The described embodiments relate to LIDAR based 3-D point cloud measuring systems.
LIDAR systems employ pulses of light to measure distance to an object based on the time of flight (TOF) of each pulse of light. A pulse of light emitted from a light source of a LIDAR system interacts with a distal object. A portion of the light reflects from the object and returns to a detector of the LIDAR system. Based on the time elapsed between emission of the pulse of light and detection of the returned pulse of light, a distance is estimated. In some examples, pulses of light are generated by a laser emitter. The light pulses are focused through a lens or lens assembly. The time it takes for a pulse of laser light to return to a detector mounted near the emitter is measured. A distance is derived from the time measurement with high accuracy.
Some LIDAR systems employ a single laser emitter/detector combination combined with a rotating mirror to effectively scan across a plane. Distance measurements performed by such a system are effectively two dimensional (i.e., planar), and the captured distance points are rendered as a 2-D (i.e., single plane) point cloud. In some examples, rotating mirrors are rotated at very fast speeds (e.g., thousands of revolutions per minute).
In many operational scenarios, a 3-D point cloud is required. A number of schemes have been employed to interrogate the surrounding environment in three dimensions. In some examples, a 2-D instrument is actuated up and down and/or back and forth, often on a gimbal. This is commonly known within the art as “winking” or “nodding” the sensor. Thus, a single beam LIDAR unit can be employed to capture an entire 3-D array of distance points, albeit one point at a time, in a related example, a prism is employed to “divide” the laser pulse into multiple layers, each having a slightly different vertical angle. This simulates the nodding effect described above, but without actuation of the sensor itself.
In all the above examples, the light path of a single laser emitter/detector combination is somehow altered to achieve a broader field of view than a single sensor. The number of pixels such devices can generate per unit time is inherently limited due limitations on the pulse repetition rate of a single laser. Any alteration of the beam path, whether it is by mirror, prism, or actuation of the device that achieves a larger coverage area comes at a cost of decreased point cloud density.
As noted above, 3-D point cloud systems exist in several configurations. However, in many applications it is necessary to see over a broad field of view. For example, in an autonomous vehicle application, the vertical field of view should extend down as dose as possible to see the ground in front of the vehicle. In addition, the vertical field of view should extend above the horizon, in the event the car enters a dip in the road. In addition, it is necessary to have a minimum of delay between the actions happening in the real world and the imaging of those actions. In some examples, it is desirable to provide a complete image update at least five times per second. To address these requirements, a 3-D LIDAR system has been developed that includes an array of multiple laser emitters and detectors. This system is described in U.S. Pat. No. 7,959,558 issued on Jun. 28, 2011, the subject matter of which is incorporated herein by reference in its entirety.
In many applications, a sequence of pulses is emitted. The direction of each pulse is sequentially varied in rapid succession. In these examples, a distance measurement associated with each individual pulse can be considered a pixel, and a collection of pixels emitted and captured in rapid succession (i.e., “point cloud”) can be rendered as an image or analyzed for other reasons (e.g., detecting obstacles). In some examples, viewing software is employed to render the resulting point clouds as images that appear three dimensional to a user. Different schemes can be used to depict the distance measurements as 3-D images that appear as if they were captured by a live action camera.
Some existing LIDAR systems employ an illumination source and a detector that are not integrated together onto a common substrate (e.g., electrical mounting board). Furthermore, the illumination beam path and the collection beam path are separated within the LIDAR device. This leads to opto-mechanical design complexity and alignment difficulty.
In addition, mechanical devices employed to scan the illumination beams in different directions may be sensitive to mechanical vibrations, inertial forces, and general environmental conditions. Without proper design these mechanical devices may degrade leading to loss of performance or failure.
To measure a 3D environment with high resolution and high throughput, the measurement pukes must be very short. Current systems suffer from low resolution because they are limited in their ability to generate short duration pukes and resolve short duration return pulses.
Saturation of the detector limits measurement capability as target reflectivity and proximity vary greatly in realistic operating environments. In addition, power consumption may cause overheating of the LIDAR system.
Light devices, targets, circuits, and temperatures vary in actual systems. The variability of all of these elements limits system performance without proper calibration of the signals detected from each LIDAR device.
Improvements in the illumination drive electronics and receiver electronics of LIDAR systems are desired to improve imaging resolution and range.
Methods and systems for performing three dimensional LIDAR measurements with an integrated LIDAR measurement device are described herein.
In one aspect, a return signal receiver of a LIDAR measurement device generates a pulse trigger signal that causes an illumination driver to provide electrical power to an illumination source, which causes the illumination source to generate a pulse of illumination light. In addition, the pulse trigger signal directly triggers data acquisition of a return signal and associated time of flight calculation. In this manner, the pulse trigger signal is employed to trigger both pulse generation and return pulse data acquisition. This ensures precise synchronization of pulse generation and return pulse acquisition which enables precise time of flight calculations by time-to-digital conversion.
In another aspect, the return signal receiver identifies one or more return pulses of light reflected from one or more objects in the surrounding environment in response to the pulse of illumination light and determines a time of flight associated with each of the return pulses. The return signal receiver also estimates a width of each return pulse, a peak amplitude of each return pulse, and samples each return pulse waveform individually over a sampling window that includes the peak amplitude of each return pulse waveform. These signal properties and timing information are communicated from the integrated LIDAR measurement device to a master controller.
In a further aspect, the time of flight associated with each return pulse is estimated by the return signal receiver based on a coarse timing module and a fine timing module. In a further aspect, a metastability bit is employed to determine the correct count of the coarse timing module when a hit signal comes in near a clock transition. The value of the metastability bit determines whether the hit signal came in near a high to low transition of the counter signal, or a low to high transition of the counter signal, and thus the correct count value.
In another further aspect, the return pulse receiver IC measures time of flight based on the time elapsed between the detection of a pulse due to internal cross-talk between the illumination source and the photodetector of the integrated LIDAR measurement device and a valid return pulse. In this manner, systematic delays are eliminated from the estimation of time of flight.
In another aspect, a master controller is configured to generate a plurality of pulse command signals, each communicated to a different integrated LIDAR measurement device. Each return pulse receiver IC generates a corresponding pulse trigger signal based on the received pulse command signal.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not limiting in any way. Other aspects, inventive features, and advantages of the devices and/or processes described herein will become apparent in the non-limiting detailed description set forth herein.
Reference will now be made in detail to background examples and some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
In addition, in some embodiments, an integrated LIDAR measurement device includes one or more electrical power supplies that provide electrical power to the electronic elements mounted to substrate 144 and electrical power to the illumination device 132. The electrical power supplies may be configured to supply any suitable voltage or current, in some embodiments, one or more of the electrical power supplies are mounted to substrate 144. However, in general, any of the electrical power supplies described herein may be mounted to a separate substrate and electrically coupled to the various elements mounted to substrate 144 in any suitable manner.
Master controller 190 is configured to generate a pulse command signal 191 that is communicated to receiver IC 150 of integrated LIDAR measurement device 130. In general, a LIDAR measurement system includes a number of different integrated LIDAR measurement devices 130. In these embodiments, master controller 190 communicates a distinct pulse command signal 191 to each different integrated LIDAR measurement device, in this manner, master controller 190 coordinates the timing of LIDAR measurements performed by any number of integrated LIDAR measurement devices.
Pulse command signal 191 is a digital signal generated by master controller 190. Thus, the timing of pulse command signal 191 is determined by a clock associated with master controller 190. In some embodiments, the pulse command signal 191 is directly used to trigger pulse generation by illumination driver IC 140 and data acquisition by receiver IC 150. However, illumination driver IC 140 and receiver IC 150 do not share the same clock as master controller 190. For this reason, precise estimation of time of flight becomes much more computationally tedious when pulse command signal 191 is directly used to trigger pulse generation and data acquisition.
In one aspect, receiver IC 150 receives pulse command signal 191 and generates a pulse trigger signal, VTRG 143, in response to the pulse command signal 191. Pulse trigger signal 143 is communicated to illumination driver IC 140 and directly triggers illumination driver IC 140 to provide an electrical pulse 131 to illumination source 132, which causes illumination source 132 to generate a pulse of illumination light 134. In addition, pulse trigger signal 143 directly triggers data acquisition of return signal 142 and associated time of flight calculation. In this manner, pulse trigger signal 143 generated based on the internal clock of receiver IC 150 is employed to trigger both pulse generation and return pulse data acquisition. This ensures precise synchronization of pulse generation and return pulse acquisition which enables precise time of flight calculations.
Illumination source 132 emits a measurement pulse of illumination light 134 in response to a pulse of electrical energy 131. The illumination light 134 is focused and projected onto a particular location in the surrounding environment by one or more optical elements of the LIDAR system.
In some embodiments, the illumination source 132 is laser based (e.g., laser diode). In some embodiments, the illumination source is based on one or more light emitting diodes. In general, any suitable pulsed illumination source may be contemplated.
As depicted in
The placement of the waveguide within the acceptance cone of the return light 135 projected onto the active sensing area 137 of detector 138 is selected to ensure that the illumination spot and the detector field of view have maximum overlap in the far field.
As depicted in
Output signal 13 is received and amplified by TIA 141. The amplifier/signal 142 is communicated to return signal analysis module 160. In general, the amplification of output signal 139 may include multiple, amplifier stages. In this sense, an analog trans-impedance amplifier is provided by way of non-limiting example, as many other analog signal amplification schemes may be contemplated within the scope of this patent document. Although TIA 141 is integrated with return signal receiver IC 150 as depicted in
Return signal receiver IC 150 performs several functions. In one aspect, receiver IC 150 identifies one or more return pulses of light reflected from one or more objects in the surrounding environment in response to the pulse of illumination light 134, and determines a time of flight associated with each of these return pulses. In general, the output signal 139 is processed by return signal receiver IC 150 for a period of time that corresponds with the time of flight of light from the LIDAR measurement device 130 to a distance equal to the maximum range of the device 130, and back to the device 130. During this period of time, the illumination pulse 134 may encounter several objects at different distances from the integrated LIDAR measurement device 130. Thus, output signal 139 may include several pulses, each corresponding to a portion of the illumination beam 134 reflected from different reflective surfaces located at different distances from device 130. In another aspect, receiver IC 150 determines various properties of each of the return pulses. As depicted in
As depicted in
Internal system delays associated with emission of light from the LIDAR system (e.g., signal communication delays and latency associated with the switching elements, energy storage elements, and pulsed light emitting device) and delays associated with collecting light and generating signals indicative of the collected light (e.g., amplifier latency, analog-digital conversion delay, etc.) contribute to errors in the estimation of the time of flight of a measurement pulse of light. Thus, measurement of time of flight based on the elapsed time between the rising edge of the pulse trigger signal 143 and each valid return pulse (i.e., 142B and 142C) introduces undesireable measurement error. In some embodiments, a calibrated, pre-determined delay time is employed to compensate for the electronic delays to arrive at a corrected estimate of the actual optical time of flight. However, the accuracy of a static correction to dynamically changing electronic delays is limited. Although, frequent re-calibrations may be employed, this comes at a cost of computational complexity and may interfere with system up-time.
The another aspect, receiver IC 150 measures time of flight based on the time elapsed between the detection of a detected pulse 142A due to internal cross-talk between the illumination source 132 and photodetector 138 and a valid return pulse (e.g., 142B and 142C). In this manner, systematic delays are eliminated from the estimation of time of flight. Pulse 142A is generated by internal cross-talk with effectively no distance of light propagation. Thus, the delay in time from the rising edge of the pulse trigger signal and the instance of detection of pulse 142A captures all of the systematic delays associated with illumination and signal detection. By measuring the time of flight of valid return pulses (e.g., return pulses 142B and 142C) with reference to detected pulse 142A, all of the systematic delays associated with illumination and signal detection due to internal cross-talk are eliminated. As depicted in
In some embodiments, the signal analysis is performed by receiver IC 150, entirely. In these embodiments, time of flight signals 192 communicated from integrated LIDAR measurement device 130 include an indication of the time of flight of each return pulse determined by receiver IC 150. In some embodiments, signals 155-157 include waveform information associated with each return pulse generated by receiver IC 150. This waveform information may be processed further by one or more processors located on board the 3-D LIDAR system, or external to the 3-D LIDAR system to arrive at another estimate of distance, an estimate of one of more physical properties of the detected object, or a combination thereof.
Return signal receiver IC 150 is a mixed analog/digital signal processing IC. In the embodiment depicted in
Amplified return signal, VTIA 142, and threshold signal, VTHLD 145, are received by CFD 170. CFD 170 identifies a valid return pulse when return signal 142 exceeds a threshold value (i.e., the value of threshold signal 145). In addition, CFD 170 repeatably determines when a valid return pulse is detected and generates a hit signal, VHIT 178, that sharply transitions at the time of detection. Hit signal 178 signals the detection of a valid return pulse and triggers each of the timing and waveform acquisition and analysis functions of return signal analysis module 160.
For example, coarse timing module 180 determines a digital signal (i.e., range 151) indicative of the number of digital clock cycles that have elapsed from a transition of the pulse trigger signal 143 that triggers illumination pulse 134 and the transition of hit signal 178 associated with a particular valid return pulse. Coarse timing module 180 also generates a digital signal (i.e., MS 152) that is the digital clock signal time shifted by half of the period of the digital clock signal.
In addition, fine timing module 190 determines an analog signal (i.e., VCLK 153) having a voltage value indicative of a time elapsed between the transition of hit signal 178 associated with a particular valid return pulse and the next transition of the digital clock signal, CLK. Similarly, fine timing module 190 determines an analog signal (i.e., VCLKB 154) having a voltage value indicative of a time elapsed between the transition of hit signal 178 associated with a particular valid return pulse and the next transition of the inverse of the digital clock signal, CLKB. Range 151, MS 152, VCLK 153, and VCLKB 154 are employed by time of flight module 159 to determine the time of flight associated with each detected return pulse.
Return pulse sample and hold module 210 generates an analog signal (i.e., VPEAK 156) having a signal value (e.g., voltage) indicative of a peak amplitude of each valid return pulse, In addition, return pulse sample and hold module 210 generates a set of analog signals (i.e., VWIND 155) each having a signal value (e.g., voltage) indicative of an amplitude associated with a sampling point of each valid return pulse waveform. In some embodiments, the number of sampling points before and after the peak amplitude of the waveform is programmable.
Pulse width detection module 200 generates an analog signal (i.e., VWIDTH 157) having a signal value (e.g., voltage) indicative of a width of each valid return pulse waveform. In the depicted embodiment, the value of VWIDTH 157 is Indicative of the time elapsed between a time when return pulse signal 142 exceeds the value of VTHLD 145 and the time of transition of hit signal 178 associated with a particular valid return pulse. VWIND 155, VPEAK 156, and VWIDTH 157 are each converted to digital signals by analog to digital converter (ADC) 158 of return signal receiver IC 150 before communication from return signal receiver IC to master controller 190.
Binary counter module 181, receives pulse trigger signal 143 and begins counting in response to the pulse trigger. Digital signal BIN [0:10] 186 indicative of the running count is communicated to binary to grey code converter 182. Binary to grey code converter 182 converts the binary count signal BIN [0:10] 186 to a grey code equivalent digital signal COUNT[0:10]. COUNT [0:10] is communicated to each of the latch modules 184A-N. In addition, the first bit of running binary count BIN[0] is communicated to metastability bit generator 183. Metastability bit generator 183 generates metastability bit MS 188 by introducing a half period shift to BIN[0]. MS 188 is also communicated to each of the latch modules 184A-N.
In addition, each hit signal 178 associated with a different return pulse is communicated to a different latch module (i.e., one of latch modules 184A-N). Each of latch modules 184A-N latch the last known value of COUNT [0:10] and MS at the transition of the corresponding hit signal indicating the identification of a return pulse. The resulting latched values, RANGE[0:10] 151 and MS 152, respectively, are communicated to time of flight module 159 depicted in
In another aspect, the determination of the time of flight associated with each return pulse is determined based on the output of both the coarse timing module and the fine timing module. In the embodiment depicted in
In a further aspect, the metastability bit MS[0] is employed to determine the correct count of RANGE[0:10] when a hit signal comes in near a clock transition, and thus a transition of counter module 181. For example, if a hit signal 178 transitions near a transition of the counter 181, it is unclear which count is associated with that hit signal. For a 1 gigahertz clock, the error could be one count, or one nanosecond. In these scenarios, the value of the metastability bit is employed to resolve which count is associated with a particular hit. The value of the metastability bit determines whether the hit signal came in near a high to low transition of the counter signal, or a low to high transition of the counter signal, and thus the correct count value.
