This disclosure generally relates to lidar systems.
Light detection and ranging (lidar) is a technology that can be used to measure distances to remote targets. Typically, a lidar system includes a light source and an optical receiver. The light source can include, for example, a laser which emits light having a particular operating wavelength. The operating wavelength of a lidar system may lie, for example, in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. The light source emits light toward a target which scatters the light, and some of the scattered light is received back at the receiver. The system determines the distance to the target based on one or more characteristics associated with the received light. For example, the lidar system may determine the distance to the target based on the time of flight for a pulse of light emitted by the light source to travel to the target and back to the lidar system.
Once the output beam 125 reaches the downrange target 130, the target may scatter or reflect at least a portion of light from the output beam 125, and some of the scattered or reflected light may return toward the lidar system 100. In the example of
The output beam 125 may include or may be referred to as an optical signal, output optical signal, emitted optical signal, output light, emitted pulse of light, laser beam, light beam, optical beam, emitted beam, transmitted beam of light, emitted light, or beam. The input beam 135 may include or may be referred to as a received optical signal, received pulse of light, input pulse of light, input optical signal, return beam, received beam, received beam of light, return light, received light, input light, scattered light, or reflected light. As used herein, scattered light may refer to light that is scattered or reflected by a target 130. As an example, an input beam 135 may include: light from the output beam 125 that is scattered by target 130; light from the output beam 125 that is reflected by target 130; or a combination of scattered and reflected light from target 130.
A receiver 140 may receive or detect photons from input beam 135 and produce one or more representative electrical signals. For example, the receiver 140 may produce an output electrical signal 145 that is representative of the input beam 135, and the electrical signal 145 may be sent to controller 150. A receiver 140 or controller 150 may include a processor, a computer system, an ASIC, an FPGA, or other suitable computing circuitry. A controller 150 may be configured to analyze one or more characteristics of the electrical signal 145 from the receiver 140 to determine one or more characteristics of the target 130, such as its distance downrange from the lidar system 100. This may be done, for example, by analyzing a time of flight or a frequency or phase of a transmitted beam of light 125 or a received beam of light 135. If lidar system 100 measures a time of flight of T (e.g., T may represent a round-trip time of flight for an emitted pulse of light to travel from the lidar system 100 to the target 130 and back to the lidar system 100), then the distance D from the target 130 to the lidar system 100 may be expressed as D=c·T/2, where c is the speed of light (approximately 3.0×108 m/s). As an example, if a time of flight is measured to be T=300 ns, then the distance from the target 130 to the lidar system 100 may be determined to be approximately D=45.0 m. As another example, if a time of flight is measured to be T=1.33 μs, then the distance from the target 130 to the lidar system 100 may be determined to be approximately D=199.5 m. A distance D from lidar system 100 to a target 130 may be referred to as a distance, depth, or range of target 130. As used herein, the speed of light c refers to the speed of light in any suitable medium, such as for example in air, water, or vacuum. As an example, the speed of light in vacuum is approximately 2.9979×108 m/s, and the speed of light in air (which has a refractive index of approximately 1.0003) is approximately 2.9970×108 m/s.
A light source 110 may include a pulsed or CW laser. As an example, light source 110 may be a pulsed laser configured to produce or emit pulses of light with a pulse duration or pulse width of approximately 10 picoseconds (ps) to 100 nanoseconds (ns). The pulses may have a pulse duration of approximately 100 ps, 200 ps, 400 ps, 1 ns, 2 ns, 5 ns, 10 ns, 20 ns, 50 ns, 100 ns, or any other suitable pulse duration. As another example, light source 110 may be a pulsed laser that produces pulses of light with a pulse duration of approximately 1-5 ns. As another example, light source 110 may be a pulsed laser that produces pulses of light at a pulse repetition frequency of approximately 100 kHz to 10 MHz or a pulse period (e.g., a time between consecutive pulses of light) of approximately 100 ns to 10 μs. The pulse period τ may be related to the pulse repetition frequency (PRF) by the expression τ=1/PRF. For example, a pulse period of 1.33 μs corresponds to a PRF of approximately 752 kHz. Light source 110 may have a substantially constant pulse repetition frequency, or light source 110 may have a variable or adjustable pulse repetition frequency. As an example, light source 110 may be a pulsed laser that produces pulses at a substantially constant pulse repetition frequency of approximately 640 kHz (e.g., 640,000 pulses per second), corresponding to a pulse period of approximately 1.56 μs. As another example, light source 110 may have a pulse repetition frequency (which may be referred to as a repetition rate) that can be varied from approximately 200 kHz to 3 MHz. As used herein, a pulse of light may be referred to as an optical pulse, a light pulse, or a pulse.
