  • 11. The LED lighting system of claim 1, the mounting structure comprising an item selected from the group consisting of a fastener, a hook, a pin, a clip, a spring clip, a tab, and a tab receptacle.
  • 12. The LED lighting system of claim 1, wherein the flexible layered circuit structure has a first end and a second end, wherein the mounting structure engages the first end and the second end.
  • 13. The LED lighting system of claim 12, wherein the flexible layered circuit structure comprises a U shape such that the first end and the second end are disposed adjacent to one another.
  • 14. The LED lighting system of claim 1, wherein the flexible layered circuit structure has a first lateral side and a second lateral side, wherein the mounting structure engages at least one of the first lateral side and the second lateral side.
  • 15. The LED lighting system of claim 1, the housing substrate comprising a material selected from the group consisting of organic and inorganic structural materials.
  • 16. The LED lighting system of claim 1, wherein the light emitting diodes mounted on the top layer have a power of between 0.25 and 3 watts per inch squared of the surface area of the bottom layer.
  • 17. The LED lighting system of claim 1, wherein the flexible circuit structure sufficient flexibility to achieve bending with a radius of curvature of at least 1 inch.
  • 18. The LED lighting system of claim 1, the flexible layered circuit structure defining apertures, the mounting structure configured to engage the apertures to support the flexible layered circuit structure.
  • 19. The LED lighting system of claim 1, the bottom thermally conductive layer comprising a textured surface having a surface area greater than an equally sized substantially flat surface.
  • 20. The LED lighting system of claim 1, the bottom layer covered with a thermally conductive and emissive material.
  • 21. The LED lighting system of claim 1, the housing substrate coated with a material to enhance heat flow across the air gap.
  • 22. The LED lighting system of claim 1, wherein the top layer includes 0.5 to 4.0 ounces per square foot of copper, the intermediate layer includes fiberglass 0.005 to 0.020 inches thick, and the bottom layer includes 0.5 to 4.0 ounces per square foot of copper.
  • 23. The LED lighting system of claim 1, wherein the top, intermediate, and bottom layers have a thermal resistance of less than 10 degrees Celsius per Watt.
  • 24. The LED lighting system of claim 1, configured to have thermal transfer properties sufficient to allow the system to maintain a thermal equilibrium at or below the critical junction temperatures for the LEDs without the addition of secondary heat sinking.
  • 25. The LED lighting system of claim 1, wherein the flexible layered circuit structure is attached to the mounting structure in a releasable manner.
  • 26. The LED lighting system of claim 1, wherein the flexible layered circuit structure is configured for replacement.
  • 27. The LED lighting system of claim 1, wherein the mounting structure supports the layered circuit structure such that the top surface of the layered circuit structure and the bottom surface of the layered circuit structure are substantially open to surrounding air.
  • 28. An LED lighting system comprising: a flexible layered circuit structure comprising a top thermally conductive layer;a middle electrically insulating layer;a bottom thermally conductive layer;a plurality of light emitting diodes mounted on the bottom layer;a housing substrate;a mounting structure suspending the layered circuit structure above the housing substrate by connecting to a top layer of the housing substrate and a bottom layer of the flexible layered circuit structure, where the mounting structure supports the layered circuit structure such that the top surface of the layered circuit structure and the bottom surface of the layered circuit structure are substantially open to surrounding air, and where the top layer of the housing substrate and a bottom layer of the flexible layered circuit structure approximately face one another, with an air gap disposed in between bottom thermally conductive layer of the flexible layered circuit structure and the housing substrate, wherein the distance between the layered circuit structure and the housing substrate is at least about 0.5 mm; andwherein the mounting structure exerts tension on the flexible layered circuit structure in a direction away from the middle of the flexible layered circuit structure along the lengthwise axis of the flexible layered circuit structure such that it is maintained taut.