Pulse width detection module 200 is depicted by way of non-limiting example. In general, pulse width detection module 200 may be configured to operate on different input signals to generate VPULSE 203 and VWIDTH 155. In one example, pulse width generator 201 generates a pulse having a duration that matches the time between a rising edge of a hit signal 178 and a time when VTIA 142 falls below VTHLD 145. The time when VTIA 142 falls below VTHLD 145 may be determined by a separate comparator, or may be determined by the output of comparator module 174 without having the output latched like VHIT. In another example, pulse width generator 201 generates a pulse having a duration that matches the time between a time when VTIA 142 rises above VTHLD 145 and a time when VTIA 142 falls below VTHLD 145. In one example, VENABLE 177 is employed in lieu of pulse width generator 201, and VENABLE 177 is provided as input to time to voltage converter 202. Time to voltage converter 202 generates a current ramp through a capacitor for the duration of the pulse. The voltage across the capacitor is indicative of the duration of the VENABLE pulse.
In another aspect, a master controller is configured to generate a plurality of pulse command signals, each communicated to a different integrated LIDAR measurement device. Each return pulse receiver IC generates a corresponding pulse control signal based on the received pulse command signal.
As depicted in
In the embodiment depicted in
As depicted in
In the embodiment depicted in
As depicted in
Light emitted from each integrated LIDAR measurement device passes through a series of optical elements 116 that collimate the emitted light to generate a beam of illumination light projected from the 3-D LIDAR system into the environment. In this manner, an array of beams of light 105, each emitted from a different LIDAR measurement device are emitted from 3-D LIDAR system 100 as depicted in
In this manner, a LIDAR system, such as 3-D LIDAR system 10 depicted in
In some embodiments, such as the embodiments described with reference to
In some other embodiments, each integrated LIDAR measurement device includes a beam directing element (e.g., a scanning mirror, MEMS mirror etc.) that scans the illumination beam generated by the integrated LIDAR measurement device.
In some other embodiments, two or more integrated LIDAR measurement devices each emit a beam of illumination light toward a scanning mirror device (e.g., MEMS mirror) that reflects the beams into the surrounding environment in different directions.
In a further aspect, one or more integrated LIDAR measurement devices are in optical communication with an optical phase modulation device that directs the illumination beam(s) generated by the one or more integrated LIDAR measurement devices in different directions. The optical phase modulation device is an active device that receives a control signal that causes the optical phase modulation device to change state and thus change the direction of light diffracted from the optical phase modulation device. In this manner, the illumination beam(s) generated by the one or more integrated LIDAR devices are scanned through a number of different orientations and effectively interrogate the surrounding 3-D environment under measurement. The diffracted beams projected into the surrounding environment interact with objects in the environment. Each respective integrated LIDAR measurement device measures the distance between the LIDAR measurement system and the detected object based on return light collected from the object. The optical phase modulation device is disposed in the optical path between the integrated LIDAR measurement device and an object under measurement in the surrounding environment. Thus, both illumination light and corresponding return light pass through the optical phase modulation device.
In block 301, a pulse trigger signal is generated in response to a pulse command signal received onto a return signal receiver IC mounted to a printed circuit board.
In block 302, an illumination source is selectively electrically coupled to an electrical power source in response to the pulse trigger signal, causing the illumination source to emit a measurement pulse of illumination light.
In block 303, an amount of return light received by a photodetector is detected in response to the measurement pulse of illumination light. The illumination source and the photodetector are mounted to the printed circuit board.
In block 304, an output signal indicative of the detected return light is generated.
In block 305, the output signal is received onto the return signal receiver IC during a duration of a measurement window.
In block 306, one or more return pukes of the detected return light are identified.
In block 307, a time of flight associated with each of the identified return pulses is determined.
In block 308, one or more properties of a segment of each of the identified return pukes is determined.
A computing system as described herein may include, but is not limited to, a personal computer system, mainframe computer system, workstation, image computer, parallel processor, or any other device known in the art. In general, the term “computing system” may be broadly defined to encompass any device having one or more processors, which execute instructions from a memory medium.
Program instructions implementing methods such as those described herein may be transmitted over a transmission medium such as a wire, cable or wireless transmission link. Program instructions are stored in a computer readable medium. Exemplary computer-readable media include read-only memory, a random access memory, a magnetic or optical disk, or a magnetic tape.
In general, any electrical power supply described herein may be configured to supply electrical power specified as voltage or current. Hence, any electrical power source described herein as a voltage source or a current source may be contemplated as an equivalent current source or voltage source, respectively. Similarly, any electrical signal described herein may be specified as a voltage signal or a current signal. Hence, any electrical signal described herein as a voltage signal or a current signal may be contemplated as an equivalent current signal or voltage signal, respectively.
In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Although certain specific embodiments are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific embodiments described above. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
The present application is a continuation of and claims priority to U.S. patent application Ser. No. 15/974,527, entitled “LIDAR Data Acquisition And Control,” filed May 8, 2018, which claims priority under 35 U.S.C. § 119 from U.S. provisional patent application Ser. No. 62/503,237, entitled “LIDAR Data Acquisition And Control,” filed May 8, 2017, the subject matter of both which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3064252 | Varela | Nov 1962 | A |
3373441 | Zadig | Mar 1968 | A |
3551845 | Zelina | Dec 1970 | A |
3636250 | Haeff | Jan 1972 | A |
3686514 | Dube et al. | Aug 1972 | A |
3730633 | Kennedy | May 1973 | A |
3781111 | Fletcher et al. | Dec 1973 | A |
3862415 | Harnden, Jr. et al. | Jan 1975 | A |
3897150 | Bridges et al. | Jul 1975 | A |
3921081 | Lane | Nov 1975 | A |
4179216 | Theurer et al. | Dec 1979 | A |
4199697 | Edwards | Apr 1980 | A |
4201442 | McMahon et al. | May 1980 | A |
4212534 | Bodlaj | Jul 1980 | A |
4220103 | Kasahara et al. | Sep 1980 | A |
4477184 | Endo | Oct 1984 | A |
4516837 | Soref et al. | May 1985 | A |
4634272 | Endo | Jan 1987 | A |
4656462 | Araki et al. | Apr 1987 | A |
4681433 | Aeschlimann | Jul 1987 | A |
4700301 | Dyke | Oct 1987 | A |
4730932 | Iga et al. | Mar 1988 | A |
4742337 | Haag | May 1988 | A |
4834531 | Ward | May 1989 | A |
4862257 | Ulich | Aug 1989 | A |
4895440 | Cain et al. | Jan 1990 | A |
4896343 | Saunders | Jan 1990 | A |
4902126 | Koechner | Feb 1990 | A |
4916536 | Kerr et al. | Apr 1990 | A |
4944036 | Hyatt | Jul 1990 | A |
4952911 | D'Ambrosia et al. | Aug 1990 | A |
4967183 | D'Ambrosia et al. | Oct 1990 | A |
5004916 | Collins, Jr. | Apr 1991 | A |
5006721 | Cameron et al. | Apr 1991 | A |
5023888 | Bayston | Jun 1991 | A |
5026156 | Bayston et al. | Jun 1991 | A |
5033819 | Tanaka | Jul 1991 | A |
5059008 | Flood et al. | Oct 1991 | A |
5175694 | Amato | Dec 1992 | A |
5177768 | Crespo et al. | Jan 1993 | A |
5210586 | Grage et al. | May 1993 | A |
5212533 | Shibuya et al. | May 1993 | A |
5241315 | Spinhirne | Aug 1993 | A |
5241481 | Olsen | Aug 1993 | A |
5249157 | Taylor | Sep 1993 | A |
5291261 | Dahl et al. | Mar 1994 | A |
5309212 | Clark | May 1994 | A |
5314037 | Shaw et al. | May 1994 | A |
5319201 | Lee | Jun 1994 | A |
5357331 | Flockencier | Oct 1994 | A |
5365218 | Otto | Nov 1994 | A |
5463384 | Juds | Oct 1995 | A |
5465142 | Krumes et al. | Nov 1995 | A |
5515156 | Yoshida et al. | May 1996 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5563706 | Shibuya et al. | Oct 1996 | A |
5572219 | Silverstein et al. | Nov 1996 | A |
5691687 | Kumagai et al. | Nov 1997 | A |
5710417 | Joseph et al. | Jan 1998 | A |
5742384 | Farmer | Apr 1998 | A |
5745050 | Nakagawa | Apr 1998 | A |
5757472 | Wangler et al. | May 1998 | A |
5757501 | Hipp | May 1998 | A |
5757677 | Lennen | May 1998 | A |
5789739 | Schwarz | Aug 1998 | A |
5793163 | Okuda | Aug 1998 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5805468 | Blohbaum | Sep 1998 | A |
5808728 | Uehara | Sep 1998 | A |
5847815 | Albouy et al. | Dec 1998 | A |
5847817 | Zediker et al. | Dec 1998 | A |
5877688 | Morinaka et al. | Mar 1999 | A |
5889479 | Tabel | Mar 1999 | A |
5895984 | Renz | Apr 1999 | A |
5903355 | Schwarz | May 1999 | A |
5903386 | Mantravadi et al. | May 1999 | A |
5923910 | Nakahara et al. | Jul 1999 | A |
5942688 | Kimura et al. | Aug 1999 | A |
5949530 | Wetteborn | Sep 1999 | A |
5953110 | Burns | Sep 1999 | A |
5991011 | Damm | Nov 1999 | A |
6034803 | Sullivan et al. | Mar 2000 | A |
6043868 | Dunne | Mar 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6088085 | Wetteborn | Jul 2000 | A |
6091071 | Franz et al. | Jul 2000 | A |
6100539 | Blumcke et al. | Aug 2000 | A |
6137566 | Leonard et al. | Oct 2000 | A |
6153878 | Jakob et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6201236 | Juds | Mar 2001 | B1 |
6259714 | Kinbara | Jul 2001 | B1 |
6297844 | Schatz et al. | Oct 2001 | B1 |
6321172 | Jakob et al. | Nov 2001 | B1 |
6327806 | Paige | Dec 2001 | B1 |
6329800 | May | Dec 2001 | B1 |
6335789 | Kikuchi | Jan 2002 | B1 |
6365429 | Kneissl et al. | Apr 2002 | B1 |
6396577 | Ramstack | May 2002 | B1 |
6420698 | Dimsdale | Jul 2002 | B1 |
6441363 | Cook, Jr. et al. | Aug 2002 | B1 |
6441889 | Patterson | Aug 2002 | B1 |
6442476 | Poropat | Aug 2002 | B1 |
6473079 | Kacyra et al. | Oct 2002 | B1 |
6504712 | Hashimoto et al. | Jan 2003 | B2 |
6509958 | Pierenkemper | Jan 2003 | B2 |
6593582 | Lee et al. | Jul 2003 | B2 |
6621764 | Smith | Sep 2003 | B1 |
6636300 | Doemens et al. | Oct 2003 | B2 |
6646725 | Eichinger et al. | Nov 2003 | B1 |
6650402 | Sullivan et al. | Nov 2003 | B2 |
6664529 | Pack et al. | Dec 2003 | B2 |
6665063 | Jamieson et al. | Dec 2003 | B2 |
6670905 | Orr | Dec 2003 | B1 |
6682478 | Nakamura | Jan 2004 | B2 |
6687033 | Pierenkemper | Feb 2004 | B2 |
6687373 | Yeh et al. | Feb 2004 | B1 |
6710324 | Hipp | Mar 2004 | B2 |
6742707 | Tsikos et al. | Jun 2004 | B1 |
6747747 | Hipp | Jun 2004 | B2 |
6759649 | Hipp | Jul 2004 | B2 |
6789527 | Sauler et al. | Sep 2004 | B2 |
6798527 | Fukumoto et al. | Sep 2004 | B2 |
6812450 | Hipp | Nov 2004 | B2 |
6876790 | Lee | Apr 2005 | B2 |
6879419 | Richman et al. | Apr 2005 | B2 |
6969558 | Walston et al. | Nov 2005 | B2 |
7030968 | D'Aligny et al. | Apr 2006 | B2 |
7041962 | Dollmann et al. | May 2006 | B2 |
7089114 | Huang | Aug 2006 | B1 |
7106424 | Meneely et al. | Sep 2006 | B2 |
7129971 | McCutchen | Oct 2006 | B2 |
7130672 | Pewzner et al. | Oct 2006 | B2 |
7131586 | Tsikos et al. | Nov 2006 | B2 |
7190465 | Froehlich et al. | Mar 2007 | B2 |
7240314 | Leung | Jul 2007 | B1 |
7248342 | Degnan | Jul 2007 | B1 |
7281891 | Smith et al. | Oct 2007 | B2 |
7295298 | Willhoeft et al. | Nov 2007 | B2 |
7313424 | Mayevsky et al. | Dec 2007 | B2 |
7315377 | Holland et al. | Jan 2008 | B2 |
7319777 | Morcom | Jan 2008 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7358819 | Rollins | Apr 2008 | B2 |
7373473 | Bukowski et al. | May 2008 | B2 |
7388655 | Mori | Jun 2008 | B2 |
7408462 | Pirkl et al. | Aug 2008 | B2 |
7477360 | England et al. | Jan 2009 | B2 |
7480031 | Mack | Jan 2009 | B2 |
7544945 | Tan et al. | Jun 2009 | B2 |
7570793 | Lages et al. | Aug 2009 | B2 |
7583364 | Mayor et al. | Sep 2009 | B1 |
7589826 | MacK et al. | Sep 2009 | B2 |
7619477 | Segarra | Nov 2009 | B2 |
7623222 | Benz et al. | Nov 2009 | B2 |
7640068 | Johnson et al. | Dec 2009 | B2 |
7642946 | Wong et al. | Jan 2010 | B2 |
7684590 | Kampchen et al. | Mar 2010 | B2 |
7697581 | Walsh et al. | Apr 2010 | B2 |
7741618 | Lee et al. | Jun 2010 | B2 |
7746271 | Furstenberg | Jun 2010 | B2 |
7868665 | Tumer et al. | Jan 2011 | B2 |
7944548 | Eaton | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
8031331 | Meier et al. | Oct 2011 | B2 |
8042056 | Wheeler et al. | Oct 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8077047 | Humble et al. | Dec 2011 | B2 |
8107056 | Riza | Jan 2012 | B1 |
8139685 | Simic et al. | Mar 2012 | B2 |
8203702 | Kane et al. | Jun 2012 | B1 |
8274037 | Ritter et al. | Sep 2012 | B2 |
8310653 | Ogawa et al. | Nov 2012 | B2 |
8451432 | Crawford et al. | May 2013 | B2 |
8605262 | Campbell et al. | Dec 2013 | B2 |
8675181 | Hall | Mar 2014 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8767190 | Hall | Jul 2014 | B2 |
8875409 | Kretschmer et al. | Nov 2014 | B2 |
8976340 | Gilliland et al. | Mar 2015 | B2 |
8995478 | Kobtsev et al. | Mar 2015 | B1 |
9059562 | Priest et al. | Jun 2015 | B2 |
9063549 | Pennecot et al. | Jun 2015 | B1 |
9069061 | Harwit | Jun 2015 | B1 |
9069080 | Stettner et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9093969 | Gebeyehu et al. | Jul 2015 | B2 |
9110154 | Bates et al. | Aug 2015 | B1 |
9128190 | Ulrich et al. | Sep 2015 | B1 |
9151940 | Chuang et al. | Oct 2015 | B2 |
9191260 | Grund | Nov 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
RE45854 | Gittinger et al. | Jan 2016 | E |
9239959 | Evans et al. | Jan 2016 | B1 |
9246041 | Clausen et al. | Jan 2016 | B1 |
9250327 | Kelley et al. | Feb 2016 | B2 |
9285477 | Smith et al. | Mar 2016 | B1 |
9286538 | Chen et al. | Mar 2016 | B1 |
9310197 | Gogolla et al. | Apr 2016 | B2 |
9383753 | Templeton et al. | Jul 2016 | B1 |
9453914 | Stettner et al. | Sep 2016 | B2 |
9529079 | Droz et al. | Dec 2016 | B1 |
9634156 | Pavlov et al. | Apr 2017 | B2 |
9735885 | Sayyah et al. | Aug 2017 | B1 |