A light source 110 may include a pulsed or CW laser that produces a free-space output beam 125 having any suitable average optical power. As an example, output beam 125 may have an average power of approximately 1 milliwatt (mW), 10 mW, 100 mW, 1 watt (W), 10 W, or any other suitable average power. An output beam 125 may include optical pulses with any suitable pulse energy or peak optical power. As an example, output beam 125 may include pulses with a pulse energy of approximately 0.01 μJ, 0.1 μJ, 0.5 μJ, 1 μJ, 2 μJ, 10 μJ, or 100 μJ, or any other suitable pulse energy. As another example, output beam 125 may include pulses with a peak power of approximately 10 W, 100 W, 1 kW, 5 kW, 10 kW, or any other suitable peak power. The peak power (Ppeak) of a pulse of light can be related to the pulse energy (E) by the expression E=Ppeak·Δt, where Δt is the duration of the pulse, and the duration of a pulse may be defined as the full width at half maximum duration of the pulse. For example, an optical pulse with a duration of 1 ns and a pulse energy of 1 μJ has a peak power of approximately 1 kW. The average power (Pav) of an output beam 125 can be related to the pulse repetition frequency (PRF) and pulse energy by the expression Pav=PRF·E. For example, if the pulse repetition frequency is 500 kHz, then the average power of an output beam 125 with 1-μJ pulses is approximately 0.5 W.
A light source 110 may include a laser diode, such as for example, a Fabry-Perot laser diode, a quantum well laser, a distributed Bragg reflector (DBR) laser, a distributed feedback (DFB) laser, a vertical-cavity surface-emitting laser (VCSEL), a quantum dot laser diode, a grating-coupled surface-emitting laser (GCSEL), a slab-coupled optical waveguide laser (SCOWL), a single-transverse-mode laser diode, a multi-mode broad area laser diode, a laser-diode bar, a laser-diode stack, or a tapered-stripe laser diode. As an example, light source 110 may include an aluminum-gallium-arsenide (AlGaAs) laser diode, an indium-gallium-arsenide (InGaAs) laser diode, an indium-gallium-arsenide-phosphide (InGaAsP) laser diode, or a laser diode that includes any suitable combination of aluminum (Al), indium (In), gallium (Ga), arsenic (As), phosphorous (P), or any other suitable material. A light source 110 may include a pulsed or CW laser diode with a peak emission wavelength between 1200 nm and 1600 nm. As an example, light source 110 may include a current-modulated InGaAsP DFB laser diode that produces optical pulses at a wavelength of approximately 1550 nm. As another example, light source 110 may include a laser diode that emits light at a wavelength between 1500 nm and 1510 nm.
A light source 110 may include a pulsed or CW laser diode followed by one or more optical-amplification stages. For example, a seed laser diode may produce a seed optical signal, and an optical amplifier may amplify the seed optical signal to produce an amplified optical signal that is emitted by the light source 110. An optical amplifier may include a fiber-optic amplifier or a semiconductor optical amplifier (SOA). For example, a pulsed laser diode may produce relatively low-power optical seed pulses which are amplified by a fiber-optic amplifier. As another example, a light source 110 may include a fiber-laser module that includes a current-modulated laser diode with an operating wavelength of approximately 1550 nm followed by a single-stage or a multi-stage erbium-doped fiber amplifier (EDFA) or erbium-ytterbium-doped fiber amplifier (EYDFA) that amplifies the seed pulses from the laser diode. As another example, light source 110 may include a continuous-wave (CW) or quasi-CW laser diode followed by an external optical modulator (e.g., an electro-optic amplitude modulator). The optical modulator may modulate the CW light from the laser diode to produce optical pulses which are sent to a fiber-optic amplifier or SOA. As another example, light source 110 may include a pulsed or CW seed laser diode followed by a semiconductor optical amplifier (SOA). The SOA may include an active optical waveguide configured to receive light from the seed laser diode and amplify the light as it propagates through the waveguide. The optical gain of the SOA may be provided by pulsed or direct-current (DC) electrical current supplied to the SOA. The SOA may be integrated on the same chip as the seed laser diode, or the SOA may be a separate device with an anti-reflection coating on its input facet or output facet. As another example, light source 110 may include a seed laser diode followed by a SOA, which in turn is followed by a fiber-optic amplifier. For example, the seed laser diode may produce relatively low-power seed pulses which are amplified by the SOA, and the fiber-optic amplifier may further amplify the optical pulses.
