1. Field of the Invention
The present invention relates to an apparatus and method for housing a lens and a photodetector, the photodetector being cooled to a desired temperature.
2. Description of the Related Art
Various photodetectors have been developed that are capable of detecting very faint light. Such detectors may be in the form of, for example, a photomultiplier tube (PMT), a photocathode coupled to a multichannel plate (MCP), an avalanche photodiode (APD), a charged couple device (CCD) etc. Notably, in applications where accurate detection of very faint light is required, such detectors need to be cooled to a specified temperature. An example of an APD used in cooled mode to detect light emission from semiconductor devices is described in U.S. Pat. No. 6,720,588, which is commonly assigned to the present assignee, and which is incorporated herein by reference in its entirety.
One application where detection of very faint light requires sensitive detectors that operate in a cool mode is for testers used for testing and debugging semiconductor circuits. One such system that utilizes an APD described in the above-cited patents is described in U.S. Pat. No. 6,621,275, commonly assigned to the current assignee and incorporated herein by reference in its entirety. Such a system is commercially available under the trademark EmiScope® from assignee, Optonics Inc., a Credence Company, of Mountain View, Calif. In this system the APD is required to be cooled to well below zero degrees Celsius.
While there are various methods for cooling semiconductor devices, such as photodetectors, one particularly useful method is using the Peltier effect. The Peltier effect and cooling apparatus and methods using the Peltier effect are described in, for example, U.S. Pat. Nos. 6,477,844; 6,125,635; and 6,109,039, which are incorporated herein by reference in their entirety.
Another problem described in the literature is protecting the detector from deterioration due to moisture, hydrocarbons and other gas contaminants. These effects cause the detector's performance to deteriorate over time. Therefore, various works have proposed enclosing the detector in a vacuum enclosure having a window through which photodetection can be performed. See, for example, Vacuum Sealing Adds Life to Scientific CCDs, Dr. Hugh Cormican, Photonics Spectra, April 2004.
One drawback of prior art (as is clear from
The present invention provides novel apparatus and method for housing a photodetector requiring cooling to a specified temperature. The inventive apparatus and method enables higher efficiency of photon collection, while avoiding the problems associated with prior art window-based approach. The invention makes possible the focusing of the incident light within small detector active areas (e.g., less than 100 μm diameter), which is a critical factor in achieving fast detection of short pulses of photons.
In one aspect of the invention, a novel integrated housing is constructed, which houses the lens and the detector, and is affixed to the TE coolers, all of which is inside an enclosure.
In one aspect of the invention an enclosure is provided inside which a housing is contained. The lens is affixed to one side of the housing using a retaining ring, and a photodetector is affixed to the opposite side. The housing is affixed to a TE cooler.
In one aspect of the invention an enclosure is provided inside which a housing is contained. The lens is affixed to one side of the housing using a retaining ring, and a photodetector is affixed to the opposite side. The housing is affixed to a TE cooler. The housing and the retaining ring are made from materials having similar thermal expansion coefficients. In one example, the housing and the retaining ring are made of copper or brass.
a is a front cross-section of an embodiment of the present invention, done along line A—A in
The present invention provides an integrated housing for a lens and a photodetector, which is being cooled to low temperatures to enable the detector to detect faint emission of photons. One embodiment of the invention is depicted in
In
Another chamfer 55 is machined on the backside of the housing 11, to accommodate holder 65. When the holder 65 is secured to the housing 11 using bolts 75, the photodetector 20 is placed in alignment with the lens 80. Optionally, the holder 65 and the retaining ring 35 form a sealed contact with the housing, so that bore 15 is sealed from the environment and may be evacuated and/or filled with inert gas. The housing 11 is affixed to a TE cooler 30, in this embodiment using three Peltier effect layers. The TE cooler is affixed to a heat sink 60, having cooling fluid channels therein for circulating cooling fluid as illustrated by the intake and exhaust arrows in
However, during the testing of various embodiments of the integrated housing, it was discovered that the optical throughput of various commercially available lens assemblies exhibited a hysteresis when undergoing temperature cycling. Moreover, it was observed that the lens behavior affects the performance of the combined lens-photodetector arrangement. This is shown in
In
As a result of these investigations, it was determined that in order to reduce the hysterisis effect the parts making up the assembly should be made of components having small variation of thermal expansion coefficient, e.g., copper, brass, and glass. Therefore, it was concluded that the ring 35 holding the lens should be made of a material having similar thermal coefficient as that of the housing 11. Additionally, while in the original assembly epoxy was used to retain the lens in place, it was determined that the lens should be mechanically retained by having ring 35 bolted onto housing 11, rather than held with an epoxy.
To test these conclusions, two sets of assemblies were constructed and tested. One assembly included a ring 35 made of material having thermal coefficient that differs from that of housing 11, and that was held in place using epoxy. A second assembly was constructed according to the embodiment shown in
The results of these tests are shown in
While the invention has been described with reference to particular embodiments thereof, it is not limited to those embodiments. Specifically, various variations and modifications may be implemented by those of ordinary skill in the art without departing from the invention's spirit and scope, as defined by the appended claims. Additionally, all of the above-cited prior art references are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4039826 | Wingate | Aug 1977 | A |
5073831 | Flint | Dec 1991 | A |
5845031 | Aoki | Dec 1998 | A |
6109039 | Hougham et al. | Aug 2000 | A |
6125635 | Nomura et al. | Oct 2000 | A |
6469844 | Iwase et al. | Oct 2002 | B1 |
6477844 | Ohkubo et al. | Nov 2002 | B1 |
6621275 | Cotton et al. | Sep 2003 | B1 |
6720588 | Vickers | Apr 2004 | B1 |
6873640 | Bradburn et al. | Mar 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20050279923 A1 | Dec 2005 | US |