1. Field of the Invention
The present invention relates in general to the photonics field and, in particular, to a lens array and a method for fabricating the lens array from a photosensitive glass plate that has a relatively small amount of a photosensitive agent (e.g., silver, gold or a combination thereof).
2. Description of Related Art
Today it is well known that a lens array can be made from a photosensitive glass plate. In fact, scientists at Corning Incorporated the, assignee of the present invention, have developed and patented a photosensitive glass plate known as FOTOFORM® glass and a process known as the SMILE® process which can be used to form a lens array. Detailed discussion relating to the SMILE® process is provided in U.S. Pat. Nos. 4,572,611, 4,518,222 and 5,062,877 the contents of which are incorporated herein by reference. While detailed discussion relating to FOTOFORM® glass is provided in U.S. Pat. Nos. 2,326,012, 2,422,472, 2,515,936, 2,515,938, 2,515,275, 2,515,942 and 2,515,943 the contents of which are incorporated herein by reference. An example of a traditional lens array that was fabricated from FOTOFORM® glass which was subjected to the SMILE® process is described below with respect to
Referring to
Rc=rL2/2δ (1)
where: Rc is the lens radius of curvature.
Because, the color of the lenses 110 and the magnitude of the sag directly affects the performance of the lenses, scientists today are constantly trying to improve upon the composition of the photosensitive glass plate (FOTOFORM® glass) which is used to make a lens array. Accordingly, there is a need for a new composition of a photosensitive glass plate which can be used to make a lens array which has clear, colorless lenses exhibiting relatively large sag heights. This need and other needs are satisfied by the lens array and method of the present invention.
The present invention includes a lens array made from a photosensitive glass plate containing a relatively small amount of a photosensitive agent (e.g., silver, gold or combination thereof) such that when the photosensitive glass plate is subjected to an exposure step, a heat treatment step and an optional ion exchange step it becomes a glass composite plate that includes glass regions which are lenses and also includes an opaque opal region located around each of the lenses. The lens array of the present invention has clear, colorless lenses with greater sag heights when compared to the yellow lenses in a traditional lens array that is made from the traditional photosensitive glass plate which was subjected to similar exposure, heat treatment and ion exchange steps. The present invention also includes a method for fabricating the lens array.
A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
Referring to
Referring to FIGS. 2 and 3A-3F, there are respectively illustrated a flowchart of the preferred method 200 for making the lens array 300 and various cross-sectional side views and top views of the lens array 300 at different steps in the preferred method 200. Beginning at step 202, a photomask 302 is placed in contact with a photosensitive glass plate 304 (see
The contact between the photomask 302 and the photosensitive glass plate 304 can be an air interface 303 where the feature spacing on the photomask 302 is relatively large, e.g., on the order of 10 μm or greater. An alternative to the air interface 303, is an index matching liquid (e.g., glycerin) which can be placed between the photomask 302 and the photosensitive glass plate 304. For example, one can use what is known as the glycerin-vacuum technique where a film of glycerin is placed between the photomask 302 and the photosensitive glass plate 304. The photosensitive glass plate 304 is then mounted on a vacuum fixture so an evacuation can draw the photomask 302 down onto the photosensitive glass plate 304 and squeeze out the excess glycerin to produce a continuous uniform glycerin film at the interface between the photomask 302 and the photosensitive glass plate 304.
Prior to step 202, the photosensitive glass plate 304 is ground and polished to make a suitably sized substrate for use as a lens array 300. Typical dimensions of the photosensitive glass plate 304 are 4″×4″×0.160″. The length and width can be varied significantly depending on the application but the thickness preferably should not be less than about 0.075″ or greater than about 0.25″.
