1. Field of the Invention
The present invention relates to an electrical connector, and more particularly to an electrical connector for electrically connecting an IC packaged and a printed circuit board (PCB).
2. Background of the invention
Land Grid Array (LGA) electrical connectors are widely used for electrically connecting two electrical interfaces such as an electrical substrate, e.g. a PCB, and an integrated circuit (IC) package, e.g. a central processing unit (CPU).
Typical conventional LGA connectors are disclosed in U.S. Pat. Nos. 4,504,105, 4,621,884, 4,692,790, 5,302,853, and 5,344,334. Each of these connectors generally comprises an insulative housing embedded with a plurality of electrical contact.
Generally, as electronic systems that have said electrical connector 6 become more sophisticated, the systems require an increasing number of electrical contacts, so density of the contact is increased. When the electrical contacts 61 contacts with the IC package under an external force, two adjacent electrical contacts may interfere with each other because the contact of an LGA connector each have a resilient arm extending upwardly toward the IC package. Additionally, the protrusions 640 seated around the mating surface 64 are used to reduce or cancel said external force, the middle of the IC package may curved toward the mating surface 64 and the contacts 61 under the external force. As the external force big enough, the IC package and the electrical contacts may be destroyed and the electrical connection becomes unsteady.
Therefore, a new electrical connector to resolve the above-mentioned problems is desired.
Accordingly, an object of the present invention is to provide an electrical connector for establishing a steady electrical connection between an IC package and a PCB.
Another object of the present invention is to provide an electrical connector that can avoid the IC package and the contacts being damaged while the IC package mates with the contact.
To achieve above-mentioned object, an electrical connector according to a preferred embodiment of the present invention is provided. The electrical connector comprises an insulative housing defining a mating surface adapted to support an IC package, at least four passageways defined in region within the mating surface and each passageway associated a clapboard arranged between every two adjacent passageways; at least four contacts received in corresponding passageways respectively, each contact including a contact engaging portion extending upwardly above the mating surface and toward the IC; wherein the clapboard has protrusions extending upwardly therefrom along a direction perpendicular to a bottom surface of the IC package seated on the mating surface, the protrusions comprising first protrusions and second protrusions higher than the first protrusions; the first protrusions being arranged between every two adjacent contacts, allowing the engaging portion of the two adjacent contacts without interference when the IC is seated on the mating surface of the housing; the second protrusions being used to reduce or cancel an external force that ensures the IC seated on the mating surface.
A preferred embodiment of the present invention will be described hereunder with reference to the accompanying drawings.
Referring to
As shown in
The two opposite second sidewalls 104 each have at least one post 1041 for positioning the IC 2 in the receiving cavity.
In an assembly process, the IC 2 is inserted into the receiving cavity under an external force and seated on the mating surface 101. During insertion of the IC into the receiving cavity, the IC 2 resilient deflect the resilient arm 110 downwardly, and the resilient arm 110 of the electrical contact exerts an normal force on the contact pads 20, thus ensuring proper electrical contact between the engaging portion 1101 of the electrical contact 11 and the conductive pads 20 of the IC 2, When the IC 2 is pressed downwardly by an external force, the second protrusions 1015 and said standoffs 102 being used to prop the IC and reduce or cancel the external force, thus ensuring the IC 2 avoided warpage and proper electrical connection between the engaging portion 1101 of the electrical contact 11 and the conductive pads 20 of the IC 2.
Furthermore, because of the first protrusion 1014 extending upwardly from the clapboard 1011 toward the IC 2, the connecting portion 112 of each electrical contact 11 is arranged between two adjacent first protrusions 1014, which allows the engaging portion 1101, the resilient arm 110 and the connecting portion of two adjacent electrical contacts without interference, while the IC is mated into the receiving cavity of the insulative housing 10 and seated on the mating surface 101 of the insulative housing 10. Thus, proper electrical connection between the engaging portions 1101 of the electrical contacts 11 and the conductive pads 20 of the IC 2 is provided and short-circuited is being avoided.
Furthermore, although the present invention has been described with the preferred embodiment referring to
Number | Date | Country | Kind |
---|---|---|---|
95205949 U | Apr 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4505105 | Ness | Mar 1985 | A |
4621884 | Berkebile et al. | Nov 1986 | A |
4692790 | Oyamada | Sep 1987 | A |
5302853 | Volz et al. | Apr 1994 | A |
5344334 | Laub et al. | Sep 1994 | A |
Number | Date | Country | |
---|---|---|---|
20070238345 A1 | Oct 2007 | US |