Parent Case Info

This application is a continuation-in-part of U.S. application Ser. No. 13/158,149, filed Jun. 10, 2011, now U.S. Pat. No. 8,851,356 which is a continuation-in-part of U.S. application Ser. No. 12/372,499, filed Feb. 17, 2009, now U.S. Pat. No. 7,980,863, which claims the benefit of U.S. Provisional Application No. 61/028,779, filed Feb. 14, 2008, and U.S. Provisional Application No. 61/037,595, filed on Mar. 18, 2008, the contents of all of which are herein incorporated by reference. This application is also a continuation-in-part of U.S. application Ser. No. 13/190,639, filed Jul. 26, 2011, now U.S. Pat. No. 8,500,456 which is a continuation of U.S. application Ser. No. 12/406,761, filed Mar. 18, 2009, now U.S. Pat. No. 8,007,286, which claims the benefit of U.S. Provisional Application No. 61/037,595, filed on Mar. 18, 2008, and U.S. Provisional Application No. 61/043,006, filed Apr. 7, 2008, the contents of all of which are herein incorporated by reference. This application is also a continuation-in-part of U.S. application Ser. No. 13/411,322, filed Mar. 2, 2012, now U.S. Pat. No. 8,525,193 which is a continuation of U.S. application Ser. No. 12/043,424, filed Mar. 6, 2008, now U.S. Pat. No. 8,143,631, the contents of all of which are herein incorporated by reference.

US Referenced Citations (311)
Number Name Date Kind
2697811 Deming Dec 1954 A
2731609 Sobell, III Jan 1956 A
3028573 Stoehr Apr 1962 A
3086189 Robbins Apr 1963 A
3270251 Evans Aug 1966 A
3401369 Plamateer Sep 1968 A
3499098 Mcgahey et al. Mar 1970 A
3585403 Gribbons Jun 1971 A
3628999 Schneble, Jr. et al. Dec 1971 A
3640519 William et al. Feb 1972 A
3745091 Mccormick Jul 1973 A
4017847 Burford et al. Apr 1977 A
4150421 Nishihara et al. Apr 1979 A
4173035 Hoyt Oct 1979 A
4249303 Greenwood et al. Feb 1981 A
4250536 Barringer et al. Feb 1981 A
4285780 Schachter Aug 1981 A
4388136 Jacobus et al. Jun 1983 A
4515304 Berger May 1985 A
4521969 Greenwood Jun 1985 A
4526432 Cronin et al. Jul 1985 A
4533188 Miniet Aug 1985 A
4618194 Kwilos Oct 1986 A
4685210 King et al. Aug 1987 A
4761881 Bora et al. Aug 1988 A
4795079 Yamada Jan 1989 A
4815981 Mizuno Mar 1989 A
4842184 Miller, Jr. Jun 1989 A
4871315 Noschese Oct 1989 A
4950527 Yamada Aug 1990 A
4991290 MacKay Feb 1991 A
5001605 Savagian et al. Mar 1991 A
5041003 Smith et al. Aug 1991 A
5093985 Houldsworth et al. Mar 1992 A
5103382 Kondo et al. Apr 1992 A
5155904 Majd Oct 1992 A
5176255 Seidler Jan 1993 A
5224023 Smith et al. Jun 1993 A
5254910 Yang Oct 1993 A
5375044 Guritz Dec 1994 A
5404044 Booth et al. Apr 1995 A
5440454 Hashimoto et al. Aug 1995 A
5478008 Takahashi Dec 1995 A
5511719 Miyake et al. Apr 1996 A
5563777 Miki et al. Oct 1996 A
5575554 Guritz Nov 1996 A
5585675 Knopf Dec 1996 A
5887158 Sample et al. Mar 1999 A
5917149 Barcley et al. Jun 1999 A
5920465 Tanaka Jul 1999 A
5984691 Brodsky et al. Nov 1999 A
6040624 Chambers et al. Mar 2000 A
6065666 Backlund May 2000 A
6089442 Ouchi et al. Jul 2000 A
6095405 Kim et al. Aug 2000 A
6100475 Degani et al. Aug 2000 A
6113248 Mistopoulos et al. Sep 2000 A
6130823 Lauder et al. Oct 2000 A
6137816 Kinbara Oct 2000 A
6199273 Kubo et al. Mar 2001 B1