A light source 110 may include a direct-emitter laser diode. A direct-emitter laser diode (which may be referred to as a direct emitter) may include a laser diode which produces light that is not subsequently amplified by an optical amplifier. A light source 110 that includes a direct-emitter laser diode may not include an optical amplifier, and the output light produced by a direct emitter may not be amplified after it is emitted by the laser diode. The light produced by a direct-emitter laser diode (e.g., optical pulses, CW light, or frequency-modulated light) may be emitted directly as a free-space output beam 125 without being amplified. A direct-emitter laser diode may be driven by an electrical power source that supplies current pulses to the laser diode, and each current pulse may result in the emission of an output optical pulse.
A light source 110 may include a diode-pumped solid-state (DPSS) laser. A DPSS laser (which may be referred to as a solid-state laser) may refer to a laser that includes a solid-state, glass, ceramic, or crystal-based gain medium that is pumped by one or more pump laser diodes. The gain medium may include a host material that is doped with rare-earth ions (e.g., neodymium, erbium, ytterbium, or praseodymium). For example, a gain medium may include a yttrium aluminum garnet (YAG) crystal that is doped with neodymium (Nd) ions, and the gain medium may be referred to as a Nd:YAG crystal. A DPSS laser with a Nd:YAG gain medium may produce light at a wavelength between approximately 1300 nm and approximately 1400 nm, and the Nd:YAG gain medium may be pumped by one or more pump laser diodes with an operating wavelength between approximately 730 nm and approximately 900 nm. A DPSS laser may be a passively Q-switched laser that includes a saturable absorber (e.g., a vanadium-doped crystal that acts as a saturable absorber). Alternatively, a DPSS laser may be an actively Q-switched laser that includes an active Q-switch (e.g., an acousto-optic modulator or an electro-optic modulator). A passively or actively Q-switched DPSS laser may produce output optical pulses that form an output beam 125 of a lidar system 100.
An output beam of light 125 emitted by light source 110 may be unpolarized or randomly polarized, may have no specific or fixed polarization (e.g., the polarization may vary with time), or may have a particular polarization (e.g., output beam 125 may be linearly polarized, elliptically polarized, or circularly polarized). As an example, light source 110 may produce light with no specific polarization or may produce light that is linearly polarized.
A lidar system 100 may include one or more optical components configured to reflect, focus, filter, shape, modify, steer, or direct light within the lidar system 100 or light produced or received by the lidar system 100 (e.g., output beam 125 or input beam 135). As an example, lidar system 100 may include one or more lenses, mirrors, filters (e.g., band-pass or interference filters), beam splitters, optical splitters, polarizers, polarizing beam splitters, wave plates (e.g., half-wave or quarter-wave plates), diffractive elements, holographic elements, isolators, couplers, detectors, beam combiners, or collimators. The optical components in a lidar system 100 may be free-space optical components, fiber-coupled optical components, or a combination of free-space and fiber-coupled optical components.
A lidar system 100 may include a telescope, one or more lenses, or one or more mirrors configured to expand, focus, collimate, or steer the output beam 125 or the input beam 135 to a desired beam diameter or divergence. As an example, the lidar system 100 may include one or more lenses to focus the input beam 135 onto a photodetector of receiver 140. As another example, the lidar system 100 may include one or more flat mirrors or curved mirrors (e.g., concave, convex, or parabolic mirrors) to steer or focus the output beam 125 or the input beam 135. For example, the lidar system 100 may include an off-axis parabolic mirror to focus the input beam 135 onto a photodetector of receiver 140. As illustrated in
The mirror 115 may provide for output beam 125 and input beam 135 to be substantially coaxial so that the two beams travel along approximately the same optical path (albeit in opposite directions). The input and output beams being substantially coaxial may refer to the beams being at least partially overlapped or sharing a common propagation axis so that input beam 135 and output beam 125 travel along substantially the same optical path (albeit in opposite directions). As an example, output beam 125 and input beam 135 may be parallel to each other to within less than 10 mrad, 5 mrad, 2 mrad, 1 mrad, 0.5 mrad, or 0.1 mrad. As output beam 125 is scanned across a field of regard, the input beam 135 may follow along with the output beam 125 so that the coaxial relationship between the two beams is maintained.
A lidar system 100 may include a scanner 120 configured to scan an output beam 125 across a field of regard of the lidar system 100. As an example, scanner 120 may include one or more scan mirrors configured to pivot, rotate, oscillate, or move in an angular manner about one or more rotation axes. The output beam 125 may be reflected by a scan mirror, and as the scan mirror pivots or rotates, the reflected output beam 125 may be scanned in a corresponding angular manner. As an example, a scan mirror may be configured to periodically pivot back and forth over a 30-degree range, which results in the output beam 125 scanning back and forth across a 60-degree range (e.g., a Θ-degree rotation by a scan mirror results in a 2Θ-degree angular scan of output beam 125).