At step 204, the photomask 302 and selected regions of the photosensitive glass plate 304 are exposed to an ultraviolet light 305 (see
The exposure step 204 can be performed by any method that is capable of producing an ultraviolet light or shortwave radiation with sufficient energy to nucleate the opal regions (future opal regions 306 that do not transmit light) in the photosensitive glass plate 304 and with sufficient collimation so that the exposure is well defined through the photosensitive glass plate 304. For example, a collimated 1000 watt Hg/Xe arc source can be used to expose the photosensitive glass plate 304. In this example, the output beam is approximately 10″ in diameter which is more than sufficient for a 5″×5″ photomask 302. The intensity of the ultraviolet light is in the 5-10 mw/cm2 range with exposure times of 3-4 minutes. Other ultraviolet sources besides the Hg/Xe source can also be used including, for example, excimer lasers (309-350 nm), tunable YAG 300-400 nm. After the exposure step 204, the photomask 302 is separated from the exposed photosensitive glass plate 304 and if needed the exposed photosensitive glass plate 304 is washed with soap and water to remove the glycerin prior to the heat treatment step 206.
At step 206, the exposed photosensitive glass plate 304 is heated to form therein the opal regions 306 (shown as shaded regions) and the glass regions 308 (shown as clear regions) (see
In a preferred embodiment, the lens array 300 can be produced by exposing the photosensitive glass plate 304 to ultraviolet light with wavelengths preferably between 240-400 nm (most preferable 300-350 nm) and subsequently heat treating the exposed photosensitive glass plate 304 at 615° C. for 1 hour to form the opal regions 306 and the glass regions 308.
The opal regions 306 have crystalline particles and as such they have a greater density than the glass regions 308. The mechanism for formation of nuclei that enables the growth of the crystalline particles in the opal regions 306 starts when cerium III (Ce3+) in the photosensitive glass plate 304 absorbs the ultraviolet light and converts to cerium IV (Ce4+) which results in the release of an electron. The electron is absorbed by metal ions, for example silver ions (Ag1+), in the photosensitive glass plate 304 and converts these ions to metal (e.g., Ag°).
The thermally produced lens array 300 fabricated in this manner have lenses 310 shown as glass regions 308 that exhibit sag heights that are greater than those sag heights exhibited by the lenses 110 in the traditional lens array 100 (compare
The improvement in the sag heights of the lenses 310 is a direct result of the improved silicate glass compositions/photosensitive glass plate 304, developed by the inventors, which is used to make the lens array 300 (see TABLES 2 and 3A-3B).
Referring again to FIGS. 2 and 3D-3F, at step 208 (optional), the thermally produced lens array 300 can be subjected to an ion exchange process to create an enhanced lens array 300 (see
It should be noted again that in the prior art after completing steps 202, 204, 206 and the prolonged ion exchange step 208, it was only possible to produce traditional lens array 100 which possessed lenses 110 exhibiting a yellow color. The yellow color of the lenses 110 is an undesirable property that adversely affects the transmittance of the lenses 110. The inventors believe that the large amount of photosensitive agent (e.g., silver) causes the lenses 110 in the traditional lens array 100 to turn yellow when the lens array 100 is subjected to a prolonged ion exchange step. In particular, the inventors believe that the lenses 110 become yellow because the prolonged heat in the ion exchange step causes a reduction of silver in the lenses 110 (unexposed glass regions).
Thus after completing steps 202, 204, 206 and 208 in accordance with the present invention, it is possible to produce a lens array 300 that has an M×N array of clear, colorless lenses 310 (e.g., bi-convex lenses, plano-convex lenses, equi-convex) with greater sag heights than the yellow lenses 110 in the traditional lens array 100 that was made in the same manner. This is because the photosensitive glass plate 304 used to make the lens array 300 has a different silicate glass composition than the photosensitive glass plate used to make the traditional lens array 100. The differences between the new and old photosensitive glass plates are described in greater detail below with respect to TABLES 1, 2 and 3A-3B.
As described above, the traditional lens array 100 is made from a photosensitive glass plate known as FOTOFORM® glass. Table 1 shows the composition in parts by weight of FOTOFORM® glass, in addition to measured sag heights and various physical properties:
As can be seen in TABLE 1, the FOTOFORM® glass uses a relatively large amount of silver and minor amounts of gold as the photosensitive agents. The inventors of the present invention have conducted experiments and determined that lens arrays 300 can be produced having clear, colorless lenses 310 and exhibiting enhanced sag heights, if the lens array 300 is made from a photosensitive glass plate 304 that uses a relatively small amount of a photosensitive agent (e.g., silver, gold or a combination thereof). As such, the inventors have developed different silicate glass compositions of a photosensitive glass plate 304 which can be subjected to the aforementioned steps 202, 204, 206 and 208 or similar steps and still form a lens array 300 that exhibits clear, colorless lenses 310 having enhanced sag heights (see TABLES 2 and 3A-3B).