9772607 | Decoux et al. | Sep 2017 | B2 |
9778362 | Rondeau et al. | Oct 2017 | B2 |
RE46672 | Hall | Jan 2018 | E |
9964632 | Droz et al. | May 2018 | B1 |
9983297 | Hall et al. | May 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
10003168 | Villeneuve | Jun 2018 | B1 |
10018726 | Hall et al. | Jul 2018 | B2 |
10048374 | Hall et al. | Aug 2018 | B2 |
10094925 | Lachapelle | Oct 2018 | B1 |
10109183 | Franz et al. | Oct 2018 | B1 |
10120079 | Pennecot et al. | Nov 2018 | B2 |
10126412 | Eldada et al. | Nov 2018 | B2 |
10132928 | Eldada et al. | Nov 2018 | B2 |
10244187 | Stettner et al. | Mar 2019 | B2 |
10309213 | Barfoot et al. | Jun 2019 | B2 |
10330780 | Hall et al. | Jun 2019 | B2 |
10386465 | Hall et al. | Aug 2019 | B2 |
10393874 | Schmidtke et al. | Aug 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10436904 | Moss et al. | Oct 2019 | B2 |
10545222 | Hall | Jan 2020 | B2 |
RE47942 | Hall | Apr 2020 | E |
10613203 | Rekow et al. | Apr 2020 | B1 |
10627490 | Hall et al. | Apr 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10712434 | Hall et al. | Jul 2020 | B2 |
10754034 | Chamberlain et al. | Aug 2020 | B1 |
10782392 | Ishikawa et al. | Sep 2020 | B2 |
10983218 | Hall et al. | Apr 2021 | B2 |
11073617 | Hall et al. | Jul 2021 | B2 |
11137480 | Hall et al. | Oct 2021 | B2 |
20010011289 | Davis et al. | Aug 2001 | A1 |
20010017718 | Ikeda et al. | Aug 2001 | A1 |
20010035946 | Nakase et al. | Nov 2001 | A1 |
20020003617 | Doemens et al. | Jan 2002 | A1 |
20020060784 | Pack et al. | May 2002 | A1 |
20020109074 | Uchida | Aug 2002 | A1 |
20020117545 | Tsikos et al. | Aug 2002 | A1 |
20020175294 | Lee et al. | Nov 2002 | A1 |
20030041079 | Bellemore et al. | Feb 2003 | A1 |
20030043363 | Jamieson et al. | Mar 2003 | A1 |
20030043364 | Jamieson et al. | Mar 2003 | A1 |
20030057533 | Lemmi et al. | Mar 2003 | A1 |
20030066977 | Hipp et al. | Apr 2003 | A1 |
20030076485 | Ruff et al. | Apr 2003 | A1 |
20030090646 | Riegl et al. | May 2003 | A1 |
20030163030 | Arriaga | Aug 2003 | A1 |
20040021852 | DeFlumere | Feb 2004 | A1 |
20040066500 | Gokturk et al. | Apr 2004 | A1 |
20040134879 | Kochergin et al. | Jul 2004 | A1 |
20040150810 | Muenter et al. | Aug 2004 | A1 |
20040213463 | Morrison | Oct 2004 | A1 |
20040240706 | Wallace et al. | Dec 2004 | A1 |
20040240710 | Lages et al. | Dec 2004 | A1 |
20040247157 | Lages et al. | Dec 2004 | A1 |
20050023353 | Tsikos et al. | Feb 2005 | A1 |
20050168720 | Yamashita et al. | Aug 2005 | A1 |
20050211893 | Paschalidis | Sep 2005 | A1 |
20050232466 | Kampchen et al. | Oct 2005 | A1 |
20050246065 | Ricard | Nov 2005 | A1 |
20050248749 | Kiehn et al. | Nov 2005 | A1 |
20050279914 | Dimsdale et al. | Dec 2005 | A1 |
20060007350 | Gao et al. | Jan 2006 | A1 |
20060073621 | Kneissel et al. | Apr 2006 | A1 |
20060089765 | Pack et al. | Apr 2006 | A1 |
20060100783 | Haberer et al. | May 2006 | A1 |
20060115113 | Lages et al. | Jun 2006 | A1 |
20060132635 | Land | Jun 2006 | A1 |
20060176697 | Arruda | Aug 2006 | A1 |
20060186326 | Ito | Aug 2006 | A1 |
20060197867 | Johnson et al. | Sep 2006 | A1 |
20060231771 | Lee et al. | Oct 2006 | A1 |
20060290920 | Kampchen et al. | Dec 2006 | A1 |
20070024956 | Coyle | Feb 2007 | A1 |
20070035624 | Lubard et al. | Feb 2007 | A1 |
20070071056 | Chen | Mar 2007 | A1 |
20070121095 | Lewis | May 2007 | A1 |
20070181810 | Tan et al. | Aug 2007 | A1 |
20070201027 | Doushkina et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20070241955 | Brosche | Oct 2007 | A1 |
20070272841 | Wiklof | Nov 2007 | A1 |
20080002176 | Krasutsky | Jan 2008 | A1 |
20080013896 | Salzberg et al. | Jan 2008 | A1 |
20080074640 | Walsh et al. | Mar 2008 | A1 |
20080079371 | Kang et al. | Apr 2008 | A1 |
20080154495 | Breed | Jun 2008 | A1 |
20080170826 | Schaafsma | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080258695 | Kumar et al. | Oct 2008 | A1 |
20080302971 | Hyde et al. | Dec 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090026503 | Tsuda | Jan 2009 | A1 |
20090045359 | Kumahara et al. | Feb 2009 | A1 |
20090085901 | Antony | Apr 2009 | A1 |
20090122295 | Eaton | May 2009 | A1 |
20090142053 | Varshneya et al. | Jun 2009 | A1 |
20090168045 | Lin et al. | Jul 2009 | A1 |
20090218475 | Kawakami et al. | Sep 2009 | A1 |
20090245788 | Varshneya et al. | Oct 2009 | A1 |
20090299633 | Hawes et al. | Dec 2009 | A1 |
20090323737 | Ensher et al. | Dec 2009 | A1 |
20100006760 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100046953 | Shaw et al. | Feb 2010 | A1 |
20100067070 | Mamada et al. | Mar 2010 | A1 |
20100073780 | Ito | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100134596 | Becker | Jun 2010 | A1 |
20100188722 | Yamada et al. | Jul 2010 | A1 |
20100198487 | Vollmer et al. | Aug 2010 | A1 |
20100204964 | Pack et al. | Aug 2010 | A1 |
20100239139 | Hunt et al. | Sep 2010 | A1 |
20100258708 | Meyers et al. | Oct 2010 | A1 |
20100265077 | Humble et al. | Oct 2010 | A1 |
20100271615 | Sebastian et al. | Oct 2010 | A1 |
20100302528 | Hall | Dec 2010 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110040482 | Brimble et al. | Feb 2011 | A1 |
20110176183 | Ikeda et al. | Jul 2011 | A1 |
20110211188 | Juenemann et al. | Sep 2011 | A1 |
20110216304 | Hall | Sep 2011 | A1 |
20110228068 | Park | Sep 2011 | A1 |
20110228073 | Lee et al. | Sep 2011 | A1 |
20110235018 | Mori et al. | Sep 2011 | A1 |
20110280265 | Desbiens et al. | Nov 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20110316494 | Kitamura et al. | Dec 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120195597 | Malaney | Aug 2012 | A1 |
20120287417 | Mimeault | Nov 2012 | A1 |
20130024176 | Woodford | Jan 2013 | A2 |
20130038915 | Kusaka et al. | Feb 2013 | A1 |
20130050144 | Reynolds | Feb 2013 | A1 |
20130050486 | Omer et al. | Feb 2013 | A1 |
20130070239 | Crawford et al. | Mar 2013 | A1 |
20130093583 | Shapiro | Apr 2013 | A1 |
20130094960 | Bowyer et al. | Apr 2013 | A1 |
20130151198 | Brown | Jun 2013 | A1 |
20130168673 | Yu et al. | Jul 2013 | A1 |
20130206967 | Shpunt et al. | Aug 2013 | A1 |
20130241761 | Cooper et al. | Sep 2013 | A1 |
20130242283 | Bailey et al. | Sep 2013 | A1 |
20130258312 | Lewis | Oct 2013 | A1 |
20130286404 | Cenko et al. | Oct 2013 | A1 |
20130300479 | Thibault | Nov 2013 | A1 |
20130314711 | Cantin et al. | Nov 2013 | A1 |
20130336375 | Ranki et al. | Dec 2013 | A1 |
20130342366 | Kiefer et al. | Dec 2013 | A1 |
20140043309 | Go et al. | Feb 2014 | A1 |
20140063189 | Zheleznyak et al. | Mar 2014 | A1 |
20140063483 | Li | Mar 2014 | A1 |
20140071234 | Millett | Mar 2014 | A1 |
20140078519 | Steffey et al. | Mar 2014 | A1 |
20140104592 | Tien et al. | Apr 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140176657 | Nemoto | Jun 2014 | A1 |
20140240317 | Go et al. | Aug 2014 | A1 |
20140240721 | Herschbach | Aug 2014 | A1 |
20140253369 | Kelley et al. | Sep 2014 | A1 |
20140259715 | Engel | Sep 2014 | A1 |
20140267848 | Wu | Sep 2014 | A1 |
20140274093 | Abdelmonem | Sep 2014 | A1 |
20140293263 | Justice et al. | Oct 2014 | A1 |
20140347650 | Bosch | Nov 2014 | A1 |
20150002852 | de Groot et al. | Jan 2015 | A1 |
20150015895 | Bridges et al. | Jan 2015 | A1 |
20150035437 | Panopoulos et al. | Feb 2015 | A1 |
20150055117 | Pennecot et al. | Feb 2015 | A1 |
20150101234 | Priest et al. | Apr 2015 | A1 |
20150116695 | Bartolome et al. | Apr 2015 | A1 |
20150131080 | Retterath et al. | May 2015 | A1 |
20150144806 | Jin et al. | May 2015 | A1 |
20150185325 | Park et al. | Jul 2015 | A1 |
20150202939 | Stettner et al. | Jul 2015 | A1 |
20150219764 | Lipson | Aug 2015 | A1 |
20150219765 | Mead et al. | Aug 2015 | A1 |
20150226853 | Seo et al. | Aug 2015 | A1 |
20150260843 | Lewis | Sep 2015 | A1 |
20150293224 | Eldada et al. | Oct 2015 | A1 |
20150293228 | Retterath et al. | Oct 2015 | A1 |
20150303216 | Tamaru | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150346325 | Giacotto et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160009410 | Derenick et al. | Jan 2016 | A1 |
20160014309 | Ellison et al. | Jan 2016 | A1 |
20160021713 | Reed | Jan 2016 | A1 |
20160041266 | Smits | Feb 2016 | A1 |
20160049058 | Allen et al. | Feb 2016 | A1 |
20160098620 | Geile | Apr 2016 | A1 |
20160117431 | Kim et al. | Apr 2016 | A1 |
20160154105 | Sigmund et al. | Jun 2016 | A1 |
20160161600 | Eldada et al. | Jun 2016 | A1 |
20160191173 | Malaney | Jun 2016 | A1 |
20160209499 | Suzuki | Jul 2016 | A1 |
20160210487 | Jiang | Jul 2016 | A1 |
20160245919 | Kalscheur et al. | Aug 2016 | A1 |
20160259038 | Retterath et al. | Sep 2016 | A1 |
20160262228 | Huang et al. | Sep 2016 | A1 |
20160279808 | Doughty et al. | Sep 2016 | A1 |
20160300484 | Torbett | Oct 2016 | A1 |
20160306032 | Schwarz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160327646 | Scheim et al. | Nov 2016 | A1 |
20160345820 | Frisken et al. | Dec 2016 | A1 |
20160363659 | Mindell et al. | Dec 2016 | A1 |
20160365846 | Wyland | Dec 2016 | A1 |
20170005465 | Wyland et al. | Jan 2017 | A1 |
20170026633 | Riza | Jan 2017 | A1 |
20170146639 | Carothers | May 2017 | A1 |
20170146640 | Hall et al. | May 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170214861 | Rachlin et al. | Jul 2017 | A1 |
20170219695 | Hall et al. | Aug 2017 | A1 |
20170219713 | Gruver et al. | Aug 2017 | A1 |
20170220876 | Gao et al. | Aug 2017 | A1 |
20170242102 | Dussan et al. | Aug 2017 | A1 |
20170269198 | Hall et al. | Sep 2017 | A1 |
20170269209 | Hall et al. | Sep 2017 | A1 |
20170269215 | Hall et al. | Sep 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170307736 | Donovan | Oct 2017 | A1 |
20170329010 | Warke et al. | Nov 2017 | A1 |
20170350983 | Hall et al. | Dec 2017 | A1 |
20180019155 | Tsang et al. | Jan 2018 | A1 |
20180058197 | Barfoot et al. | Mar 2018 | A1 |
20180059219 | Irish et al. | Mar 2018 | A1 |
20180074382 | Lee et al. | Mar 2018 | A1 |
20180081041 | Niclass et al. | Mar 2018 | A1 |
20180100924 | Brinkmeyer | Apr 2018 | A1 |
20180106902 | Mase et al. | Apr 2018 | A1 |
20180131449 | Kare et al. | May 2018 | A1 |
20180168539 | Singh et al. | Jun 2018 | A1 |
20180188360 | Berger et al. | Jul 2018 | A1 |
20180261975 | Pavlov et al. | Sep 2018 | A1 |
20180267151 | Hall et al. | Sep 2018 | A1 |
20180275249 | Campbell et al. | Sep 2018 | A1 |
20180284227 | Hall et al. | Oct 2018 | A1 |
20180284274 | LaChapelle | Oct 2018 | A1 |
20180321360 | Hall et al. | Nov 2018 | A1 |
20180364098 | McDaniel et al. | Dec 2018 | A1 |
20190001442 | Unrath et al. | Jan 2019 | A1 |
20190011563 | Hall et al. | Jan 2019 | A1 |
20190056498 | Sonn et al. | Feb 2019 | A1 |
20190178991 | Hall et al. | Jun 2019 | A1 |
20190293764 | Van Nieuwenhove et al. | Sep 2019 | A1 |
20190302266 | Hall et al. | Oct 2019 | A9 |
20190339365 | Hall et al. | Nov 2019 | A1 |
20190361092 | Hall et al. | Nov 2019 | A1 |
20190369257 | Hall et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20200025879 | Pacala et al. | Jan 2020 | A1 |
20200025896 | Gunnam | Jan 2020 | A1 |
20200064452 | Avlas et al. | Feb 2020 | A1 |
20200088851 | Hall et al. | Mar 2020 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200144971 | Pinto et al. | May 2020 | A1 |
20200166613 | Hall et al. | May 2020 | A1 |
20200191915 | Hall et al. | Jun 2020 | A1 |
20200249321 | Hall et al. | Aug 2020 | A1 |
20200292678 | Hall et al. | Sep 2020 | A1 |
20200319311 | Hall et al. | Oct 2020 | A1 |
20200319343 | Hall et al. | Oct 2020 | A1 |
20200348401 | Hall et al. | Nov 2020 | A1 |
20220026575 | Hall et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2089105 | Aug 1994 | CA |
641583 | Feb 1984 | CH |
1106534 | Aug 1995 | CN |
1576123 | Feb 2005 | CN |
2681085 | Feb 2005 | CN |
2773714 | Apr 2006 | CN |
103278808 | Dec 2015 | CN |
107037444 | Aug 2017 | CN |
206773192 | Dec 2017 | CN |
108061884 | May 2018 | CN |
207457499 | Jun 2018 | CN |
207457508 | Jun 2018 | CN |
109116367 | Jan 2019 | CN |
106443699 | Feb 2019 | CN |
106597471 | May 2019 | CN |
208902906 | May 2019 | CN |
930909 | Jul 1955 | DE |
3134815 | Mar 1983 | DE |
3216312 | Nov 1983 | DE |
3216313 | Nov 1983 | DE |
3701340 | Jul 1988 | DE |
3741259 | Jun 1989 | DE |
3808972 | Oct 1989 | DE |
3821892 | Feb 1990 | DE |
4040894 | Apr 1992 | DE |
4115747 | Nov 1992 | DE |
4124192 | Jan 1993 | DE |
4127168 | Feb 1993 | DE |
4137550 | Mar 1993 | DE |
4215272 | Nov 1993 | DE |
4243631 | Jun 1994 | DE |
4340756 | Jun 1994 | DE |
4411448 | Oct 1995 | DE |
4412044 | Oct 1995 | DE |
19512644 | Oct 1996 | DE |
19512681 | Oct 1996 | DE |
4345446 | Jul 1998 | DE |
4345448 | Jul 1998 | DE |
19727792 | Feb 1999 | DE |
19741730 | Apr 1999 | DE |
19741731 | Apr 1999 | DE |
19752145 | May 1999 | DE |
19717399 | Jun 1999 | DE |
19757847 | Jul 1999 | DE |
19757848 | Jul 1999 | DE |
19757849 | Jul 1999 | DE |
19757840 | Sep 1999 | DE |
19815149 | Oct 1999 | DE |
19828000 | Jan 2000 | DE |
19902903 | May 2000 | DE |
19911375 | Sep 2000 | DE |
19919925 | Nov 2000 | DE |
19927501 | Nov 2000 | DE |
19936440 | Mar 2001 | DE |
19953006 | May 2001 | DE |
19953007 | May 2001 | DE |
19953009 | May 2001 | DE |
19953010 | May 2001 | DE |
10025511 | Dec 2001 | DE |
10110420 | Sep 2002 | DE |
10114362 | Oct 2002 | DE |
10127417 | Dec 2002 | DE |
10128954 | Dec 2002 | DE |
10141055 | Mar 2003 | DE |
10143060 | Mar 2003 | DE |
10146692 | Apr 2003 | DE |
10148070 | Apr 2003 | DE |
10151983 | Apr 2003 | DE |
10162668 | Jul 2003 | DE |
10217295 | Nov 2003 | DE |
10222797 | Dec 2003 | DE |
10229408 | Jan 2004 | DE |
10244638 | Apr 2004 | DE |
10244640 | Apr 2004 | DE |
10244643 | Apr 2004 | DE |
10258794 | Jun 2004 | DE |
10303015 | Aug 2004 | DE |
10331529 | Jan 2005 | DE |
10341548 | Mar 2005 | DE |
102004010197 | Sep 2005 | DE |
102004014041 | Oct 2005 | DE |
102005050824 | May 2006 | DE |
102005003827 | Jul 2006 | DE |
102005019233 | Nov 2006 | DE |
102007013023 | Sep 2008 | DE |
102011089636 | Jun 2012 | DE |
202015009250 | Jan 2017 | DE |
0185816 | Jul 1986 | EP |
0361188 | Apr 1990 | EP |
0396865 | Nov 1990 | EP |
0412395 | Feb 1991 | EP |
0412398 | Feb 1991 | EP |
0412399 | Feb 1991 | EP |
0412400 | Feb 1991 | EP |
0468175 | Jan 1992 | EP |
0486430 | May 1992 | EP |
0653720 | May 1995 | EP |
0656868 | Jun 1995 | EP |
0665446 | Aug 1995 | EP |
0897120 | Feb 1999 | EP |
0913707 | May 1999 | EP |
0937996 | Aug 1999 | EP |
0967492 | Dec 1999 | EP |
1046938 | Oct 2000 | EP |
1055937 | Nov 2000 | EP |
1148345 | Oct 2001 | EP |
1160718 | Dec 2001 | EP |
1174733 | Jan 2002 | EP |
1267177 | Dec 2002 | EP |
1267178 | Dec 2002 | EP |
1286178 | Feb 2003 | EP |
1286181 | Feb 2003 | EP |
1288677 | Mar 2003 | EP |
1291673 | Mar 2003 | EP |
1291674 | Mar 2003 | EP |
1298012 | Apr 2003 | EP |
1298453 | Apr 2003 | EP |
1298454 | Apr 2003 | EP |
1300715 | Apr 2003 | EP |
1302784 | Apr 2003 | EP |
1304583 | Apr 2003 | EP |
1306690 | May 2003 | EP |
1308747 | May 2003 | EP |
1355128 | Oct 2003 | EP |
1403657 | Mar 2004 | EP |
1408318 | Apr 2004 | EP |
1418444 | May 2004 | EP |
1460454 | Sep 2004 | EP |