A scan mirror (which may be referred to as a scanning mirror) may be attached to or mechanically driven by a scanner actuator or mechanism which pivots or rotates the mirror over a particular angular range (e.g., over a 5° angular range, 30° angular range, 60° angular range, 120° angular range, 360° angular range, or any other suitable angular range). A scanner actuator or mechanism configured to pivot or rotate a mirror may include a galvanometer scanner, a resonant scanner, a piezoelectric actuator, a voice coil motor, an electric motor (e.g., a DC motor, a brushless DC motor, a synchronous electric motor, or a stepper motor), a microelectromechanical systems (MEMS) device, or any other suitable actuator or mechanism. As an example, a scanner 120 may include a scan mirror attached to a galvanometer scanner configured to pivot back and forth over a 1° to 30° angular range. As another example, a scanner 120 may include a scan mirror that is attached to or is part of a MEMS device configured to scan over a 1° to 30° angular range. As another example, a scanner 120 may include a polygon mirror configured to rotate continuously in the same direction (e.g., rather than pivoting back and forth, the polygon mirror continuously rotates 360 degrees in a clockwise or counterclockwise direction). The polygon mirror may be coupled or attached to a synchronous motor configured to rotate the polygon mirror at a substantially fixed rotational frequency (e.g., a rotational frequency of approximately 1 Hz, 10 Hz, 50 Hz, 100 Hz, 500 Hz, or 1,000 Hz).
A scanner 120 may be configured to scan an output beam 125 (which may include at least a portion of the light emitted by light source 110) across a field of regard of a lidar system 100. A field of regard (FOR) of a lidar system 100 may refer to an area, region, or angular range over which the lidar system 100 may be configured to scan or capture distance information. As an example, a lidar system 100 with an output beam 125 with a 30-degree scanning range may be referred to as having a 30-degree angular field of regard. As another example, a lidar system 100 with a scan mirror that rotates over a 30-degree range may produce an output beam 125 that scans across a 60-degree range (e.g., a 60-degree FOR). A lidar system 100 may have a FOR of approximately 10°, 20°, 40°, 60°, 120°, 360°, or any other suitable FOR.
A scanner 120 may be configured to scan an output beam 125 horizontally and vertically, and lidar system 100 may have a particular FOR along the horizontal direction and another particular FOR along the vertical direction. As an example, lidar system 100 may have a horizontal FOR of 10° to 120° and a vertical FOR of 2° to 45°. A scanner 120 may include a first scan mirror and a second scan mirror, where the first scan mirror directs the output beam 125 toward the second scan mirror, and the second scan mirror directs the output beam 125 downrange from the lidar system 100. As an example, the first scan mirror may scan the output beam 125 along a first direction, and the second scan mirror may scan the output beam 125 along a second direction that is different from the first direction (e.g., the first and second directions may be approximately orthogonal to one another, or the second direction may be oriented at any suitable non-zero angle with respect to the first direction). As another example, the first scan mirror may scan the output beam 125 along a substantially horizontal direction, and the second scan mirror may scan the output beam 125 along a substantially vertical direction (or vice versa). As another example, the first and second scan mirrors may each be driven by galvanometer scanners. As another example, the first or second scan mirror may include a polygon mirror driven by an electric motor. A scanner 120 may be referred to as a beam scanner, optical scanner, or laser scanner.
One or more scan mirrors may be communicatively coupled to a controller 150 which may control the scan mirror(s) so as to guide the output beam 125 in a desired direction downrange or along a desired scan pattern. A scan pattern may refer to a pattern or path along which the output beam 125 is directed. As an example, scanner 120 may include two scan mirrors configured to scan the output beam 125 across a 60° horizontal FOR and a 20° vertical FOR. The two scan mirrors may be controlled to follow a scan path that substantially covers the 60°×20° FOR. As an example, the scan path may result in a point cloud with pixels that substantially cover the 60°×20° FOR. The pixels may be approximately evenly distributed across the 60°×20° FOR. Alternatively, the pixels may have a particular nonuniform distribution (e.g., the pixels may be distributed across all or a portion of the 60°×20° FOR, and the pixels may have a higher density in one or more particular regions of the 60°×20° FOR).