6226862 Neuman May 2001 B1
6239716 Pross et al. May 2001 B1
6299337 Bachl et al. Oct 2001 B1
6299469 Glovatsky et al. Oct 2001 B1
6310445 Kashaninejad Oct 2001 B1
6372997 Hill et al. Apr 2002 B1
6384339 Neuman May 2002 B1
6428189 Hochstein Aug 2002 B1
6429383 Sprietsma et al. Aug 2002 B1
6448661 Kim et al. Sep 2002 B1
6449836 Miyake et al. Sep 2002 B1
6465084 Curcio et al. Oct 2002 B1
6481874 Petroski Nov 2002 B2
6517218 Hochstein Feb 2003 B2
6555756 Nakamura et al. Apr 2003 B2
6578986 Swaris et al. Jun 2003 B2
6580228 Chen et al. Jun 2003 B1
6589594 Hembree Jul 2003 B1
6601292 Li et al. Aug 2003 B2
6651322 Currie Nov 2003 B1
6657297 Jewram et al. Dec 2003 B1
6729888 Imaeda May 2004 B2
6746885 Cao Jun 2004 B2
6784027 Streubel Aug 2004 B2
6833526 Sinkunas et al. Dec 2004 B2
6846094 Luk Jan 2005 B2
6851831 Karlicek, Jr. et al. Feb 2005 B2
6884313 Liu et al. Apr 2005 B2
6897622 Lister May 2005 B2
6898084 Misra May 2005 B2
6902099 Motonishi et al. Jun 2005 B2
6919529 Franzen et al. Jul 2005 B2
6936855 Harrah Aug 2005 B1
6963175 Archenhold et al. Nov 2005 B2
6966674 Tsai Nov 2005 B2
6991473 Balcome et al. Jan 2006 B1
6996674 Chiu et al. Feb 2006 B2
7023147 Colby et al. Apr 2006 B2
7037114 Eiger et al. May 2006 B1
7086756 Maxik Aug 2006 B2
7086767 Sidwell et al. Aug 2006 B2
7114831 Popovich et al. Oct 2006 B2
7114837 Yagi et al. Oct 2006 B2
7149097 Shteynberg et al. Dec 2006 B1
7199309 Chamberlin et al. Apr 2007 B2
7204615 Arik et al. Apr 2007 B2
7210818 Luk et al. May 2007 B2
7248245 Adachi et al. Jul 2007 B2
7253449 Wu Aug 2007 B2
7256554 Lys Aug 2007 B2
7262438 Mok et al. Aug 2007 B2
7263769 Morimoto et al. Sep 2007 B2
7276861 Shteynberg et al. Oct 2007 B1
7284882 Burkholder Oct 2007 B2
7325955 Lucas et al. Feb 2008 B2
7331796 Hougham et al. Feb 2008 B2
7341476 Soeta Mar 2008 B2
7344279 Mueller et al. Mar 2008 B2
7377669 Farmer et al. May 2008 B2
7377787 Eriksson May 2008 B1
7394027 Kaluzni et al. Jul 2008 B2
7397068 Park et al. Jul 2008 B2
7448923 Uka Nov 2008 B2
7459864 Lys Dec 2008 B2
7497695 Uchida et al. Mar 2009 B2
7502846 McCall Mar 2009 B2
7514880 Huang et al. Apr 2009 B2
7543961 Arik et al. Jun 2009 B2
7547124 Chang et al. Jun 2009 B2
7550930 Cristoni et al. Jun 2009 B2
7553051 Brass et al. Jun 2009 B2
7556405 Kingsford et al. Jul 2009 B2
7556406 Petroski et al. Jul 2009 B2
7573210 Ashdown et al. Aug 2009 B2
7583035 Shteynberg et al. Sep 2009 B2
7598685 Shteynberg et al. Oct 2009 B1
7656103 Shteynberg et al. Feb 2010 B2
7665999 Hougham et al. Feb 2010 B2
7696628 Ikeuchi et al. Apr 2010 B2
7710047 Shteynberg et al. May 2010 B2
7710050 Preston et al. May 2010 B2
7777236 Pachler Aug 2010 B2
7800315 Shteynberg et al. Sep 2010 B2
7806572 Mcfadden et al. Oct 2010 B2
7810955 Stimac et al. Oct 2010 B2
7852009 Coleman et al. Dec 2010 B2
7852300 Shteynberg et al. Dec 2010 B2
7880400 Zhou et al. Feb 2011 B2
7888881 Shteynberg et al. Feb 2011 B2
7902769 Shteynberg et al. Mar 2011 B2
7902771 Shteynberg et al. Mar 2011 B2
7943940 Boonekamp et al. May 2011 B2
7952294 Shteynberg et al. May 2011 B2
7956554 Shteynberg et al. Jun 2011 B2
7977698 Ling et al. Jul 2011 B2
7980863 Holec et al. Jul 2011 B1
8004211 Van Erp Aug 2011 B2
8007286 Holec et al. Aug 2011 B1