1475764 | Nov 2004 | EP |
1515157 | Mar 2005 | EP |
1531342 | May 2005 | EP |
1531343 | May 2005 | EP |
1548351 | Jun 2005 | EP |
1557691 | Jul 2005 | EP |
1557692 | Jul 2005 | EP |
1557693 | Jul 2005 | EP |
1557694 | Jul 2005 | EP |
1700763 | Sep 2006 | EP |
1914564 | Apr 2008 | EP |
1927867 | Jun 2008 | EP |
1939652 | Jul 2008 | EP |
1947377 | Jul 2008 | EP |
1983354 | Oct 2008 | EP |
2003471 | Dec 2008 | EP |
2157445 | Feb 2010 | EP |
2177931 | Apr 2010 | EP |
2503360 | Sep 2012 | EP |
2963445 | Jan 2016 | EP |
3185038 | Jun 2017 | EP |
2041687 | Sep 1980 | GB |
H05240940 | Sep 1993 | JP |
H03-006407 | Feb 1994 | JP |
H6-288725 | Oct 1994 | JP |
H06-289136 | Oct 1994 | JP |
H07-167609 | Jul 1995 | JP |
H09-097925 | Apr 1997 | JP |
11264871 | Sep 1999 | JP |
2001050723 | Feb 2001 | JP |
2001216592 | Aug 2001 | JP |
2001-256576 | Sep 2001 | JP |
2002-031528 | Jan 2002 | JP |
2003-336447 | Nov 2003 | JP |
2004241915 | Aug 2004 | JP |
2004-348575 | Dec 2004 | JP |
2005-070840 | Mar 2005 | JP |
2005-297863 | Oct 2005 | JP |
2006-177843 | Jul 2006 | JP |
2008102000 | May 2008 | JP |
20080258695 | Oct 2008 | JP |
2010-060309 | Mar 2010 | JP |
2011-069726 | Apr 2011 | JP |
2013-104771 | May 2013 | JP |
2013187528 | Sep 2013 | JP |
2014-190736 | Oct 2014 | JP |
2015-169491 | Sep 2015 | JP |
2016164983 | Sep 2016 | JP |
2061224 | May 1996 | RU |
2554279 | Jun 2015 | RU |
2567469 | Nov 2015 | RU |
2575766 | Feb 2016 | RU |
WO-1999003080 | Jan 1999 | WO |
WO-2000025089 | May 2000 | WO |
WO-0131608 | May 2001 | WO |
WO-03019234 | Mar 2003 | WO |
WO-03040755 | May 2003 | WO |
WO-2004019293 | Mar 2004 | WO |
WO-2004036245 | Apr 2004 | WO |
WO-2008008970 | Jan 2008 | WO |
WO-2009120706 | Oct 2009 | WO |
WO-2012153309 | Nov 2012 | WO |
WO-2012172526 | Dec 2012 | WO |
WO-2013191133 | Dec 2013 | WO |
WO-2015079300 | Jun 2015 | WO |
WO-2015104572 | Jul 2015 | WO |
WO-2016056545 | Apr 2016 | WO |
WO-2016162568 | Oct 2016 | WO |
WO-2017033419 | Mar 2017 | WO |
WO-2017089063 | Jun 2017 | WO |
WO-2017132703 | Aug 2017 | WO |
WO-2017149370 | Sep 2017 | WO |
WO-2017164989 | Sep 2017 | WO |
WO-2017165316 | Sep 2017 | WO |
WO-2017193269 | Nov 2017 | WO |
WO-2017210418 | Dec 2017 | WO |
WO-2018125823 | Jul 2018 | WO |
WO-2018196001 | Nov 2018 | WO |
WO-2020001535 | Jan 2020 | WO |
Entry |
---|
U.S. Appl. No. 16/931,218, filed Jul. 16, 2020, Hall et al. |
U.S. Appl. No. 16/134,068, filed Sep. 18, 2018, Hall et al. |
U.S. Appl. No. 16/890,951, filed Jun. 2, 2020, Hall et al. |
U.S. Appl. No. 17/255,948, filed Dec. 23, 2020, Xiang et al. |
Quanergy Systems, Inc. v. Velodyne Lidar, Inc. (Fed. Cir.), Docket No. 20-2070, filed Jul. 27, 2020., U.S. Pat. No. 7,969,558. |
Quanergy Systems, Inc. v. Velodyne Lidar, Inc. (Fed. Cir.), Docket No. 20-2072, filed Jul. 27, 2020., U.S. Pat. No. 7,969,558. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Sep. 18, 2020), 4 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,024,510 (dated Oct. 16, 2020), 6 pages. |
European Patent Office, Communication Pursuant to Rules 70(2) and 70a(2) EPC, App. No. 18771534.7 (dated Jan. 14, 2021), 1 page. |
European Patent Office, Examination Report, Appl. No. 17745112.7 (dated Jul. 1, 2020), 6 pages. |
European Patent Office, Office Action, App. No. 17770748.6 (dated Sep. 14, 2020), 10 pages. |
European Patent Office, Office Action, App. No. 17770926.8 (dated Sep. 9, 2020), 5 pages. |
European Patent Office, Office Action, App. No. 18886541.4 (dated Jun. 3, 2020), 3 pages. |
Extended Search Report, EP App. No. 18774795.1, dated Nov. 11, 2020, 9 pages. |
Extended Search Report, EP App. No. 18798447.1, dated Dec. 10, 2020, 7 pages. |
Glennie, C., et al., “A Comparison of Laser Scanners for Mobile Mapping Applications,” Abstract and slides for a presentation given in 2011, 22 pages. |
Glennie, C., et al., “Static Calibration and Analysis of the Velodyne Hdl-64E S2 for High Accuracy Mobile Scanning,” Remote Sensing 2010, 2: pp. 1610-1624. |
International Search Report of PCT/CN2019/093266 dated Sep. 30, 2019, 3 pages. |
Japanese Patent Office, Notice of Reasons for Rejections, App. No. 2018-549918 (dated Jan. 26, 2021), 4 pages. |
Japanese Patent Office, Office Action, App. No. 2019-500215 (dated Dec. 8, 2020), 5 pages. |
Merriam-Webster, Aperture definition, https://web.archive.org/web/20170817144540/https://www.merriam-webster.com/dictionary/aperture (Aug. 17, 2017), 4 pages. |
Milenkovic, “Introduction to LIDAR,” NEWFOR2014 Summer School (Jul. 2014), 77 pages (Ipr. Nos. '255 and '256, Exhibit 2166). |
Neff, “The Laser That's Changing the World,” Prometheus Books (2018), pp. 193-204 and 270-271. |
Russian Patent Office, Office Action, App. No. 2020121407 (dated Jul. 23, 2020), 5 pages. |
Satterfield, B., et al., “Advancing Robotics: The Urban Challenge Effect,” Journal of Aerospace Computing, Information, and Communication, vol. 5, Dec. 2008, pp. 530-542. |
Sick, “Distance Sensors,” https://web.archive.org/web/20041213053807/http:/www.Ipc-uk.com:80/sick/sickdist.htm (Dec. 13, 2004), 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, Appendix B to Respondents Response to the Complaint and Notice of Investigation, Oct. 21, 2019, pp. 1-4. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne and Respondent Hesai's Joint Notice,” Jul. 9, 2020, 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Motion for Summary Determination,” Public Version, Mar. 6, 2020, 168 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Opposition to Respondent Hesai's Motion for Summary Determination of Invalidity of U.S. Pat. No. 7,969,558,” Public Version, Mar. 18, 2020, 184 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Opposition to Respondent Hesai's Motion to Amend,” Public Version, Feb. 28, 2020, 108 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar, Inc.'s Disclosure of Domestic Industry Products,” Nov. 8, 2019, 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar, Inc.'s Motion in Limine No. 3 to Exclude Evidence and Testimony that Krumes Discloses any Limitations of Claims 2 and 9 of the '558 Patent,” Sep. 2, 2020, 26 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Motion in Limine No. 1 to Limit the Testimony of Robosense's Expert, Jason Janet, PhD.,” Public Version, Sep. 2, 2020, 34 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Motion in Limine No. 2 to Exclude any Testimony from Dr. Janet Regarding an Alleged Motivation to Combine or Reasonable Expectation of Success,” Public Version, Sep. 2, 2020, 22 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Supplemental Motion for Summary Determination Regarding lnventorship,” Public Version, Sep. 10, 2020, 26 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complaint of Velodyne Lidar, Inc. Under Section 337 of the Tariff Act of 1930, as Amended,” Aug. 15, 2019, 45 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Hesai's Motion for Leave to Amend Its Response to the Complaint and Notice of Investigation,” Public Version, Feb. 18, 2020, 82 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Hesai's Unopposed Motion for Leave to File a Reply in Support of Its Motion to Amend Its Response to the Complaint and Notice of Investigation,” Public Version, Mar. 6, 2020, 30 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Initial Determination Granting Joint Motion for Termination of the Investigation as to Respondent Hesai Based on a Settlement and Request for Limited Service of Settlement Agreement under CFR §210.21(b),” Public Version, Jul. 13, 2020, 4 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Chart of Substantive Legal Issues Being Litigated,” Sep. 17, 2020, 5 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Chart of Substantive Legal Issues Being Litigated,” Sep. 8, 2020, 6 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Motion for and Memorandum in Support of Termination of the Investigation as to Respondent Hesai Based on a Settlement and Request for Limited Service of Settlement Agreement under 19 CFR §210.21(b),” Public Version, Jul. 8, 2020, 77 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Order No. 26: Granting Hesai's Motion for Leave to Amend Its Response to the Complaint and Notice of Investigation,” May 7, 2020, 6 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Order No. 27: Denying without Prejudice Velodyne's Motion for Summary Determination,” Public Version, May 12, 2020, 11 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Hesai's Motion for Summary Determination of Invalidity of U.S. Pat. No. 7,969,558,” Public Version, Mar. 6, 2020, 109 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Opposition to Complainant Velodyne's Motion in Limine No. 3 to Exclude Evidence and Testimony That Krumes Discloses Any Limitations of Claims 2 and 9 of the '558 Patent,” Sep. 9, 2020, 10 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Response in Opposition to Complainant Velodyne Lidar, Inc.'s Motion in Limine No. 1,” Sep. 9, 2020, 11 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent RoboSense's Response in Opposition to Complainant Velodyne Lidar, Inc.'s Renewed Motion for Summary Determination Regarding lnventorship,” Public Version, Sep. 8, 2020, 12 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Response in Opposition to Complainant's Motion in Limine No. 2,” Sep. 9, 2020, 13 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Suteng Innovation Technology Co., Ltd.'s Response to the Complaint and Notice of Investigation,” Public Version, Oct. 21, 2019, 31 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondents' Memorandum in Opposition to Complainant Velodyne Lidar Inc.'s Motion for Summary Determination,” Public Version, Mar. 18, 2020, 190 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondents' Response to the Complaint and Notice of Investigation,” Public Version, Oct. 21, 2019, 36 pages. |
Velodyne Lidar, Excerpts of Business Records (2007-2012), 2 pages. (IPR Nos. '255 and '256 Exhibit 2084). |
Wikipedia, “Cassegrain reflector,” Dec. 12, 2014, 5 pages (downloaded from Internet Archive, Sep. 29, 2020). |
Written Opinion for PCT/CN2019/093266 dated Sep. 23, 2019, 4 pages. |
U.S. Appl. No. 15/941,302, filed Mar. 30, 2018, Hall et al. |
U.S. Appl. No. 16/510,680, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,710, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,749, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 11/777,802, filed Jul. 13, 2007, Hall. |
U.S. Appl. No. 13/109,901, filed May 17, 2011, Hall et al. |
U.S. Appl. No. 15/180,580, filed Jun. 13, 2016, Hall et al. |
U.S. Appl. No. 15/700,543, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,558, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,571, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,836, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,844, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,959, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,965, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 16/912,648, filed Jun. 25, 2020, Hall et al. |
U.S. Appl. No. 15/926,095, filed Mar. 30, 2018, Hall et al. |
U.S. Appl. No. 15/464,227, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/464,221, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/610,975, filed Jun. 1, 2017, Hall et al. |
U.S. Appl. No. 16/546,131, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/842,491, filed Apr. 7, 2020, Hall et al. |
U.S. Appl. No. 16/546,184, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/546,206, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/909,306, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/339,790, filed Oct. 31, 2016, Hall et al. |
U.S. Appl. No. 16/854,755, filed Apr. 21, 2020, Hall et al. |
U.S. Appl. No. 16/905,843, filed Jun. 18, 2020, Hall et al. |
U.S. Appl. No. 16/905,849, filed Jun. 18, 2020, Hall et al. |
U.S. Appl. No. 16/909,846, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/835,983, filed Dec. 8, 2017, Hall et al. |
U.S. Appl. No. 16/459,557, filed Jul. 1, 2019, Rekow et al. |
U.S. Appl. No. 16/841,506, filed Apr. 6, 2020, Rekow et al. |
U.S. Appl. No. 16/112,273, filed Aug. 24, 2018, Avlas et al. |
U.S. Appl. No. 16/181,523, filed Nov. 6, 2018, Pinto et al. |
U.S. Appl. No. 16/241,849, filed Jan. 7, 2019, Hall et al. |
U.S. Appl. No. 16/241,963, filed Jan. 7, 2019, Hall et al. |
Quanergy Systems, Inc. v. Velodyne Lidar, Inc. (N.D. Cal.), Docket No. 5-16-cv-05251, filed Sep. 13, 2015., U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), Docket No. 5:16-cv-04742, filed Aug. 13, 2019., U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Suteng Innovation Technology Co., Ltd. (N.D. Cal.), Docket No. 5:16-cv-04746, filed Aug. 13, 2019., U.S. Pat. No. 7,969,558. |
In re Certain Rotating 3-D Lidar Devices, Components Thereof, and Sensing Systems Containing the Same (ITC), Investigation No. ITC-337-TA-1173, filed Aug. 15, 2019., U.S. Pat. No. 7,969,558. |
Petition for Inter Partes Review (USPTO Patent Trial and Appeal Board), Case No. IPR2018-00255, filed Nov. 29, 2017., U.S. Pat. No. 7,969,558. |
Petition for Inter Partes Review (USPTO Patent Trial and Appeal Board), Case No. IPR2018-000255, filed Nov. 29, 2017., U.S. Pat. No. 7,969,558. |
Accetta et al., Active Electro-Optical Systems, The Infrared and Electro-Optical Systems Handbook (1993, ed. by Clifton Fox), pp. 3-76. (IPR Nos. '255 and '256 Exhibit 2158). |
Acuity Laser, Principles of Measurement Used by Laser Sensors, https://www.acuitylaser.com/measurement-principles (2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 1075). |
Acuity, Acuity Aluminum Billet Scalping Production Information webpage (Brennan Deposition Exhibit 14) (last visited Dec 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2184). |
Acuity, Acuity AR700 Laser Displacement Sensor Product Information webpage (Brennan Deposition Exhibit 13) (last visited Dec 28, 2018), 9 pages. (IPR Nos. '255 and '256 Exhibit 2183). |
Acuity, Acuity Drill Pipe Runout Product Information webpage (Brennan Deposition Exhibit 12) (last visited Dec 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2182). |
Acuity, Acuity Short Range Sensors Product Information webpage (Brennan Deposition Exhibit 11) (last visited Dec 30, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 2181). |
Aiestaran et al. “A Fluorescent Linear Optical Fiber Position Sensor” Elsevier B.V. May 21, 2008 (4 pages). |
Albota, “Three-dimensional imaging laser RADAR with a photon-counting avalanche photodiode array and microchip laser,” Applied optics, vol. 41, No. 36 (Dec. 20, 2002), 8 pages. |
Alhashimi, et al, Statistical Modeling and Calibration of Triangulation Lidars, Scitepress—Science and Technology Publications (2016), pp. 308-317. (IPR Nos. '255 and '256 Exhibit 1069). |
Amann, Laser ranging: a critical review of usual techniques for distance measurement, 40(1) Society of Photo-Optical Instrumentation Engineers (Jan. 2001), pp. 10-19. (IPR Nos. '255 and '256 Exhibit 2148). |