A lidar system 100 may include a scanner 120 with a solid-state scanning device. A solid-state scanning device may refer to a scanner 120 that scans an output beam 125 without the use of moving parts (e.g., without the use of a mechanical scanner, such as a mirror that rotates or pivots). For example, a solid-state scanner 120 may include one or more of the following: an optical phased array scanning device; a liquid-crystal scanning device; or a liquid lens scanning device. A solid-state scanner 120 may be an electrically addressable device that scans an output beam 125 along one axis (e.g., horizontally) or along two axes (e.g., horizontally and vertically). A scanner 120 may include a solid-state scanner and a mechanical scanner. For example, a scanner 120 may include an optical phased array scanner configured to scan an output beam 125 in one direction and a galvanometer scanner that scans the output beam 125 in an approximately orthogonal direction. The optical phased array scanner may scan the output beam relatively rapidly in a horizontal direction across the field of regard (e.g., at a scan rate of 50 to 1,000 scan lines per second), and the galvanometer may pivot a mirror at a rate of 1-30 Hz to scan the output beam 125 vertically.
A lidar system 100 may include a light source 110 configured to emit pulses of light and a scanner 120 configured to scan at least a portion of the emitted pulses of light across a field of regard of the lidar system 100. One or more of the emitted pulses of light may be scattered by a target 130 located downrange from the lidar system 100, and a receiver 140 may detect at least a portion of the pulses of light scattered by the target 130. A receiver 140 may include or may be referred to as a photoreceiver, optical receiver, optical sensor, detector, photodetector, or optical detector. A lidar system 100 may include a receiver 140 that receives or detects at least a portion of input beam 135 and produces an electrical signal that corresponds to input beam 135. As an example, if input beam 135 includes an optical pulse, then receiver 140 may produce an electrical current or voltage pulse that corresponds to the optical pulse detected by receiver 140. As another example, receiver 140 may include one or more avalanche photodiodes (APDs) or one or more single-photon avalanche diodes (SPADs). As another example, receiver 140 may include one or more PN photodiodes (e.g., a photodiode structure formed by a p-type semiconductor and a n-type semiconductor, where the PN acronym refers to the structure having p-doped and n-doped regions) or one or more PIN photodiodes (e.g., a photodiode structure formed by an undoped intrinsic semiconductor region located between p-type and n-type regions, where the PIN acronym refers to the structure having p-doped, intrinsic, and n-doped regions). An APD, SPAD, PN photodiode, or PIN photodiode may each be referred to as a detector, photodetector, or photodiode. A detector may receive an input beam 135 that includes an optical pulse, and the detector may produce a pulse of electrical current that corresponds to the received optical pulse. A detector may have an active region or an avalanche-multiplication region that includes silicon, germanium, InGaAs, indium aluminum arsenide (InAlAs), InAsSb (indium arsenide antimonide), AlAsSb (aluminum arsenide antimonide), AlInAsSb (aluminum indium arsenide antimonide), or silicon germanium (SiGe). The active region may refer to an area over which a detector may receive or detect input light. An active region may have any suitable size or diameter, such as for example, a diameter of approximately 10 μm, 25 μm, 50 μm, 80 μm, 100 μm, 200 μm, 500 μm, 1 mm, 2 mm, or 5 mm.
A receiver 140 may include electronic circuitry that performs signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection. As an example, receiver 140 may include a transimpedance amplifier that converts a photocurrent (e.g., a pulse of current produced by an APD in response to a received optical pulse) into a voltage signal. The voltage signal may be sent to pulse-detection circuitry that produces an analog or digital output signal 145 that corresponds to one or more optical characteristics (e.g., rising edge, falling edge, amplitude, duration, or energy) of a received optical pulse. As an example, the pulse-detection circuitry may perform a time-to-digital conversion to produce a digital output signal 145. The electrical output signal 145 may be sent to controller 150 for processing or analysis (e.g., to determine a time-of-flight value corresponding to a received optical pulse).
A controller 150 (which may include or may be referred to as a processor, an FPGA, an ASIC, a computer, or a computing system) may be located within a lidar system 100 or outside of a lidar system 100. Alternatively, one or more parts of a controller 150 may be located within a lidar system 100, and one or more other parts of a controller 150 may be located outside a lidar system 100. One or more parts of a controller 150 may be located within a receiver 140 of a lidar system 100, and one or more other parts of a controller 150 may be located in other parts of the lidar system 100. For example, a receiver 140 may include an FPGA or ASIC configured to process an output electrical signal from the receiver 140, and the processed signal may be sent to another computing system located elsewhere within the lidar system 100 or outside the lidar system 100. A controller 150 may include any suitable arrangement or combination of logic circuitry, analog circuitry, or digital circuitry.