8011806 Shiraishi et al. Sep 2011 B2
8038329 Takahasi et al. Oct 2011 B2
8045312 Shrier Oct 2011 B2
8061886 Kraus, Jr. et al. Nov 2011 B1
8065794 En et al. Nov 2011 B2
8067896 Shteynberg et al. Nov 2011 B2
8075477 Nakamura et al. Dec 2011 B2
8115370 Huang Feb 2012 B2
8124429 Norman Feb 2012 B2
8137113 Ouchi et al. Mar 2012 B2
8143631 Crandell et al. Mar 2012 B2
8162200 Buchwalter et al. Apr 2012 B2
8166650 Thomas May 2012 B2
8210422 Zadesky Jul 2012 B2
8210424 Weibezahn Jul 2012 B2
8227962 Su Jul 2012 B1
8232735 Shteynberg et al. Jul 2012 B2
8242704 Lethellier Aug 2012 B2
8253349 Shteynberg et al. Aug 2012 B2
8253666 Shteynberg et al. Aug 2012 B2
8264169 Shteynberg et al. Sep 2012 B2
8264448 Shteynberg et al. Sep 2012 B2
8410720 Holec et al. Apr 2013 B2
8500456 Holec et al. Aug 2013 B1
8525193 Crandell et al. Sep 2013 B2
8618669 Furuta Dec 2013 B2
8710764 Holec et al. Apr 2014 B2
8851356 Holec et al. Oct 2014 B1
8947389 Shin et al. Feb 2015 B1
8968006 Holec et al. Mar 2015 B1
9341355 Crandell et al. May 2016 B2
9357639 Holec et al. May 2016 B2
9474154 Johansson et al. Oct 2016 B2
9736946 Holec et al. Aug 2017 B2
20010000906 Yoshikawa et al. May 2001 A1
20010004085 Gueissaz Jun 2001 A1
20020014518 Totani et al. Feb 2002 A1
20020043402 Juskey et al. Apr 2002 A1
20020094705 Driscoll et al. Jul 2002 A1
20020105373 Sudo Aug 2002 A1
20020148636 Belke et al. Oct 2002 A1
20020179331 Brodsky et al. Dec 2002 A1
20030040166 Moshayedi Feb 2003 A1
20030052594 Matsui et al. Mar 2003 A1
20030072153 Matsui et al. Apr 2003 A1
20030079341 Miyake et al. May 2003 A1
20030092293 Ohtsuki et al. May 2003 A1
20030094305 Ueda May 2003 A1
20030098339 Totani et al. May 2003 A1
20030137839 Lin Jul 2003 A1
20030146018 Sinkunas et al. Aug 2003 A1
20030193789 Karlicek, Jr. Oct 2003 A1
20030193801 Lin et al. Oct 2003 A1
20030199122 Wada et al. Oct 2003 A1
20030223210 Chin Dec 2003 A1
20040007981 Shibata et al. Jan 2004 A1
20040055784 Joshi et al. Mar 2004 A1
20040060969 Imai et al. Apr 2004 A1
20040087190 Miyazawa et al. May 2004 A1
20040090403 Huang May 2004 A1
20040239243 Roberts et al. Dec 2004 A1
20040264148 Burdick, Jr. et al. Dec 2004 A1
20050056923 Moshayedi Mar 2005 A1
20050067472 Ohtsuki et al. Mar 2005 A1
20050133800 Park et al. Jun 2005 A1
20050207156 Wang et al. Sep 2005 A1
20050239300 Yasumura et al. Oct 2005 A1
20050242160 Nippa et al. Nov 2005 A1
20050272276 Ooyabu Dec 2005 A1
20060000877 Wang et al. Jan 2006 A1
20060025023 Ikeda et al. Feb 2006 A1
20060038542 Park et al. Feb 2006 A1
20060128174 Jang et al. Jun 2006 A1
20060181878 Burkholder Aug 2006 A1
20060220051 Fung et al. Oct 2006 A1
20060221609 Ryan Oct 2006 A1
20060245174 Ashdown et al. Nov 2006 A1
20060284640 Wang et al. Dec 2006 A1
20070015417 Caveney et al. Jan 2007 A1
20070054517 Hidaka et al. Mar 2007 A1
20070077688 Hsu et al. Apr 2007 A1
20070157464 Jeon et al. Jul 2007 A1
20070171145 Coleman et al. Jul 2007 A1
20070184675 Ishikawa et al. Aug 2007 A1
20070194428 Sato et al. Aug 2007 A1
20070210722 Konno et al. Sep 2007 A1
20070216987 Hagood Sep 2007 A1
20070217202 Sato Sep 2007 A1
20070252268 Chew et al. Nov 2007 A1
20070257623 Johnson et al. Nov 2007 A1
20080031640 Fukui Feb 2008 A1