American National Standard for Safe Use of Lasers, ANSI Z136.1-2014, Laser Institute of America (Dec. 10, 2013), pp. 27-34 and 216-219. (IPR Nos. '255 and '256 Exhibit 1142). |
American National Standard for Safe Use of Lasers, Laser Institute of America (Jun. 28, 2000), 184 pages. (IPR Nos. '255 and '256 Exhibit 2005). |
American National Standards Institute, “Procedures for the Development and Coordination of American National Standards” (Mar. 22, 1995), 50 pages. (IPR Nos. '255 and '256 Exhibit 1040). |
American Petroleum Institute, “Specification for Line Pipe,” API Specification 5L, 43rd Ed. (2004), 166 pages. (IPR Nos. '255 and '256 Exhibit 1139). |
Aood Technology Limited, “Electrical Slip Rings vs. Rotating Electrical Connectors” (2013), 3 pages. (IPR Nos. '255 and '256 Exhibit 1032). |
Aufrere, et al., Perception for collision avoidance and autonomous driving, The Robots Institute, Carnegie Mellon University (2003), 14 pages (IPR Nos. '255 and '256 Exhibit 2140). |
Aull, et al., “Geiger-Mode Avalanche Photodiodes for Three Dimensional Imaging,” Lincoln Laboratory Journal (2002), 16 pages. (IPR Nos. '255 and '256 Exhibit 1021), Lincoln Laboratory Journal, vol. 13, No. 2, 2002, pp. 335-350. |
Automotive Lidar, Market Presentation titled “Robotic Cars LiDAR Market in Million Dollars” (Apr. 2018), 86 pages. (IPR Nos. '255 and '256 Exhibit 2113). |
Avalanche Photodiode: A User Guide (2011), 8 pages. (IPR Nos. '255 and '256 Exhibit 1019). |
Beer, et al, Mechanics of Materials, McGraw Hill Companies, 4th Ed. (2006), pp. 750 and 752. (IPR Nos. '255 and '256 Exhibit 1140). |
Berkovic et al., Optical Methods for Distance and Displacement Measurements, Advances in Optics and Photonics (Sep. 11, 2012), pp. 441-471. (IPR Nos. '255 and '256 Exhibit 2007). |
Besl, Active, Optical Range Imaging Sensors Machine Visions and Applications (1988), Springer-Verlag New York Inc., pp. 1:127-152 (IPR Nos. '255 and '256 Exhibit 1015). |
Blais, NRC-CNRC, Review of 20 Years of Range Sensor Development, National Research Council Canada (Jan. 2004), pp. 231-243 (IPR Nos. '255 and '256 Exhibit 2141). |
Bordone, et al., “Development of a high-resolution laser radar for 3D imaging in artwork cataloging,” Proceedings of SPIE, vol. 5131 (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 1016). |
Bornstein, “Where am I? Sensors and Methods for Mobile Robot Positioning” (1996), pp. 95-112. |
Brennan, Drawing of I-beam by Dr. Brennan (Brennan Deposition Exhibit 16), (Jan. 4, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 2186). |
Brustein et al., How a Billion-Dollar Autonomous Vehicle Startup Lost Its Way, Bloomberg https://www.bloomberg.com/news/features/2018-08-13/how-a-billiondollar-autonomous-vehicle-startup-lost-its-way (Aug. 13, 2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2098). |
Business Wire, Press Release Distribution webpage, https://services.businesswire.com/press-release-distribution (Dec. 21, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 1143). |
Businesswire, Velodyne Displays Solid State, Highest Performing LiDAR for ADAS, Businesswire https://www.businesswire.com/news/home/20180107005088/en/Velodyne-Displays-Solid-State-Highest-Performing-LiDAR (Jan. 7, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2097). |
Businesswire, Velodyne LiDar Awarded “Industry Choice Company of the Year” at TU-Automotive Detroit Conference, Businesswire, https://www.businesswire.com/news/home/20180608005700/en/Velodyne-LiDAR-Awarded-%E2%80%9CIndustry-Choice-Company-Year%E2%80%9D (Jun. 8, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2096). |
Cameron, An Introduction to LIDAR: The Key Self-Driving Car Sensor, Voyage https://news.voyage.auto/an-introduction-to-lidar-the-key-self-drivingcar-sensor-a7e405590cff (May 9, 2017), 14 pages. (IPR Nos. '255 and '256 Exhibit 2074). |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,735 (dated Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,811 (dated Aug. 28, 2019), 3 pages. |
Canbus, https://web.archive.org/web/20040520021138/ http:/canbus.us:80/ (May 20, 2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 1088). |
Carson, N. “Defending Gps against the Spoofing Threat using Network Based Detection and 3,15,20 Successive Interference Cancellation”. Auburn University. Nov. 2015, 35 pages. |
Chapman, “Introduction to Laser Safety” (Sep. 10, 2007), 19 pages. |
Chellapilla, Lidar: The Smartest Sensor on a Self Driving Car, LinkedIn.com https://www.linkedin.com/pulse/lidar-smartest-sensor-self-driving-carkumar-chellapill (Jul. 31, 2017), 8 pages. (IPR Nos. '255 and '256 Exhibit 2075). |
Cheung, Spinning laser maker is the real winner of the Urban Challenge, Tech Guru Daily, available at http://www.tgdaily.com/trendwatch-features/34750-spinning-laser-maker-is-the-real-winner (Nov. 7, 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2091). |
Code of Federal Regulations, Food and Drugs Rule—Performance Standards for Light-Emitting Products, 21 C.F.R. § 1040.10 (2005). |
Copper Development Association Inc., Copper Tube Handbook—Industry Standard Guide for the Design and Installation of Copper Piping Systems, CDA Publication A4015-14.17: Copper Tube Handbook (2016), 96 pages. (IPR Nos. '255 and '256 Exhibit 2139). |
Cravotta, “Operating alone,” EDN (Dec. 5, 2005), 6 pages. |
D'Allegro, Meet the Inventor Trying to Bring LiDAR to the Masses, The Drive http://www.thedrive.com/sheetmetal/15567/meet-the-inventor-trying-to bring-lidar-to-the-masses (Oct. 28, 2017), 5 pages. (IPR Nos. '255 and '256 Exhibit 2072). |
Daido, Daido Special Steel Co. home page, https://web.archive.org/web/20051227070229/http:/daido.co.jp/ (Dec. 27, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1087). |
Daido, Daido steel drilling equipment page, https://web.archive.org/web/20050406120958/ http:/www.daido.co.jp:80/english/products/applipro/energy/dri.html (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1083). |
Daido, Daido steel petroleum components, https://web.archive.org/web/20050406121643/ http:/www.daido.co.jp:80/english/products/applipro/energy/petro.htm (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1084). |
Daido, Daido steel rebar page, https://web.archive.org/web/20051201010951/ http:/www.daido.co.jp:80/products/stainless/ik_shokai.html (Dec. 1, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1086). |
DARPA, 2005 DARPA Challenge Info page https://web.archive.org/web/20051214033009/ http:/www.darpa.mil:80/grandchallenge/ (Nov. 17, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1092). |
DARPA, 2005 DARPA Team Papers https://web.archive.org/web/20051213010211/ http:/www.darpa.mil:80/grandchallenge/techpapers.html (Dec. 13, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1093). |
DARPA, Grand Challenge '05—Frequently Asked Questions, DARPA.com, http://archive.darpa.mil/grandchallenge05/qa.html) (2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2143). |
DARPA, Grand Challenge Media—Frequently Asked Questions (Media),DARPA.com, http://archive.darpa.mil/grandchallenge04/media_faq.htm (2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 2142). |
DARPA, PDF found on Team DAD paper URL, https://web.archive.org/web/20051213015642/ http:/www.darpa.mil:80/grandchallenge/TechPapers/TeamDAD.pdf (Aug. 6, 2005), pp. 1-12. (IPR Nos. '255 and '256 Exhibit 1094). |
DARPA, Urban Challenge, DARPA.com, http://archive.darpa.mil/grandchallenge/ (“DARPA Archive”) (2007), 4 pages. (IPR Nos. '255 and '256 Exhibit 2144). |
Dehong, et al, Design and Implementation of LiDAR Navigation System Based on Triangulation Measurement, 29th Chinese Control and Decision Conference (CCDC) (May 2017), 59 pages. (IPR Nos. '255 and '256 Exhibit 1136). |
Doyle, Velodyne HDL-64E Laser Rangefinder (LIDAR) Pseudo-Disassembled, Hizook (Jan. 4, 2009), 7 pages. (IPR Nos. '255 and '256 Exhibit 2046). |
Engineering Toolbox, The Engineering Toolbox Copper Tubes—ASTM B88 Datasheet (last accessed Jul. 10, 2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 2137). |
English, et al., The Complementary Nature of triangulation and ladar technologies, 5791 Proceedings of SPIE (May 19, 2005), pp. 29-41. (IPR Nos. '255 and '256 Exhibit 2162). |
Esacademy, Betting on CAN, https://web.archive.org/web/20040609170940/ http:/www.esacademy.com:80/faq/docs/bettingcan/traditional.htm (Jun. 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1089). |
European Patent Office, Office Action, App. No. EP 07840406.8 (dated Mar. 15, 2011) 7 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Jan. 29, 2019), 3 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 14, 2016), 4 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 5, 2015), 4 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 7, 2019), 6 pages. |
Ewald et al., Object Detection with Laser Scanners for Automotive Applications, IFAC Control in Transportation Systems (2000), pp. 369-372. (IPR Nos. '255 and '256 Exhibit 2191). |
Excelitas Technologies, “Avalanche Photodiode. A User Guide”, 2011 Excelitas Technologies Corp., pp. 1-8. |
Fast Company, The World's 50 Most Innovative Companies 2017, https://www.fastcompany.com/most-innovative-companies/2017 (last visited Feb. 26, 2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2077). |
Fischer, “Rapid Measurement and Mapping of Tracer Gas Concentrations in a Large Indoor Space” (May 2000), 27 pages. |
Ford Media Center, Ford Tripling Autonomous Vehicle Development Fleet, Accelerating on-road Testing of Sensors and Software (Jan. 5, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2066). |
Fox, “Active electro-optical systems,” The infrared and electro-optical systems handbook, vol. 6 (1993), pp. 1-80. |
Frost et al., Driving the Future of Autonomous Navigation—Whitepaper for Analysis of LIDAR technology for advanced safety, https://velodynelidar.com/docs/papers/FROST-ON-LiDAR.pdf (2016), 30 pages. (IPR Nos. '255 and '256 Exhibit 1130). |
Fuerstenberg, et al, Multilayer Laserscanner for Robust Object Tracking and Classification in Urban Traffic Scenes, 9th World Congress on Intelligent Transport Systems (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 1079), pp. 1-10. |
Fuerstenberg, et al., Pedestrian Recognition and Tracking of Vehicles using a vehicle based Multilayer Laserscanner, IEEE (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 2192). |
Fuerstenberg, Pedestrian detection and classification by laserscanners, (2003), 8 pages. |
Furstenberg, et al., New Sensor for 360 Vehicle Surveillance—Innovative Approach to Stop & Go, Lane Assistance and Pedestrian Recognition (May 2001), 5 pages. (IPR Nos. '255 and '256 Exhibit 2190). |
Gargiulo, Velodyne Lidar Tops Winning Urban Challenge Vehicles, Business Wire (Nov. 6, 2007), 2 pages. (IPR Nos. '255 and '256 Exhibit 2082). |
Garmin, How the LIDAR-Lite v3/v3HP works with reflective surfaces, GARMIN.com, https://support.garmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (last visited Aug. 24, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2145). |
Glennie et al., Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications, MDPI Remote Sensing (Mar. 14, 2011), 15 pages. (IPR Nos. '255 and '256 Exhibit 2057). |
Glennie, Performance analysis of a kinematic terrestrial LiDAR scanning system, MAPPS/ASPRS 2006 fall conference (Nov. 6-10, 2006), 9 pages. |
Glennie, Reign of Point Clouds: A Kinematic Terrestrial LiDAR Scanning System (2007), pp. 22-31. |
Gustavson, “Diode-laser radar for low-cost weapon guidance,” SPIE vol. 1633, Laser radar VII (1992), pp. 1-12. |
Hall, et al., Team DAD Technical Paper, DARPA Grand Challenge 2005, XP-002543336, Aug. 26, 2005, pp. 1-12. (IPR Nos. '255 and '256 Exhibit 1081). |
Hamamatsu, CCD area image sensor S7030/S7031 Series Back-thinned FFT-CCD Datasheet (2006), 8 pages. (IPR Nos. '255 and '256 Exhibit 2123). |
Hamamatsu, CCD Image Sensors Webpage (“CCD Image Sensors”) (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2124). |
Hamamatsu, Image Sensor Selection guide (Dec. 2003), 20 pages. (IPR Nos. '255 and '256 Exhibit 2128). |
Hamamatsu, Image Sensors Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2160). |
Hamamatsu, One-dimensional PSD Plastic package, 1-D PSD with plastic package Datasheet (“1-D PSD Datasheet”) (2004), 5 pages. (IPR Nos. '255 and '256 Exhibit 2118). |
Hamamatsu, One-Dimensional PSD Webpage, One-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2119). |
Hamamatsu, Photodiode Technical Information, 18 pages. (IPR Nos. '255 and '256 Exhibit 2129). |
Hamamatsu, Position Sensitive Detectors (“PSDs”) Webpage, One-dimensional and Two-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2117). |
Hamamatsu, S4111-46Q Si Photodiode Array Webpage (Oct. 22, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2135). |
Hamamatsu, Si photodiode array—S4111/S4114 series 16, 35, 46 element Si photodiode array for UV to NIR Datasheet (Jul. 2004), 4 pages. (IPR Nos. '255 and '256 Exhibit 2134). |
Hamamatsu, Silicon Photodiode Array Webpage (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2130). |
Hamamatsu, Technical Information, SD-25—Characteristics and use of FFT-CCD area image sensor (Aug. 2003), 27 pages. (IPR Nos. '255 and '256 Exhibit 2126). |
Hamamatsu, Technical Information, SD-28—Characteristics and use of Si APD (Avalanche Photodiode) (Aug. 2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 2127). |
Hamamatsu, Two-dimensional PSD S1300 Datasheet (Dec. 19, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2121). |
Hamamatsu, Two-dimensional PSDs S1200, S1300, S1880, S1881, S2044—Non-discrete position sensor utilizing photodiode surface resistance Datasheet (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 2120). |
Hamamatsu, Two-dimensional PSDs Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2122). |
Hamatsu, Opto-Semiconductor Handbook, Si APD, MMPC (Chapter 3), “APD Handbook”), available at https://www.hamamatsu.com/us/en/hamamatsu/overview/bsd/solid_state_division/related_documents.html (2014), 25 pages. (IPR Nos. '255 and '256 Exhibit 2006). |
Hancock, “Laser Intensity Based Obstacle Detecting and Tracking” (Jan. 1999), pp. 45-65. |
Haran et al., Infrared Reflectivy of Pedestrian Mannequin for Autonomous Emergency Braking Testing, IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016), 6 pages. (IPR Nos. '255 and '256 Exhibit 2168). |
Heenan, et al., Feature-Level Map Building and Object Recognition for Intersection Safety Applications, in Advanced Microsystems for Automotive Applications (Jurgen Valldorf and Wolfgang Gessner eds.) (2005), pp. 505-519. (IPR Nos. '255 and '256 Exhibit 2199). |
Hergert et al., The WITS$ guide to selecting a photodetector, Hamamatsu.com, https://hub.hamamatsu.com/us/en/technical-note/WITS-guide-detectorselection/index.html (Jul. 2015), 16 pages. (IPR Nos. '255 and '256 Exhibit 2133). |
IBEO, “IBEO about,” https://web.archive.org/web/20040606111631/http:/www.ibeoas.de:80/html/about/about (2004). |