A controller 150 may be electrically coupled or communicatively coupled to light source 110, scanner 120, or receiver 140. As an example, controller 150 may receive electrical trigger pulses or edges from light source 110, where each pulse or edge corresponds to the emission of an optical pulse by light source 110. As another example, controller 150 may provide instructions, a control signal, or a trigger signal to light source 110 indicating when light source 110 should produce optical pulses. Controller 150 may send an electrical trigger signal that includes electrical pulses, where each electrical pulse results in the emission of an optical pulse by light source 110. The frequency, period, duration, pulse energy, peak power, average power, or wavelength of the optical pulses produced by light source 110 may be adjusted based on instructions, a control signal, or trigger pulses provided by controller 150. A controller 150 may be coupled to light source 110 and receiver 140, and the controller 150 may determine a time-of-flight value for an optical pulse based on timing information associated with a time when the pulse was emitted by light source 110 and a time when a portion of the pulse (e.g., input beam 135) was detected or received by receiver 140. A controller 150 may include circuitry that performs signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection.
A lidar system 100 may include one or more processors (e.g., a controller 150) configured to determine a distance D from the lidar system 100 to a target 130 based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system 100 to the target 130 and back to the lidar system 100. The target 130 may be at least partially contained within a field of regard of the lidar system 100 and located a distance D from the lidar system 100 that is less than or equal to an operating range (ROP) of the lidar system 100. An operating range (which may be referred to as an operating distance) of a lidar system 100 may refer to a distance over which the lidar system 100 is configured to sense or identify targets 130 located within a field of regard of the lidar system 100. The operating range of lidar system 100 may be any suitable distance, such as for example, 25 m, 50 m, 100 m, 200 m, 250 m, 500 m, or 1 km. As an example, a lidar system 100 with a 200-m operating range may be configured to sense or identify various targets 130 located up to 200 m away from the lidar system 100.
A lidar system 100 may be used to determine the distance to one or more downrange targets 130. By scanning the lidar system 100 across a field of regard, the system may be used to map the distance to a number of points within the field of regard. Each of these depth-mapped points may be referred to as a pixel or a voxel. A collection of pixels captured in succession (which may be referred to as a depth map, a point cloud, or a frame) may be rendered as an image or may be analyzed to identify or detect objects or to determine a shape or distance of objects within the FOR. As an example, a point cloud may cover a field of regard that extends 60° horizontally and 15° vertically, and the point cloud may include a frame of 100-2000 pixels in the horizontal direction by 4-400 pixels in the vertical direction.
A lidar system 100 may be configured to repeatedly capture or generate point clouds of a field of regard at any suitable frame rate between approximately 0.1 frames per second (FPS) and approximately 1,000 FPS. As an example, lidar system 100 may generate point clouds at a frame rate of approximately 0.1 FPS, 0.5 FPS, 1 FPS, 2 FPS, 5 FPS, 10 FPS, 20 FPS, 100 FPS, 500 FPS, or 1,000 FPS. As another example, lidar system 100 may be configured to produce optical pulses at a rate of 5×105 pulses/second (e.g., the system may determine 500,000 pixel distances per second) and scan a frame of 1000×50 pixels (e.g., 50,000 pixels/frame), which corresponds to a point-cloud frame rate of 10 frames per second (e.g., 10 point clouds per second). A point-cloud frame rate may be substantially fixed, or a point-cloud frame rate may be dynamically adjustable. As an example, a lidar system 100 may capture one or more point clouds at a particular frame rate (e.g., 1 Hz) and then switch to capture one or more point clouds at a different frame rate (e.g., 10 Hz). A slower frame rate (e.g., 1 Hz) may be used to capture one or more high-resolution point clouds, and a faster frame rate (e.g., 10 Hz) may be used to rapidly capture multiple lower-resolution point clouds.
A lidar system 100 may be configured to sense, identify, or determine distances to one or more targets 130 within a field of regard. As an example, a lidar system 100 may determine a distance to a target 130, where all or part of the target 130 is contained within a field of regard of the lidar system 100. All or part of a target 130 being contained within a FOR of the lidar system 100 may refer to the FOR overlapping, encompassing, or enclosing at least a portion of the target 130. A target 130 may include all or part of an object that is moving or stationary relative to lidar system 100. As an example, target 130 may include all or a portion of a person, vehicle, motorcycle, truck, train, bicycle, wheelchair, pedestrian, animal, road sign, traffic light, lane marking, road-surface marking, parking space, pylon, guard rail, traffic barrier, pothole, railroad crossing, obstacle in or near a road, curb, stopped vehicle on or beside a road, utility pole, house, building, trash can, mailbox, tree, any other suitable object, or any suitable combination of all or part of two or more objects. A target may be referred to as an object.