20080045077 Chou et al. Feb 2008 A1
20080138576 Nozu et al. Jun 2008 A1
20080143379 Norman Jun 2008 A1
20080160795 Chen et al. Jul 2008 A1
20080191642 Slot et al. Aug 2008 A1
20080232047 Yamada et al. Sep 2008 A1
20080249363 Nakamura et al. Oct 2008 A1
20080254653 Uka Oct 2008 A1
20080310141 Mezouari Dec 2008 A1
20080311771 Cho Dec 2008 A1
20090029570 Ikeuchi et al. Jan 2009 A1
20090079357 Shteynberg et al. Mar 2009 A1
20090103302 Lin et al. Apr 2009 A1
20090117373 Wisniewski et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090191725 Vogt et al. Jul 2009 A1
20090205200 Rosenblatt et al. Aug 2009 A1
20090226656 Crandell et al. Sep 2009 A1
20090230883 Haug Sep 2009 A1
20090251068 Holec et al. Oct 2009 A1
20090301544 Minelli Dec 2009 A1
20090308652 Shih Dec 2009 A1
20100008090 Li et al. Jan 2010 A1
20100018763 Barry Jan 2010 A1
20100026208 Shteynberg et al. Feb 2010 A1
20100059254 Sugiyama et al. Mar 2010 A1
20100093190 Miwa et al. Apr 2010 A1
20100109536 Jung et al. May 2010 A1
20100110682 Jung et al. May 2010 A1
20100167561 Brown et al. Jul 2010 A1
20100187005 Yeh Jul 2010 A1
20100213859 Shteynberg et al. Aug 2010 A1
20100220046 Plotz et al. Sep 2010 A1
20100308738 Shteynberg et al. Dec 2010 A1
20100308739 Shteynberg et al. Dec 2010 A1
20110024180 Ko Feb 2011 A1
20110051448 Owada Mar 2011 A1
20110096545 Chang et al. Apr 2011 A1
20110115411 Shteynberg et al. May 2011 A1
20110121754 Shteynberg et al. May 2011 A1
20110157897 Liao et al. Jun 2011 A1
20110177700 Jia et al. Jul 2011 A1
20110230067 Champion et al. Sep 2011 A1
20110309759 Shteynberg et al. Dec 2011 A1
20110311789 Loy et al. Dec 2011 A1
20120002438 Gourlay Jan 2012 A1
20120014108 Greenfield et al. Jan 2012 A1
20120068622 Ward Mar 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120081018 Shteynberg et al. Apr 2012 A1
20120097784 Liao et al. Apr 2012 A1
20120162990 Crandell et al. Jun 2012 A1
20120188771 Kraus et al. Jul 2012 A1
20120195024 Kawaguchi et al. Aug 2012 A1
20130070452 Urano et al. Mar 2013 A1
20140015414 Holec et al. Jan 2014 A1
20140168982 Crandell et al. Jun 2014 A1
20140197743 Holec et al. Jul 2014 A1
20150173183 Holec et al. Jun 2015 A1
20150189765 Holec et al. Jul 2015 A1
20170055346 Holec et al. Feb 2017 A1
20180063968 Holec et al. Mar 2018 A1
Foreign Referenced Citations (16)
Number Date Country
201242082 May 2009 CN
201731316 Feb 2011 CN
102788284 Nov 2012 CN
0961351 Dec 1999 EP
2888517 Jul 2015 EP
2483942 Mar 2012 GB
01319993 Dec 1989 JP
05090726 Apr 1993 JP
05090749 Apr 1993 JP
2002043737 Feb 2002 JP
2002117707 Apr 2002 JP
2005285960 Oct 2005 JP
2006080227 Mar 2006 JP
2011169791 Sep 2011 JP
2011064107 Mar 2013 WO
2014031567 Feb 2014 WO
Non-Patent Literature Citations (97)
Entry
“Final Office Action”, for U.S. Appl. No. 13/158,149, dated Mar. 6, 2013 (11 pages).
“Notice of Allowance”, from U.S. Appl. No. 13/190,639, dated Apr. 4, 2013 (12 pages).
“Notice of Allowance”, from U.S. Appl. No. 13/411,322, dated May 10, 2013 (29 pages).
“Notice of Allowance”, dated Dec. 3, 2012 in co pending U.S. Appl. No. 12/419,879, “Solid State Lighting Circuit and Controls” (17 pages).
“Notice of Allowance”, for U.S. Appl. No. 13/190,639, dated Mar. 7, 2013 (10 pages).