IBEO, “IBEO data and prices,” https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (2004), 2 pages. |
IBEO, “IBEO history,” https://web.archive.org/web/20040807161657/, http:/www.ibeoas.de:80/html/about/ab_history.html (2004), 1 page. |
IBEO, “IBEO LD Multilayer data sheet,” https://web.archive.org/web/20031003201743/http://www.ibeoas.de:80/html/prod/prod_Id_multi.html (2003), 1 page. |
IBEO, “IBEO Motiv sensor,” https://web.archive.org/web/20040113062910/, http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (1997-2000), 1 page. |
IBEO, “IBEO multilayer tech” (2004), 1 page. |
IBEO, “IBEO multitarget capability,” https://web.archive.org/web/20040323030746/, http/:www.ibeoas.de:80/html/knho/knho-senstech-mlc.html (2004), 1 page. |
IBEO, “IBEO products,” https://web.archive.org/web/20040606115118/http/:www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO products,” https://web.archive.org/web/20041011011528/ http://www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO publications,” https://web.archive.org/web/20031208175052/ http://www.ibeoas.de:80/html/public/public.html (2003), 2 pages. |
IBEO, “IBEO roadmap,” https://web.archive.org/web/20041209032449/http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (2004), 1 page. |
IBEO, “IBEO Time of Flight” (2004), 1 page. |
IBEO, “IBEO,” https://web.archive.org/web/20040202131331/http:/www.ibeo-as.de:8 (2004), 1 page. |
IBEO, IBEO about page, https://web.archive.org/web/20040606111631/ http:/www.ibeoas.de:80/html/about/about (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1103). |
IBEO, IBEO Alasca, https://web.archive.org/web/20031001091407/ http:/www.ibeoas.de:80/html/prod/prod_alasca.html (Oct. 1, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 1099). |
IBEO, IBEO Automobile Sensor GmbH—Scanner Technology webpage (Brennan Deposition Exhibit 1) (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2171). |
IBEO, IBEO Automobile Sensor GmbH—The Alasca project webpage (Brennan Deposition Exhibit 2) (Oct. 6, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 2172). |
IBEO, IBEO Available products, https://web.archive.org/web/20041011011528/ http://www.ibeoas.de:80/html/prod/prod.html (Oct. 11, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1108). |
IBEO, IBEO data sheet re available products, https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (Dec. 9, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1107). |
IBEO, IBEO history, https://web.archive.org/web/20040807161657/ http:/www.ibeoas.de:80/html/about/ab_history.html (Aug. 7, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1104). |
IBEO, IBEO home page, https://web.archive.org/web/20040202131331/ http:/www.ibeo-as.de:8 (Feb. 2, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1102). |
IBEO, IBEO LD Multilayer data sheet, https://web.archive.org/web/20031003201743/http://www.ibeoas.de:80/html/prod/prod_ld_multi.html (Oct. 3, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 1111). |
IBEO, IBEO Motiv sensor, https://web.archive.org/web/20040113062910/ http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (Jan. 13, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1110). |
IBEO, IBEO multilayer tech, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1097). |
IBEO, IBEO multilayer technology page with moving graphic, Archive.org (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1096). |
IBEO, IBEO multitarget capability, https://web.archive.org/web/20040323030746/ http:/www.ibeoas.de:80/html/knho/knho_senstech_mlc.html (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1101). |
IBEO, IBEO products page, https://web.archive.org/web/20040606115118/ http:/www.ibeoas.de:80/html/prod/prod.html (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1100). |
IBEO, IBEO publications page, https://web.archive.org/web/20031208175052/ http://www.ibeoas.de:80/html/public/public.html (Dec. 8, 2003), 2 pages. (IPR Nos. '255 and '256 Exhibit 1109). |
IBEO, IBEO Roadmap, https://web.archive.org/web/20041209032449/ http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (Dec. 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1105). |
IBEO, IBEO time of flight with moving graphic, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1095). |
IBEO, IBEO Time of Flight, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1098). |
Informed Infrastructure, Velodyne LiDAR Division Announces Agreement with Caterpillar for Laser Imaging Technology, Informed Infrastructure http://informedinfrastructure.com/25630/velodynes-lidar-divisionannounces-agreement-with-caterpillar-for-laser-imaging-technology-2/ (Aug. 8, 2012), 3 pages. (IPR Nos. '255 and '256 Exhibit 2079). |
Inter Parties Review Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Institution of Inter Partes Review (May 25, 2018), 11 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00255). |
Inter Parties Review Declaration of Dr. James F. Brennan III (Nov. 29, 2017), 172 pages. (IPR Nos. '255 and '256 Exhibit 1002). |
Inter Parties Review Final Written Decision (May 23, 2019), 40 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 56 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 72 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Updated Exhibit List (Feb. 11, 2019), 21 pages. (IPR No. 2018-00255). |
Inter Parties Review Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9) (IPR No. 2018-00255, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 67 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 38 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Updated Exhibit List (Jan. 30, 2019), 13 pages. (IPR No. 2018-00255). |
Inter Parties Review Record of Oral Hearing (Feb. 27, 2019), 126 pages. (IPR Nos. 2018-00255 and 2018-00256). |
Inter Parties Review Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9), 71 pages. (IPR No. 2018-00255). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 18, 2018), 33 pages. (IPR Nos. '255 and '256 Exhibit 1066). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 20, 2018), 52 pages. (IPR Nos. '255 and '256 Exhibit 1067). |
Inter Parties Review, Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Institution of Inter Partes Review (May 25, 2018), 12 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00256). |
Inter Parties Review, Declaration of Dr. Sylvia Hall-Ellis (Nov. 29, 2017), 93 pages. (IPR Nos. '255 and '256 Exhibit 1041). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. In Support of Patent Owner's Preliminary Responses (Public Version—Redacted) (Mar. 7, 2018), 120 pages. (IPR Nos. '255 and '256 Exhibit 2003). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. In Support of Patent Owner's Reply in Support of Its Motion to Amend (Jan. 16, 2019), 71 pages. (IPR Nos. '255 and '256 Exhibit 2202). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. In Support of Patent Owner's Responses and Motions to Amend (Public Version—Redacted) (Sep. 27, 2018), 202 pages. (IPR Nos. '255 and '256 Exhibit 2115). |
Inter Parties Review, Declaration of James F. Brennan, III in Support of Petitioner's Replies and Oppositions to Motions to Amend (Dec. 21, 2018), 93 pages. (IPR Nos. '255 and '256 Exhibit 1063). |
Inter Parties Review, Declaration of Sylvia Hall-Ellis (Dec. 21, 2018), 146 pages. (IPR Nos. '255 and '256 Exhibit 1065). |
Inter Parties Review, Defendant Velodyne's Answer and Counterclaim, Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) ECF No. 36 (Dec. 5, 2016), 56 pages. (IPR Nos. '255 and '256 Exhibit 2080). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Aug. 23, 2018), 241 pages. (IPR Nos. '255 and '256 Exhibit 2156). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Jan. 4, 2019), 267 pages. (IPR Nos. '255 and '256 Exhibit 2194). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken Nov. 27, 2018), 285 pages. (IPR Nos. '255 and '256 Exhibit 1064). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken on Jan. 22, 2019), 368 pages. (IPR Nos. '255 and '256 Exhibit 1150). |
Inter Parties Review, Eden Deposition Exhibit 1—Unmanned Vehicles Come of Age: The DARPA Grand Challenge (2006), pp. 26-29. (IPR Nos. '255 and '256 Exhibit 1151). |
Inter Parties Review, Eden Deposition Exhibit 10—Are processor algorithms key to safe self-driving cars?—EDN Asia (https: //www.ednasia.com/ news /article/areprocessor-algorithms-key-to-safe-self-driving-cars) (Jul. 7, 2016), 7 pages. (IPR Nos. '255 and '256 Exhibit 1160). |
Inter Parties Review, Eden Deposition Exhibit 11—Steve Taranovich's profile (https://www.edn.com/user/steve.taranovich) (Jan. 22, 2019), 4 pages. (IPR Nos. '255 and '256 Exhibit 1161). |
Inter Parties Review, Eden Deposition Exhibit 12—Instrumentation and Control (http://www.Instrumentation.co.za /article.aspx?pklarticleid=1664) (Feb. 2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 1162). |
Inter Parties Review, Eden Deposition Exhibit 13—IBEO on board: ibeo LUX 4L / ibeo LUX 8L / ibeo LUX HD Data Sheet (Jul. 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 1163). |
Inter Parties Review, Eden Deposition Exhibit 2—Driver Reaction Time in Crash Avoidance Research: validation of a Driving Simulator Study on a Test Track; Article in Human Factors and Ergonomics Society Annual Meeting Proceedings, Jul. 2000, 5 pages. (IPR Nos. '255 and '256 Exhibit 1152). |
Inter Parties Review, Eden Deposition Exhibit 3—Axis of Rotation diagram (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1153). |
Inter Parties Review, Eden Deposition Exhibit 4—Parallel Line and Plane—from Wolfram MathWorld (http://mathworld.wolfram.com/ParallelLineandPlane.html) (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1154). |
Inter Parties Review, Eden Deposition Exhibit 5—Quasi-3D Scanning with Laserscanners: Introduction from 2D to 3D (2001), 7 pages. (IPR Nos. '255 and '256 Exhibit 1155). |
Inter Parties Review, Eden Deposition Exhibit 6—L-Gage LT3 Long-Range Time-of-Flight Laser Distance-Gauging Sensors (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 1156). |
Inter Parties Review, Eden Deposition Exhibit 7—About Ibeo: Our Mission (https://www.ibeoas.com/aboutibeo) (Jan. 21, 2019), 10 pages. (IPR Nos. '255 and '256 Exhibit 1157). |
Inter Parties Review, Eden Deposition Exhibit 8—Automotive Industry; Explore Our Key Industries (https://velodynelidar.com/industry.html) (2019), 6 pages. (IPR Nos. '255 and '256 Exhibit 1158). |
Inter Parties Review, Eden Deposition Exhibit 9—Leddar Tech, Solid-State LiDARs: Enabling the Automotive Industry Towards Autonomous Driving (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1159). |
Inter Parties Review, Excerpt from Beautiful Data, Edited by Toby Segaran and Jeff Hammerbacher (Jul. 2009), pp. 150-153. (IPR Nos. '255 and '256 Exhibit 2014). |
Inter Parties Review, Excerpt from James T. Luxon and David E. Parker, Industrial Lasers and Their Applications, Prentice-Hall (1985), pp. 56, 68-70, 124-125, 145, 150-151, and 154-159. (IPR Nos. '255 and '256 Exhibit 2009). |
Inter Parties Review, Excerpt from Peter W. Milonni and Joseph Eberly, Lasers (1988), pp. 585-589. (IPR Nos. '255 and '256 Exhibit 2011). |
Inter Parties Review, Excerpt from Raymond T. Measures, Laser Remote Sensing, Fundamentals and Applications (1992), pp. 205 and 213-214. (IPR Nos. '255 and '256 Exhibit 2010). |
Inter Parties Review, Excerpt from Stephan Lugomer, Laser Technology, Laser Driven Processes, Prentice-Hall (1990), pp. 302-311. (IPR Nos. '255 and '256 Exhibit 2008). |
Inter Parties Review, Excerpt from William V. Smith, Laser Applications (1970), pp. 23-27. (IPR Nos. '255 and '256 Exhibit 2012). |
Inter Parties Review, Excerpts of Deposition of Craig L. Glennie, Ph.D., Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) (Jun. 27, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2016). |
Inter Parties Review, Final Written Decision (May 23, 2019), 41 pages. (IPR No. 2018-00256). |
Inter Parties Review, Images of Generator Rotors (Brennan Deposition Exhibit 8) (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2178). |
Inter Parties Review, Listing of Labelled Substitute Claims (2018), 17 pages. (IPR Nos. '255 and '256 Exhibit 1076). |
Inter Parties Review, Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 57 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Updated Exhibit List (Feb. 11, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (IPR No. 2018-00256, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 37 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Updated Exhibit List (Jan. 30, 2019), 15 pages. (IPR No. 2018-00256). |
Inter Parties Review, Ptab Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and 2018-00256 (Jan. 11, 2019), 27 pages. (IPR Nos. '255 and '256 Exhibit 2204). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (Mizuno), Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 1127). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (Pilar), Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 13 pages. (IPR Nos. '255 and '256 Exhibit 1128). |
Inter Parties Review, Quanergy M8 Lidar Sensor Datasheet, 2 pages. (IPR Nos. '255 and '256 Exhibit 2071). |
Inter Parties Review, Quanergy Systems Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 24 pages. (IPR Nos. '255 and '256 Exhibit 1126). |
Inter Parties Review, Quanergy's Objected-to Demonstrative Slides of Patent Owner (2019), 16 pages. (IPR Nos. '255 and '256 Exhibit 1164). |
Inter Parties Review, Redlined Supplemental Declaration of Dr. James F. Brennan III (2018), 171 pages. (IPR Nos. '255 and '256 Exhibit 1062). |
Inter Parties Review, Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (2018) 76 pages. (IPR No. 2018-00256). |
Inter Parties Review, Transcript of Sep. 13, 2018 Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Sep. 13, 2018), 21 pages. (IPR Nos. '255 and '256 Exhibit 2116). |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 1.2 (Aug. 2001), 122 pages. |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 2.0 (2007), 104 pages. |
Internet Archive Web Page: Laser Components (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Internet Archive Web Page: Laser Components: High Powered Pulsed Laser Diodes 905D3J08-Series (2004), 6 pages. (IPR Nos. '255 and '256 Exhibit 1024). |
Internet Archive Webpage: Mercotac 3-Conductor Rotary Electrical Connectors (Mar. 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 1031). |
IPO Education Foundation, Inventor of the Year Award, https://www.ipoef.org/inventor-of-the-year/ (2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2207). |
irdajp.org, IrDA Infrared Data Association, http://www.irdajp.org/irdajp.info (2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1134). |
Janocha, Actuators: Basics and Applications, Springer (2004), pp. 85-153. (IPR Nos. '255 and '256 Exhibit 1080). |
Japanese Patent Office, Petitioner's Translation of Mizuno Japanese Patent Publication No. H3-6407 (1991), 15 pages. (IPR Nos. '255 and '256 Exhibit 1058). |