A lidar system 100 may include a light source 110, scanner 120, and receiver 140 that are packaged together within a single housing, where a housing may refer to a box, case, or enclosure that holds or contains all or part of a lidar system 100. As an example, a lidar-system enclosure may contain a light source 110, mirror 115, scanner 120, and receiver 140 of a lidar system 100. Additionally, the lidar-system enclosure may include a controller 150. The lidar-system enclosure may also include one or more electrical connections for conveying electrical power or electrical signals to or from the enclosure. One or more components of a lidar system 100 may be located remotely from a lidar-system enclosure. As an example, all or part of light source 110 may be located remotely from a lidar-system enclosure, and pulses of light produced by the light source 110 may be conveyed to the enclosure via optical fiber. As another example, all or part of a controller 150 may be located remotely from a lidar-system enclosure.
A light source 110 may include an eye-safe laser, or lidar system 100 may be classified as an eye-safe laser system or laser product. An eye-safe laser, laser system, or laser product may refer to a system that includes a laser with an emission wavelength, average power, peak power, peak intensity, pulse energy, beam size, beam divergence, exposure time, or scanned output beam such that emitted light from the system presents little or no possibility of causing damage to a person's eyes. As an example, light source 110 or lidar system 100 may be classified as a Class 1 laser product (as specified by the 60825-1:2014 standard of the International Electrotechnical Commission (IEC)) or a Class I laser product (as specified by Title 21, Section 1040.10 of the United States Code of Federal Regulations (CFR)) that is safe under all conditions of normal use. A lidar system 100 may be an eye-safe laser product (e.g., with a Class 1 or Class I classification) configured to operate at any suitable wavelength between approximately 900 nm and approximately 2100 nm. As an example, lidar system 100 may include a laser with an operating wavelength between approximately 1200 nm and approximately 1400 nm or between approximately 1400 nm and approximately 1600 nm, and the laser or the lidar system 100 may be operated in an eye-safe manner. As another example, lidar system 100 may be an eye-safe laser product that includes a scanned laser with an operating wavelength between approximately 900 nm and approximately 1700 nm. As another example, lidar system 100 may be a Class 1 or Class I laser product that includes a laser diode, fiber laser, or solid-state laser with an operating wavelength between approximately 1200 nm and approximately 1600 nm. As another example, lidar system 100 may have an operating wavelength between approximately 1500 nm and approximately 1510 nm.
One or more lidar systems 100 may be integrated into a vehicle. As an example, a truck may include a single lidar system 100 with a 60-degree to 180-degree horizontal FOR directed towards the front of the truck. As another example, multiple lidar systems 100 may be integrated into a car to provide a complete 360-degree horizontal FOR around the car. As another example, 2-10 lidar systems 100, each system having a 45-degree to 180-degree horizontal FOR, may be combined together to form a sensing system that provides a point cloud covering a 360-degree horizontal FOR. The lidar systems 100 may be oriented so that adjacent FORs have an amount of spatial or angular overlap to allow data from the multiple lidar systems 100 to be combined or stitched together to form a single or continuous 360-degree point cloud. As an example, the FOR of each lidar system 100 may have approximately 1-30 degrees of overlap with an adjacent FOR. A vehicle may refer to a mobile machine configured to transport people or cargo. For example, a vehicle may include a car used for work, commuting, running errands, or transporting people. As another example, a vehicle may include a truck used to transport commercial goods to a store, warehouse, or residence. A vehicle may include, may take the form of, or may be referred to as a car, automobile, motor vehicle, truck, bus, van, trailer, off-road vehicle, farm vehicle, lawn mower, construction equipment, forklift, robot, golf cart, motorhome, taxi, motorcycle, scooter, bicycle, skateboard, train, snowmobile, watercraft (e.g., a ship or boat), aircraft (e.g., a fixed-wing aircraft, helicopter, or dirigible), unmanned aerial vehicle (e.g., a drone), or spacecraft. A vehicle may include an internal combustion engine or an electric motor that provides propulsion for the vehicle.
One or more lidar systems 100 may be included in a vehicle as part of an advanced driver assistance system (ADAS) to assist a driver of the vehicle in operating the vehicle. For example, a lidar system 100 may be part of an ADAS that provides information (e.g., about the surrounding environment) or feedback to a driver (e.g., to alert the driver to potential problems or hazards) or that automatically takes control of part of a vehicle (e.g., a braking system or a steering system) to avoid collisions or accidents. A lidar system 100 may be part of a vehicle ADAS that provides adaptive cruise control, automated braking, automated parking, collision avoidance, alerts the driver to hazards or other vehicles, maintains the vehicle in the correct lane, or provides a warning if an object or another vehicle is located in a blind spot.