“Response to Non-Final Office Action”, dated Oct. 1, 2012 in U.S. Appl. No. 13/411,322, “Layered Structure for Use With High Power Light Emitting Diode Systems” (6 pages).
“3M Thermally Conductive Adhesive Transfer Tapes—Technical Data”, Electronic Adhesives and Specialties Department, Engineered Adhesives Division, Sep. 2002, (6 pages).
Murray, Cameron T. et al., “3M Thermally Conductive Tapes”, 3M Electronic Markets Materials Division, Mar. 2004 (39 pages).
“Custom LUXEON Design Guide”, Application Brief AB12, Mar. 2006 (14 pages).
“DERWENT-ACC-No. 1984-298425”, corresponds to JP-59-186388A (1984).
“DERWENT-ACC-No. 2010-J09039”, corresponds to JP-201 0-153549A (1984).
“DRAGONtape DT6 Data Sheet”, Sep. 2007 (4 pages).
“DRAGONtape Product Information Bulletin”, 2007 (2 pages).
“DRAGONtape Product Information Bulletin”, OSRAM, Nov. 2005 (4 pages).
“File History”, for co-pending U.S. Appl. No. 12/372,499, “Printed Circuit Board Flexible Interconnect Design” filed on Feb. 17, 2009 (254 pages).
“File History”, for co-pending U.S. Appl. No. 12/406,761, “Printed Circuit Board Interconnect Construction,” filed on Mar. 18, 2009 (244 pages).
“Final Office Action”, dated Aug. 7, 2012 in U.S. Appl. No. 13/190,639, “Interconnectable Circuit Boards,” (25 pages).
“Final Office Action”, dated Mar. 15, 2012 in co pending U.S. Appl. No. 12/419,879, “Solid State Lighting Circuit and Controls” (10 pages).
“FLEX Connectors User's Guide”, OSRAM Sylvania, Oct. 2007 (6 pages).
“FR406 High Performance Epoxy Laminate and Prepreg”, Isola, 2006 (2 pages).
“FR406: High Performance Epoxy Laminate and Prepreg”, http://www.isola-group.com/en/products/name/details.shtl?13, Mar. 2008 (1 page).
“High Performance Epoxy Laminate and Prepreg”, Isola, Mar. 2007 (3 pages).
“IPC-4101B: Specification for Base Materials for Rigid and Multilayer Printed Boards”, Mar. 2006 (109 pages).
“Kapton Polyimide Film”, DuPont Electronics, http://www2.dupont.com/Kapton/en_US/index.html, Feb. 2008 (9 pages).
“Linear Products”, OSRAM Sylvania, http://www.sylvanaia.com/BusinessProducts/Innovations/LED+Systems/Linear/, 2004 (1 page).
“LINEARlight Flex & Power Flex LED Systems”, OSRAM Sylvania, http://www/sylvania.com/AboutUs/Pressxpress/Innovation/LightingNews(US)/2007/USLi, Sep. 2007 (3 pages).
“LINEARlight Flex TOPLED: Flexible LED Strip”, Osran Sylvania LED Systems Specification Guide, 2007 (p. 100).
“LINEARlight Power Flex: Flexible High Light Output LED Modules”, OSRAM Sylvania, Apr. 2008 (4 pages).
“LINEARlight Power Flex: Flexible LED Strip”, Osran Sylvania LED Systems Specification Guide, 2007 (p. 96).
“LINEARlight Power Flex: LM1OP Data Sheet”, May 2007 (4 pages).
“Nichia Application Note”, Oct. 2003 (p. 5).
“Non Final Office Action”, dated Mar. 5, 2012 in co pending U.S. Appl. No. 13/190,639, “Printed Circuit Board Interconnect Construction” (12 pages).
“Non Final Office Action”, dated Jul. 26, 2011 in co pending U.S. Appl. No. 12/419,879, “Solid State Lighting Circuit and Controls” (16 pages).
“Non-Final Office Action”, dated Aug. 22, 2012 in co-pending U.S. Appl. No. 13/158,149, “Flexible Circuit Board Interconnection and Methods” (27pages).
“Non-Final Office Action”, dated Oct. 1, 2012 in U.S. Appl. No. 13/411,322, “Layered Structure for Use With High Power Light Emitting Diode Systems,” (18 pages).
“Non-Final Office Action”, dated Aug. 3, 2012 in U.S. Appl. No. 12/419,879, “Solid State Lighting Circuit and Controls,” (17 pages).