Jelalian, “Laser Radar Systems” (1992), 1 page. |
Juberts, et al., “Status report on next generation LADAR for driving unmanned ground vehicles” Mobile Robots XVII, edited by Douglas W. Gage, Proceedings of SPIE, vol. 5609, 2004, pp. 1-12. |
Kaempchen, Feature-Level Fusion of Laser Scanner and Video Data for Advanced Drive Assistance Systems (Ph.D. Dissertation, Ulm University) (2007), 248 pages. (IPR Nos. '255 and '256 Exhibit 2198). |
Kaufmann, Choosing Your Detector, OE Magazine (Mar. 2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2150). |
Kaufmann, Light Levels and Noise—Guide Detector Choices, Photonics Spectra 149 (Jul. 2000), 4 pages. (IPR Nos. '255 and '256 Exhibit 2151). |
Kawata, “Development of ultra-small lightweight optical range sensor system”, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, Aug. 2-6, 2005, pp. 58-63 (IPR Nos. '255 and '256 Exhibit 1033). |
Kilpela, Excerpt of Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications, at Fig. 24 (Academic dissertation, University of Oulu (Brennan Deposition Exhibit 15) (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2185). |
Kilpela, Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications (Academic dissertation, University of Oulu) (2004), 98 pages. (IPR Nos. '255 and '256 Exhibit 2152). |
Kilpelä, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Review of Scientific Instruments (Apr. 2001), 13 pages. (IPR Nos. '255 and '256 Exhibit 1005). |
Kluge, Laserscanner for Automotive Applications (May 2001), 5 pages. (IPR Nos. '255 and '256 Exhibit 2196). |
Kohanbash, “LIDAR fundamentals—robots for roboticists” (May 5, 2014), 6 pages. |
Lages, Laserscanner for Obstacle Detection in Advanced Microsystems for Automotive Applications Yearbook (S. Kruger et al. eds.) (2002), pp. 136-140. (IPR Nos. '255 and '256 Exhibit 2200). |
Lamon, “The SmarTer for ELROB 2006—a vehicle for fully autonomous navigation and mapping in outdoor environments” (2005), 14 pages. |
Langheim, et al., Sensing of Car Environment at Low Speed Driving, Carsense (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 2193). |
Laser Components Produkte, Laser Components IG, Inc., 2004, 1 page. |
Laser Components, “High Power Pulsed Laser Diodes 905D3J08-Series”, Laser Components IG, Inc., 2004, 6 pages. |
Laser Components, https:/web.archive.org/web/20041205172904/http:www.lasercomponents.com (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Liu, et al., “Coupling Study of a Rotary Capacitive Power Transfer System” Industrial Technology, 2009. ICIT 2009. IEEE International Conference, IEEE, Piscataway, NJ, USA, Feb. 10, 2009, pp. 1-6. |
Maatta et al., a High-Precision Time-to-Digital Converter for Pulsed Time-of-Flight Laser Radar Applications, 47 IEEE No. 2, 521 (Apr. 1998), pp. 521-536. (IPR Nos. '255 and '256 Exhibit 2161). |
Macadam, Understanding and Modeling the Human Driver, 40 Vehicle System Dynamics, Nos. 1-3 (2003), pp. 101-134. (IPR Nos. '255 and '256 Exhibit 2205). |
Makynen, Position-Sensitive Devices and Sensor System for Optical Tracking and Displacement Sensing Applications (Academic Dissertation, University of Oulu (2000), 121 pages. (IPR Nos. '255 and '256 Exhibit 2153). |
Manandhar, “Auto-Extraction of Urban Features from Vehicle-Borne Laser Data”, Centre for Spatial Information Science, The University of Tokyo, Japan; Symposium on Geospatial Theory, Processing Applications, Ottawa (2002) 6 pages. (IPR Nos. '255 and '256 Exhibit 1017). |
Marino, “A compact 3D imaging laser RADAR system using Geiger-mode APD arrays: system and measurements,” Proceedings of SPIE—The international society for optical engineering (Aug. 2003), 16 pages. |
Marino, “Jigsaw: A Foliage-Penetrating 3D Imaging Laser Radar System” (2005), pp. 23-36. |
McManamon, “Optical Phased Array Technology,” Proceedings of the IEEE, vol. 84, No. 2 (Feb. 1996), pp. 268-298. |
Melle, et al., “How to select avalanche photodiodes,” Laser Focus World (Oct. 1, 1995), 9 pages. (IPR Nos. '255 and '256 Exhibit 1020). |
Mercotac Model 305, Electrical Slip Rings, https://web.archive.org/web/200602100652519/www.mercotac.com/html/305.htm (Feb. 2006), 3 pages. |
Mercotac, 3-Conductor Rotary Electrical Connectors https://web.archive.org/web/20060317120209/http://www.mercotac.com:80/html/threeconductor.html (Mar. 2006), 1 page. |
Merriam, How to Use Lidar with the raspberry PI, Hackaday, https://hackaday.com/2016/01/22/how-to-use-lidar-with-the-raspberry-pi/ (Jan. 22, 2016), 13 pages. (IPR Nos. '255 and '256 Exhibit 1072). |
Morsy et al., “Multispectral LiDAR Data for Land Cover Classification of Urban Areas,” Sensors 17(5), 958 (2017), 21 pages. |
MTI Instruments Inc., An Introduction to Laser Triangulation Sensors, https://www.azosensors.com/article.aspx?ArticleID=523 (Aug. 28, 2014), 9 pages. (IPR Nos. '255 and '256 Exhibit 2154). |
Nagappan, “Adaptive Cruise Control: Laser Diodes as an Alternative to Millimeter Wave Radars” (Sep. 2005), pp. 1-5. |
National Highway Traffic Safety Administration (NHTSA), DOT, Final Rule Federal Motor Vehicle Safety Standards; Tire Pressure Monitoring Systems Controls and Displays (2005), 222 pages. (IPR Nos. '255 and '256 Exhibit 1141). |
Office of the Federal Register National Archives and Records Administration, “Code of Federal Regulations, 21, Parts 800 to 1299, Revised as of Apr. 1, 2005, Food and Drugs”, Apr. 1, 2005, pp. 1-23. |
Ogurtsov, et al., “High Accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Optics Communications (2006), pp. 266-273. (IPR Nos. '255 and '256 Exhibit 1042). |
Ohnsman, How a 34-Year-Old Audio Equipment Company is Leading the Self-Driving Car Revolution, Forbes (Aug. 8, 2017), 7 pages. (IPR Nos. '255 and '256 Exhibit 2040). |
Ohr, “War raises stakes of next DARPA bot race,” EDN (Aug. 15, 2005), 3 pages. |
Omron, Technical Explanation for Displacement Sensors and Measurement Sensors, CSM_Displacemente_LineWidth_TG_E_2_1 (2018), 8 pages. (IPR Nos. '255 and '256 Exhibit 2149). |
Oshkosh, “Team Terramax: DARPA Grand Challenge 2005” (Oct. 2005), pp. 1-14. |
Ou-Yang, et al., “High-dynamic-range laser range finders based on a novel multimodulated frequency method,” Optical Engineering (Dec. 2006), 6 pages. (IPR Nos. '255 and '256 Exhibit 1043). |
Overton, First Sensor expands supply agreement for APDs used in Velodyne lidar systems, Laser Focus World (Feb. 15, 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2039). |
Ozguner, “Team TerraMax and the Darpa Grand Challenge: a General Overview,” IEEE Intelligent Vehicles Symposium (2004), 6 pages. |
Panasonic, Measurement Sensors: Specular vs Diffuse, Panasonic Blog, https://na.industrial.panasonic.com/blog/measurement-sensorsspecular-vs-diffuse (Dec. 7, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2155). |
PCT International Search Report and Written Opinion, App. No. PCT/US2007/073490, (2008), 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2010/037129, dated Jul. 27, 2010, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015869, dated Apr. 10, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015874, dated May 23, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015877, dated Apr. 13, 2017, 13 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023259, dated May 31, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023261, dated May 26, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023262, dated Jun. 5, 2017, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/035427, dated Aug. 29, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/036865, dated Sep. 26, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/047543, dated Nov. 27, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/023283, dated Jun. 1, 2018, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/025395, dated Jun. 25, 2018, 14 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/031682, dated Sep. 17, 2018, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/050934, dated Nov. 20, 2018, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/051497, dated Nov. 28, 2018, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059062, dated Jan. 16, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059452, dated Jan. 16, 2019, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/016259, dated Apr. 26, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046412, dated Jun 24, 2020, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046419, dated Oct 29, 2019, 14 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046422, dated Dec. 3, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046573, dated Nov. 15, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/051729, dated Nov. 20, 2019, 7 pages. |
PCT Search Report and Written Opinion (Corrected), App. No. PCT/US2020/026925, dated May 12, 2020, 5 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012633, dated Jun. 2, 2020, 13 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012635, dated Jun. 4, 2020, 10 pages. |
Piatek et al., LiDAR: A photonics guide to autonomous vehicle market, Hamamatsu.com, https://hub.hamamatsu.com/us/en/application-note/LiDAR-competingtechnologies-automotive/index.html (Nov. 18, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2136). |
Piatek, Measuring distance with light, Hamamatsu.com, https://hub.hamamatsu.com/us/en/application-note/measuringdistance-with-light/index.html (Apr. 2, 2015), 18 pages. (IPR Nos. '255 and '256 Exhibit 2132). |
Piatek, Presentation entitled ‘LiDAR and Other Techniques—Measuring Distance with Light for Automotive Industry’, authored by Slawomir Piatek, Technical Consultant, Hamamatsu Corp. (Dec. 6, 2017), 66 pages. (IPR Nos. '255 and '256 Exhibit 2131). |
Popper, Guiding Light, The Billion-Dollar Widget Steering the Driverless Car Industry, The Verge (Oct. 18, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2076). |
Qing, “Method of 3D visualization using laser radar on board of mobile robot,” Journal of Jilin University (Information Science Ed.), vol. 22 (Jul. 2004), 4 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Amended Invalidity Contentions Pursuant to Patent Local Rule 3-3,” May 23, 2017, 238 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4,” Mar. 27, 2017, 24 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Amended Complaint, Nov 18, 2016, 6 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Answer to Counterclaim, (Jan. 16, 2017) 9 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Defendant Velodyne's Answer and Counterclaim, Dec. 5, 2016, 20 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Complaint, Case No. 5:16-cv-05251 (Sep. 13, 2016), 21 pages. |
Ramsey et al., Use Scenarios to Plan for Autonomous Vehicle Adoption, Gartner (Jun. 26, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2064). |
Reutebuch, “LiDAR: an Emerging Tool for Multiple Resource Inventory,” Journal of Forestry (Sep. 2005) 7 pages. |
Reymann et al., Improving LiDAR Point Cloud Classification using Intensities and Multiple Echoes, IEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2015), 8 pages. (IPR Nos. '255 and '256 Exhibit 2167). |
Richmond et al., Polarimetric Imaging Laser Radar (PILAR) Program. In Advanced Sensory Payloads for UAV, Meeting Proceedings RTO-MP-SET-092, Paper 19. Neuilly-sur-Seine, France: RTO (May 1, 2005), 35 pages. (IPR Nos. '255 and '256 Exhibit 1129). |
RIEGL LMS-Q120, http://web.archive.org/web/20050113054822/ http:/www.riegl.com/industrial_scanners_/lms_q120_/q120_all_.htm (2005), 4 pages. |
Riegl, “Riegl LMS-Z210” (2003), 8 pages. |
Robots for Roboticists, Lidar Fundamentals, http://robotsforroboticists.com/lidar-fundamentals/ (May 5, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1068). |
Ros-Drivers—Error in packet rate for the VLP-32C #142, GitHub Forum (Jan. 29, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2041). |
Saleh, “Fundamentals of Photonics” vol. 2, Wiley-Interscience Publication, 1991, pp. 342-383, 494-541, and 592-695. (IPR Nos. '255 and '256 Exhibit 1008). |
Search Report and Opinion, EP App. No. 07840406.8, dated Sep. 8, 2009, 6 pages. |
Search Report and Opinion, EP App. No. 11166432.2, dated Jul. 28, 2011, 7 pages. |
Search Report and Opinion, EP App. No. 17745112.7, dated Aug. 27, 2019, 8 pages. |
Search Report and Opinion, EP App. No. 17770748.6, dated Oct. 22, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17770926.8, dated Oct. 29, 2019, 11 pages. |
Search Report and Opinion, EP App. No. 17770928.4, dated Oct. 29, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17807474.6, dated Dec. 9, 2019, 9 pages. |
Sensick, “DME 2000 / DME 3000: Precise non-contact distance determination,” Sensick Catalogue (2006), pp. 450-457. (IPR Nos. '255 and '256 Exhibit 1073). |
Sick DME 2000 Operating Instructions (Excerpt) (Brennan Deposition Exhibit 9) (May 2002), 42 pages. (IPR Nos. '255 and '256 Exhibit 2179). |
Sick Laser Triangulation Sensors Product Information (Brennan Deposition Exhibit 6) (Jun. 25, 2018), 76 pages. (IPR Nos. '255 and '256 Exhibit 2176). |
Sick LMS 200/ LMS 211/ LMS 220 / LMS 221/ LMS 291 Laser Measurement Systems Technical Description (Brennan Deposition Exhibit 4) (Jun. 2003), 40 pages. (IPR Nos. '255 and '256 Exhibit 2174). |
Sick LMS200/211/221/291 Laser Measurement Systems—Technical Description (Brennan Deposition Exhibit 3) (2006), 48 pages. (IPR Nos. '255 and '256 Exhibit 2173). |
Sick Sensick Measuring Distance with Light—Distance Sensors Product Overview (Brennan Deposition Exhibit 10) (2004), 12 pages. (IPR Nos. '255 and '256 Exhibit 2180). |
Sick, Sick ToF sensors at close range, https://web.archive.org/web/20040607070720/ http:/www.sick.de:80/de/products/categories/industrial/distancesensors/dme2000/en.html (Jun 7, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1082). |
Singh, “Cyclone: A Laser Scanner for Mobile Robot Navigation” (Sep. 1991), pp. 1-18. |
Skolnik, “Introduction to radar systems,” Second edition, McGraw-Hill book company (1980), pp. 1-3. |
Skolnik, “Radar Handbook” Second Edition, McGraw-Hill Publishing Company, 1990, pp. 1-1191. |
Song et al., Assessing the Possibility of Land-Cover Classification Using LiDAR Intensity Data, Commission III, PCV02 (2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 2169). |
Spies, “Extended Eyes—Sense and Avoid,” Presented at the 2006 International Aerospace Exhibition, Berlin (May 2006), 22 pages. |
Stone, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility” (May 2004), 198 pages. |
Strang, Drawing of cross-section of I-beam by Jonathan Strang (Brennan Deposition Exhibit 5), (2018) 1 page. (IPR Nos. '255 and '256 Exhibit 2175). |
STRATA-GEE.COM, Velodyne President Calls Strata-gee to Set the Record Straight, https://www.strata-gee.com/velodyne-president-calls-strata-gee-setrecord-straight/ (Jun. 26, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1137). |