TABLE 2 reports the inventive glass composition for use in forming the inventive photosensitive glass plate 304, with the various constituents listed in weight percent wt %:
Tables 3A-3B list exemplary silicate glass compositions within the aforementioned inventive range for a photosensitive glass plate 304 which can be used to make the lens array 300. Tables 3A-3B shows each of the compositions in parts by weight of the silicate glass, in addition to measured sag heights and various physical properties:
The silicate glass compositions listed in TABLES 3A-3B have been used to make a number of lens arrays 300 which have clear, colorless lenses 310 with enhanced sag heights. Even though the sag heights of the lenses 310 appears to be a function of the soda content shown in TABLES 3A-3B, it is believed that the increased sag heights is attributable to the decreasing viscosity of the glass plate at 500° C.
In addition to the aforementioned silicate glass compositions listed in TABLES 2 and 3A-3B, it should be understood that there may be other photosensitized silicate glass compositions which have yet to be developed but could be used to make desirable lens arrays 300. It should also be understood that the preferred steps 202, 204, 206 and 208 can be changed in a number of ways and that different silicate glass compositions of photosensitive glass plate 304 can be used to make desirable lens arrays 300 which have an M×N array of relatively clear lenses 310.
It should be understood that a consequence of using the photosensitive glass plate 304 of the present invention is that the exposed and thermally developed opal regions 306 (opal regions) are generally white in color rather than the typical blue-brown in the FOTOFORM® glass. It should also be understood that another consequence of using the photosensitive glass plate 304 of the present invention is that biconvex lenses can be made which have a superior surface quality when compared to the biconvex lenses made using the FOTOFORM® glass.
It should also be understood that the lens array 300 can be coupled to a fiber array to form a collimator array that can be used to perform a variety of signal processing operations including multiplexing, switching, filtering, polarizing and demultiplexing. Following is a brief list of some of the photonic applications that can use a collimator array:
Although several embodiments of the present invention has been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This application claims the benefit of priority to U.S. Ser. No. 60/416,076, filed Oct. 4, 2002, entitled Lens Array and Method for Fabricating the Lens Array, of Hares et al.
Number | Name | Date | Kind |
---|---|---|---|
2515940 | Stookey | Jul 1950 | A |
2628160 | Stookey | Feb 1953 | A |
4186999 | Harwood et al. | Feb 1980 | A |
4518222 | Borrelli et al. | May 1985 | A |
4572611 | Bellman et al. | Feb 1986 | A |
4609259 | Suemitsu et al. | Sep 1986 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4737447 | Suzuki et al. | Apr 1988 | A |
4976148 | Migliori et al. | Dec 1990 | A |
4998795 | Bowen et al. | Mar 1991 | A |
5062877 | Borrelli et al. | Nov 1991 | A |
5074649 | Hamanaka | Dec 1991 | A |
5104435 | Oikawa et al. | Apr 1992 | A |
5126863 | Otsuka et al. | Jun 1992 | A |
5140660 | Takahashi | Aug 1992 | A |
5263103 | Kosinski | Nov 1993 | A |
5293438 | Konno et al. | Mar 1994 | A |
5337186 | Oikawa et al. | Aug 1994 | A |
5359440 | Hamada et al. | Oct 1994 | A |
5436764 | Umetani et al. | Jul 1995 | A |
5482800 | Gal | Jan 1996 | A |
5751383 | Yamanaka | May 1998 | A |
20030031409 | Bellman et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
0 425 251 | May 1991 | EP |
0 615 150 | Sep 1994 | EP |
63166736 | Sep 1988 | JP |
WO 9833091 | Jul 1998 | WO |
WO 0171403 | Sep 2001 | WO |
WO 0210805 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040126698 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60416076 | Oct 2002 | US |