“Notice of Allowance”, dated Nov. 26, 2012 in co-pending U.S. Appl. No. 13/190,639, “Printed Circuit Board Interconnect Construction,” (15 pages).
“Notice of Allowance”, dated Nov. 16, 2011 in co-pending U.S. Appl. No. 12/043,424, “Layered Structure for Use With High Power Light Emitting Diode Systems,” (9 pages).
“NUD4001—High Current LED Driver”, Semiconductor Components Industries, LLC, http://onsemi.com, Jun. 2006 (8 pages).
“Product Information Bulletin HF2STick XB: Hi-Flux 2nd Generation Module”, OSRAM Sylvania, Jan. 2008 (4 pages).
“Response to Final Office Action”, dated Mar. 15, 2012 in co-pending U.S. Appl. No. 12/419,879, filed with USPTO Jun. 15, 2012 (8 pages).
“Response to Final Office Action”, dated Aug. 7, 2012, in co-pending U.S. Appl. No. 13/190,639, file with USPTO Nov. 7, 2012 (14 pages).
“Response to Non-Final Office Action”, dated Aug. 3, 2012 in co-pending U.S. Appl. No. 12/419,879, filed with USPTO Nov. 5, 2012 (7 pages).
“Response to Non-Final Office Action”, dated Jul. 26, 2011 in co-pending U.S. Appl. No. 12/419,879, filed with USPTO Dec. 27, 2011 (7 pages).
“Restriction Requirement”, dated Sep. 7, 2011 in co-pending U.S. Appl. No. 13/190,639, “Printed Circuit Board Interconnect Construction” (6 pages).
“Specifications for Nichia Chip Type Warm White LED Model: NS6L083T”, Nichia Corporation, No. STSE-CC6063A, <Cat.No.060609> (3 pages).
“Specifications for Nichia Chip Type White LED Model: NS6W083AT”, Nichia Corporation, No. STSE-CC7134, <Cat.No.070706> (14 pages).
“TechniMask ISR 1000 Series”, Technic, Inc., http://www.technic.com/pwb/solderisr1000.htm, 2003 (1 page).
“Thermal Management for LED Applications Solutions Guide”, The Bergquist Company (6 pages).
“T-Iam System—Thermally Conductive Circuit Board Materials”, http://www.lairdtech.com/pages/products/T-Lam-System.asp, Feb. 2008 (7 pages).
O'Malley, Kleran, “Using the NUD4001 to Drive High Current LEDs”, http;//onsemi.com, Feb. 2005 (4 pages).
“Final Office Action,” for U.S. Appl. No. 14/015,679, dated Dec. 16, 2014 (19 pages).
“International Search Report and Written Opinion,” for PCT/US2013/055658, dated Jan. 15, 2014 (10 pages).
“Non-Final Office Action,” for U.S. Appl. No. 13/158,149, dated Jul. 3, 2013 (32 pages).
“Non-Final Office Action,” for U.S. Appl. No. 13/944,610, dated Mar. 18, 2014 (2o0 pages).
“Non-Final Office Action,” for U.S. Appl. No. 14/015,679, dated Apr. 1, 2014 (7 pages).
“Non-Final Office Action,” for U.S. Appl. No. 14/216,182, dated Nov. 26, 2014 (7 pages).
“Notice of Allowance,” for U.S. Appl. No. 13/944,610, dated Nov. 18, 2013 (11 pages).
“Notice of Allowance,” for U.S. Appl. No. 13/944,610, dated Oct. 31, 2014 (11 pages).
“Notice of Allowance,” for U.S. Appl. No. 13/158,149, dated Feb. 11, 2014 (12 pages).
“Notice of Allowance,” for U.S. Appl. No. 13/158,149, dated Jun. 6, 2014 (12 pages).
“Notice of Allowance,” for U.S. Appl. No. 13/791,228, dated Dec. 10, 2013 (36 pages).
“Response to Final Office Action,” for U.S. Appl. No. 12/372,499, dated Oct. 27, 2010 (7 pages).
“Response to Final Office Action,” for U.S. Appl. No. 12/406,761 dated Oct. 12, 2010 (10 pages).
“Response to Final Office Action,” for U.S. Appl. No. 12/158,149 , dated Jun. 6, 2013 (10 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 13/158,149 dated Feb. 21, 2013 (12 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 13/160,639 dated Jul. 26, 2012 (17 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 13/158,149, dated Jan. 2, 2014 (14 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 13/944,610, dated Mar. 18, 2014 and filed with the USPTO Sep. 18, 2014 (9 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 14/015,679, dated Apr. 1, 2014 and filed with the USPTO Oct. 1, 2014 (6 pages).