Strawa et al., The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques, 20 Journal of Atmospheric and Oceanic Technology 454 (Apr. 2003), pp. 454-465. (IPR Nos. '255 and '256 Exhibit 2090). |
Tarakanov, et al., “Picosecond pulse generation by internal gain switching in laser diodes,” Journal of Applied Physics 95:223 (Mar. 2004), pp. 2223-2229. (IPR Nos. '255 and '256 Exhibit 1044). |
Taranovich, Are processor algorithms key to safe self-driving cars? EDN Asia, https://www.ednasia.com/news/article/are-processor-algorithms-key-tosafe-self-driving-cars (Jul. 7, 2016), 11 pages. (IPR Nos. '255 and '256 Exhibit 2206). |
Taylor, An Introduction to Error Analysis—The Study of Uncertainties in Physical Measurements, Oxford University Press (1982), pp. 81-137. (IPR Nos. '255 and '256 Exhibit 1138). |
The American Heritage Dictionary of the English Language, Houghton Mifflin Company, 3d ed. (1996), pp. 1497, 1570, 1697, 1762, and 1804. (IPR Nos. '255 and '256 Exhibit 1018). |
The American Society of Mechanical Engineers, Welded and Seamless Wrought Steel Pipe, ASME B36.10M-2004 (Oct. 25, 2004), 26 pages. (IPR Nos. '255 and '256 Exhibit 2138). |
The Laser Institute of America, “American National Standard of Safe Use of Lasers” ANSI Z136.1-2000, Revision of ANSI Z136.1-1993, Second Printing 2003, 32 pages. |
Thin Lens Equation, http://hyperphysics.phyastr.gsu.edu/hbase/geoopt/lenseq.html (last visited Dec. 30, 2018) (Brennan Deposition Exhibit 7), 4 pages. (IPR Nos. '255 and '256 Exhibit 2177). |
Thomas, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American national standard for safe use of lasers,” Journal of Laser Applications, Aug. 2001, vol. 13, No. 4, pp. 134-140. |
Thrun, “Probabilistic Terrain Analysis for High-Speed Desert Driving” (Oct. 2005), 7 pages. |
Trepagnier, “Team gray technical paper,” DARPA grand challenge 2005 (Aug. 28, 2005), 14 pages. |
Turk, et al., VITS—A Vision System for Autonomous Land Vehicle Navigation, 10 IEEE No. 3 (May 1988), pp. 342-361. (IPR Nos. '255 and '256 Exhibit 2147). |
U.S. District Court, Claim Construction Order, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Oct. 4, 2017), 33 pages. (IPR Nos. '255 and '256 Exhibit 1027). |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Hesai Photonics Technology Co., Ltd.'s Notice of Prior Art,” Nov. 13, 2019, 35 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Notice of Prior Art,” Nov. 13, 2019, 34 pages. |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/391,383 (U.S. Pat. No. 7,130,672, Pewzner) (Aug. 3, 2005), 8 pages. |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/508,232 (U.S. Pat. No. 7,313,424, Mayevsky) (Apr. 21, 2006), 17 pages. |
Ullrich, et al., “High-performance 3D-imaging laser sensor,” Proceedings of SPIE vol. 3707 (Jun. 1999), pp. 658-664. (IPR Nos. '255 and '256 Exhibit 1014). |
Ultra Puck, VLP-32C Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2093). |
Urmson, “High speed navigation of unrehearsed terrain: red team technology for grand challenge 2004” (Jun. 1, 2004), 47 pages. |
Usgs, EROS CalVal Center of Excellence (Eccoe), https://calval.crusgs.gov/word press/wpcontent/uploads/JACIE_files/JACIE06/Files/312Habib.pdf (Dec. 21, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1071). |
Uwinnipeg, Centripetal Acceleration, Uwinnipeg.ca, http://theory.uwinnipeg.ca/physics/circ/node6.html (1997), 2 pages. (IPR Nos. '255 and '256 Exhibit 2157). |
Velodyne Acoustics, Inc., Motor Specification, Merlin Project, Rev. E1 Initial Engineering Release (Apr. 29, 2009), 1 page. (IPR Nos. '255 and '256 Exhibit 2020). |
Velodyne Acoustics, Inc., Motor Winding Specs., P2.0 , E2 Changed Material (Mar. 10, 2010), 1 page. (IPR Nos. '255 and '256 Exhibit 2022). |
Velodyne Acoustics, Inc., Outline Drawing HDL-64E S3 Envelope Drawing, Rev. A (Apr. 21, 2015), 1 page. (IPR Nos. '255 and '256 Exhibit 2094). |
Velodyne Lidar Products, PowerPoint (Jan. 18, 2017), 9 pages. (IPR Nos. '255 and '256 Exhibit 2031). |
Velodyne Lidar, CAD Drawing of MotorStat-38in, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2063). |
Velodyne Lidar, CAD Drawing of MotorStat3in, HDL-64E(2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2021). |
Velodyne Lidar, CAD Drawing of Rotor, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2026). |
Velodyne Lidar, CAD Drawing of RotorAI, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2027). |
Velodyne Lidar, Envelope Hi Res VLP-16 Drawings, Rev. A (Jun. 30, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2061). |
Velodyne Lidar, Excerpts of VLP-32C User Manual, 63-9325 Rev. B (2018), 26 pages. (IPR Nos. '255 and '256 Exhibit 2034). |
Velodyne Lidar, First Sensor Annual Report (2016), pp. 1-143. (IPR Nos. '255 and '256 Exhibit 2038). |
Velodyne Lidar, HDL-32E Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2042). |
Velodyne Lidar, HDL-32E Envelope Drawing (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2043). |
Velodyne Lidar, HDL-32E Supported Sensors, Poly Synch Docs 2.3.2, http://docs.polysync.io/sensors/velodyne-hdl-32e/ (2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2055). |
Velodyne Lidar, HDL-32E User's Manual and Programing Guide (Aug. 2016), 29 pages. (IPR Nos. '255 and '256 Exhibit 2044). |
Velodyne Lidar, HDL-64E Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2069). |
Velodyne Lidar, HDL-64E S2 and S2.1 User's Manual and Programming Guide (Nov. 2012), 43 pages. (IPR Nos. '255 and '256 Exhibit 2050). |
Velodyne Lidar, HDL-64E S2 Datasheet (Mar. 2010), 2 pages. (IPR Nos. '255 and '256 Exhibit 2047). |
Velodyne Lidar, HDL-64E S3 Data Sheet (2016), 2 pages. (IPR Nos. '255 and '256 Exhibit 2048). |
Velodyne Lidar, HDL-64E S3 User's Manual and Programming Guide (May 2013), 54 pages (IPR Nos. '255 and '256 Exhibit 2051). |
Velodyne Lidar, HDL-64E User's Manual (Mar. 2008), 21 pages. (IPR Nos. '255 and '256 Exhibit 2052). |
Velodyne Lidar, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), Complaint, Case No. 5:19-cv-04742 (Aug. 13, 2019), 13 pages. |
Velodyne Lidar, Inc. v. Sunteng Innovation Technology Co., Ltd. (“Robosense”) (N.D. Cal.), Complaint, Case No. 5:19-cv-04746 (Aug. 13, 2019), 13 pages. |
Velodyne Lidar, Inc., Production Worksheet Detector, Item #24-AD5009 in Production, AD500-9 NIR Photodiode (Jan. 18, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2024). |
Velodyne Lidar, Inc., Production Worksheet, Item #30-AD230CER2 in Production, APD, 230UM, Ceramic Submount (Jan. 17, 2018), 1 pages. (IPR Nos. '255 and '256 Exhibit 2023). |
Velodyne LiDAR, It Began With a Race . . . 16 Years of Velodyne LiDAR, Velodyne LiDAR Blog, available at http://velodynelidar.com/blog/it-began-with-a-race/ (2018), 8 pages. (IPR Nos. '255 and '256 Exhibit 2070). |
Velodyne LiDAR, Product Guide (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2058). |
Velodyne LiDAR, Puck, Real-time 3D LiDAR Sensor, VLP-16 Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2060). |
Velodyne Lidar, Ultra Puck™ VLP-32 Data Sheet (2014), 2 pages. (IPR Nos. '255 and '256 Exhibit 2032). |
Velodyne LiDAR, Velodyne Donates LiDAR and Robotic Artifacts to Smithsonian, Point of Engineering, Point of Beginning (May 23, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2078). |
Velodyne Lidar, VLP-16 User's Manual and Programming Guide (Mar. 2016), 49 pages. (IPR Nos. '255 and '256 Exhibit 2062). |
Velodyne Lidar, VLP-32C User Manual, 63-9325 Rev. B. (Feb. 2, 2018), 136 pages. (IPR Nos. '255 and '256 Exhibit 2114). |
Velodyne Lidar, Webserver User Guide VLP-16 & HDL-32E (63-6266 Rev A) (Nov. 2015), 32 pages. (IPR Nos. '255 and '256 Exhibit 2013). |
Velodyne Lidar, White Paper, Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications (Oct. 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2059). |
Velodyne, Velodyne—High Definition Lidar—Overview https://web.archive.org/web/20071107104255/http://www.velodyne.com:80/lidar/products/overview.aspx (Nov. 7, 2007), 1 page. (IPR Nos. '255 and '256 Exhibit 1091). |
Velodyne, Velodyne HDL Applications, https://web.archive.org/web/20080716041931/http://www.velodyne.com:80/lidar/technology/applications.aspx (Jul. 16, 2008), 1 page. (IPR Nos. '255 and '256 Exhibit 1106). |
Velodyne, Velodyne HDL-64E user manual, https://web.archive.org/web/20081117092628/http://www.velodyne.com/lidar/products/manual/HDL-64E%20Manual.pdf (Nov. 17, 2008), 23 pages. (IPR Nos. '255 and '256 Exhibit 1090). |
Velodynelidar, Data to Improve the Cost, Convenience and Safety of Motor Vehicles, https://velodynelidar.com/industry.html (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1125). |
Weber, Where to? A History of Autonomous Vehicles, Computer History Museum, https://support.garmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (May 8, 2014), 23 pages. (IPR Nos. '255 and '256 Exhibit 2146). |
Westinghouse, “AN/TPS-43 E Tactical Radar System” (1999), pp. 1-14. |
Widmann, “Development of Collision Avoidance Systems at Delphi Automotive Systems” (1998), pp. 353-358. |
Wikipedia, “Laser” (Nov. 10, 2017), 25 pages. (IPR Nos. '255 and '256 Exhibit 1022). |
Willhoeft et al., “Quasi-3D Scanning with Laserscanners,” IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 1077). |
Williams, Bias Voltage and Current Sense Circuits for Avalanche Photodiodes—Feeding and Reading the APD, Linear Technology AN92-1 (Nov. 2012), 32 pages. (IPR Nos. '255 and '256 Exhibit 2125). |
Williams, Driverless cars yield to reality: It's a long road ahead, PC World (Jul. 8, 2013), 6 pages. (IPR Nos. '255 and '256 Exhibit 2073). |
Wulf et al., “Fast 3D Scanning Methods for Laser Measurement Systems, CSCS-14, 14th Int'l Conference on Control Systems and Computer Science” (Jul. 2003), pp. 312-317. (IPR Nos. '255 and '256 Exhibit 1078). |
Wulf, “2D Mapping of Cluttered Indoor Environments by Means of 3D Perception,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation (Apr. 2004), pp. 4204-4209. |
Yang, et al., “Performance of a large-area avalanche photodiode at low temperature for scintillation detection,” Nuclear Instruments and Methods in Physics Research (2003), pp. 388-393 (IPR Nos. '255 and '256 Exhibit 1034). |
Yu et al., A New 3D Map Reconstruction Based Mobile Robot Navigation, IEEE (2006), 4 pages. (IPR Nos. '255 and '256 Exhibit 2189). |
Zappa, et al, SPADA: Single-Photon Avalanche Diode Arrays, IEEE Photonics Technology Letters, vol. 17, No. 3 (Mar. 2005), 9 pages. (IPR Nos. '255 and '256 Exhibit 1135). |
Zhao, “A vehicle-borne urban 3-D acquisition system using single-row laser range scanners,” IEEE transactions on systems, man, and cybernetics, vol. 33, No. 4 (Aug. 2003), pp. 658-666. |
Zhao, “Reconstructing Textured CAD Model of Urban Environment Using Vehicle-Borne Laser Range Scanners and Line Cameras,” Lecture Notes in Computer Science, vol. 2095 (2001), pp. 284-297. |
Zheng, “The Technique of Land 3D Laser Scanning and Imaging Surveying,” Railway Aerial Survey, vol. 2 (2003), 3 pages. |
U.S. Appl. No. 15/420,384, filed Jan. 31, 2017, Hall et al. |
U.S. Appl. No. 16/030,780, filed Jul. 9, 2018, Hall et al. |
U.S. Appl. No. 17/355,051, filed Jun. 22, 2021, Hall et al. |
U.S. Appl. No. 17/403,776, filed Aug. 16, 2021, Hall et al. |
U.S. Appl. No. 17/403,780, filed Aug. 16, 2021, Hall et al. |
U.S. Appl. No. 17/357,794, filed Jun. 24, 2021, Hall et al. |
U.S. Appl. No. 15/974,527, filed May 8, 2018, Hall et al. |
U.S. Appl. No. 17/234,672, filed Apr. 19, 2021, Hall et al. |
U.S. Appl. No. 17/392,062, filed Aug. 2, 2021, Pinto et al. |
Japanese Patent Office, JP Application No. 2018-563105, Notice of Reasons for Rejection dated Apr. 6, 2021, 6 pages. |
European Patent Office, Communication, Application No. 18886541.4 dated Jul. 16, 2021. |
European Patent Office, Examination Report, Appl. No. 17745112.7 (dated Aug. 30, 2021), 5 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Jul. 16, 2021), 4 pages. |
Japanese Patent Office, Office Action, App. No. 2019-540039 (dated Dec. 8, 2020), 5 pages. |
Japanese Patent Office, Office Action, App. No. 2018-540039 (dated Aug. 17, 2021), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,024,510 (dated Jun. 23, 2021), 5 pages. |
European Patent Office, Examination Report, Appl. No. 17807474.6 (dated Nov. 24, 2021), 6 pages. |
Japanese Patent Office, Office Action, App. No. 2018-563105 (dated Apr. 6, 2021), 6 pages. |
Extended Search Report, EP App. No. 18886541.4, dated Jun. 29, 2021, 9 pages. |
Supplementary European Search Report EP App. No. 17807474, dated Dec. 9, 2019, 9 pages. |
Extended European Search Report, EP Appl. No. 19863803.3, dated Mar. 18, 2022, 12 pages. |
Russian Search Report for Appl. No. 2021107542 dated Aug. 13, 2019, 4 pages. |
Russian Patent Office, Office Action, App. No. 2021107542 (dated Mar. 23, 2022), 14 pages. |
Extended European Search Report of Appl. No. 19875552.2 dated Aug. 23, 2021, 10 pages. |
Russian Search Report for Appl. No. 2021110675 dated Feb. 1, 2022, 2 pages. |
Japanese Patent Office, JP Application No. 2021-056430, Notice of Reasons for Rejection, dated May 31, 2022, 4 pages. |
English Translation of Notice of Reasons for Rejection, JP Application No. 2021-056430, dated May 31, 2022 (5 pages). |
European Patent Office, Communication for EP 18 774 795.1-1206, dated May 30, 2022 (8 pages). |
Japanese Patent Office, JP Application No. 2019-553816, Notice of Reasons for Rejection, dated Dec. 14, 2021 (4 pages). |
English Translation, JP Application No. 2019-553816, Notice of Reasons for Rejection, dated Dec. 14, 2021 (1 page). |
Japanese Patent Office, JP Application No. 2018-563105, Notice of Reasons for Rejection dated Feb. 1, 2022, 9 pages. |
Indian Patent Office, Office Action, App. No. 201927050170 (dated Feb. 2, 2022), 6 pages. |
Chinese Patent Office, CN Application No. 201880045455.1, Office Action dated Feb. 22, 2022, 8 pages. |
Chinese Patent Office, CN Application No. 201880045455.1, Notification to Grant Patent dated Jul. 27, 2022, 2 pages. |
Japanese Patent Office, JP Application No. 2019-561836, Office Action dated Jul. 12, 2022, 5 pages. |
Chinese Patent Office Action, CN Application No. 2017800090974, Office Action dated Nov. 11, 2022, 7 pages. |
Chinese Patent Office, CN Application No. 201780030009.9, Office Action dated Sep. 28, 2022, 24 pages. |
Japanese Patent Office, Notice of Reasons for Rejections, App. No. 2019-561836 (dated Oct. 4, 2022), 13 pages. |
US Non-Final Office Action dated Mar. 20, 2019, from U.S. Appl. No. 15/974,527. |
US Final Office Action dated Dec. 3, 2020, from U.S. Appl. No. 16/030,780. |
US Non-Final Office Action dated Mar. 4, 2020, from U.S. Appl. No. 16/030,780. |
US Non-Final Office Action dated Jun. 30, 2017, from U.S. Appl. No. 15/420,384. |
US Non-Final Office Action dated Feb. 16, 2023 , from U.S. Appl. No. 17/355,051. |
Number | Date | Country | |
---|---|---|---|
20200166613 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62503237 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15974527 | May 2018 | US |
Child | 16748498 | US |