“Communication Pursuant to Rules 161(1) and 162 EPC,” for European Patent Application No. 13763341.8, dated Apr. 7, 2015 (2 pages).
“International Preliminary Report on Patentability,” for PCT/US2013/055658, dated Mar. 5, 2015 (7 pages).
“Non-Final Office Action,” for U.S. Appl. No. 14/506,251 dated Sep. 29, 2015 (38 pages).
“Non-Final Office Action,” for U.S. Appl. No. 14/015,679, dated Jun. 19, 2015 (9 pages).
“Response Non-Final Office Action,” for U.S. Appl. No. 14/015,679, dated Jun. 19, 2015 and filed with the USPTO Sep. 18, 2015 (5 pages).
“Response to Final Office Action,” for U.S. Appl. No. 14/015,679, dated Dec. 16, 2014 and filed with the USPTO May 15, 2015 (5 pages).
“Final Office Action,” for U.S. Appl. No. 14/506,251, dated Mar. 15, 2016 (17 pages).
“Notice of Allowance,” for U.S. Appl. No. 14/014,679 dated Jan. 13, 2016 (10 pages).
“Notice of Allowance,” for U.S. Appl. No. 14/015,679 dated Oct. 26, 2015 (10 pages).
“Notice of Allowance,” for U.S. Appl. No. 14/633,726, dated Jan. 25, 2016 (35 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 14/506,251 dated Sep. 29, 2015 and filed with the USPTO Jan. 27, 2016 (10 pages).
“Non-Final Office Action,” for U.S. Appl. No. 15/165,678, dated Jan. 20, 2017 (31 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 14/506,251, dated Dec. 9, 2016 and filed with the USPTO Mar. 23, 2017 (6 pages).
“Non-Final Office Action,” for U.S. Appl. No. 14/506,251 dated Dec. 9, 2016 (11 pages).
“Response to Final Office Action,” for U.S. Appl. No. 14/506,251, dated Mar. 15, 2016 and filed with the USPTO Sep. 15, 2016 (10 pages).
“Final Office Action,” for U.S. Appl. No. 15/165,678 dated Jul. 11, 2018 (10 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 15/165,678, filed with the USPTO May 30, 2018 (17 pages) for Non-Final Office Action dated Feb. 16, 2018.
“Final Office Action,” for U.S. Appl. No. 15/165,678 dated Jul. 31, 2017 (13 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 15/165,678, mailed Jan. 20, 2017 and filed with the USPTO Jul. 20, 2017 (10 pages).
“Non-Final Office Action,” for U.S. Appl. No. 15/165,678 dated Feb. 16, 2018 (22 pages).
“Response to Final Office Action,” for U.S. Appl. No. 15/165,678, dated Jul. 31, 2017 and filed with the USPTO Jan. 18, 2018 (12 pages).
“Non-Final Office Action,” for U.S. Appl. No. 15/165,678 dated Oct. 18, 2018 (10 pages).
“Non-Final Office Action,” for U.S. Appl. No. 15/675,938 dated Oct. 9, 2018 (40 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 15/165,678 filed with the USPTO Jan. 2, 2019 (10 pages).
“Response to Non-Final Office Action,” for U.S. Appl. No. 15/675,938 filed with the USPTO Jan. 2, 2019 (10 pages).
“Final Office Action,” for U.S. Appl. No. 15/165,678 dated Mar. 12, 2019 (16 pages).
“Final Office Action,” for U.S. Appl. No. 15/675,938 dated Feb. 20, 2019 (17 pages).
Related Publications (1)
Number Date Country
20130128582 A1 May 2013 US
Provisional Applications (3)
Number Date Country
61028779 Feb 2008 US
61037595 Mar 2008 US
61043006 Apr 2008 US
Continuations (3)
Number Date Country
Parent 12406761 Mar 2009 US
Child 13190639 US
Parent 13592090 US
Child 13190639 US
Parent 12043424 Mar 2008 US
Child 13411322 US
Continuation in Parts (5)
Number Date Country
Parent 13158149 Jun 2011 US
Child 13592090 US
Parent 12372499 Feb 2009 US
Child 13158149 US
Parent 13592090 US
Child 13158149 US
Parent 13190639 Jul 2011 US
Child 13592090 US
Parent 13411322 Mar 2012 US
Child 13592090 US