One or more lidar systems 100 may be integrated into a vehicle as part of an autonomous-vehicle driving system. As an example, a lidar system 100 may provide information about the surrounding environment to a driving system of an autonomous vehicle. An autonomous-vehicle driving system may be configured to guide the autonomous vehicle through an environment surrounding the vehicle and toward a destination. An autonomous-vehicle driving system may include one or more computing systems that receive information from a lidar system 100 about the surrounding environment, analyze the received information, and provide control signals to the vehicle's driving systems (e.g., steering mechanism, accelerator, brakes, lights, or turn signals). As an example, a lidar system 100 integrated into an autonomous vehicle may provide an autonomous-vehicle driving system with a point cloud every 0.1 seconds (e.g., the point cloud has a 10 Hz update rate, representing 10 frames per second). The autonomous-vehicle driving system may analyze the received point clouds to sense or identify targets 130 and their respective locations, distances, or speeds, and the autonomous-vehicle driving system may update control signals based on this information. As an example, if lidar system 100 detects a vehicle ahead that is slowing down or stopping, the autonomous-vehicle driving system may send instructions to release the accelerator and apply the brakes.
An autonomous vehicle may be referred to as an autonomous car, driverless car, self-driving car, robotic car, or unmanned vehicle. An autonomous vehicle may refer to a vehicle configured to sense its environment and navigate or drive with little or no human input. As an example, an autonomous vehicle may be configured to drive to any suitable location and control or perform all safety-critical functions (e.g., driving, steering, braking, parking) for the entire trip, with the driver not expected to control the vehicle at any time. As another example, an autonomous vehicle may allow a driver to safely turn their attention away from driving tasks in particular environments (e.g., on freeways), or an autonomous vehicle may provide control of a vehicle in all but a few environments, requiring little or no input or attention from the driver.
An autonomous vehicle may be configured to drive with a driver present in the vehicle, or an autonomous vehicle may be configured to operate the vehicle with no driver present. As an example, an autonomous vehicle may include a driver's seat with associated controls (e.g., steering wheel, accelerator pedal, and brake pedal), and the vehicle may be configured to drive with no one seated in the driver's seat or with little or no input from a person seated in the driver's seat. As another example, an autonomous vehicle may not include any driver's seat or associated driver's controls, and the vehicle may perform substantially all driving functions (e.g., driving, steering, braking, parking, and navigating) without human input. As another example, an autonomous vehicle may be configured to operate without a driver (e.g., the vehicle may be configured to transport human passengers or cargo without a driver present in the vehicle). As another example, an autonomous vehicle may be configured to operate without any human passengers (e.g., the vehicle may be configured for transportation of cargo without having any human passengers onboard the vehicle).
An optical signal (which may be referred to as a light signal, a light waveform, an optical waveform, an output beam, an emitted optical signal, or emitted light) may include pulses of light, CW light, amplitude-modulated light, frequency-modulated (FM) light, or any suitable combination thereof. Although this disclosure describes or illustrates example embodiments of lidar systems 100 or light sources 110 that produce optical signals that include pulses of light, the embodiments described or illustrated herein may also be applied, where appropriate, to other types of optical signals, including continuous-wave (CW) light, amplitude-modulated optical signals, or frequency-modulated optical signals. For example, a lidar system 100 as described or illustrated herein may be a pulsed lidar system and may include a light source 110 that produces pulses of light. The distance to a remote target 130 may be determined based on the round-trip time of flight for a pulse of light to travel to the target 130 and back. Alternatively, a lidar system 100 may be configured to operate as a frequency-modulated continuous-wave (FMCW) lidar system and may include a light source 110 that produces a frequency-modulated optical signal. For example, output beam 125 in
A light source 110 for a FMCW lidar system may include (i) a direct-emitter laser diode, (ii) a seed laser diode followed by a SOA, (iii) a seed laser diode followed by a fiber-optic amplifier, or (iv) a seed laser diode followed by a SOA and then a fiber-optic amplifier. A seed laser diode or a direct-emitter laser diode may be operated in a CW manner (e.g., by driving the laser diode with a substantially constant DC current), and a frequency modulation may be provided by an external modulator (e.g., an electro-optic phase modulator may apply a frequency modulation to seed-laser light). Alternatively, a frequency modulation may be produced by applying a current modulation to a seed laser diode or a direct-emitter laser diode. The current modulation (which may be provided along with a DC bias current) may produce a corresponding refractive-index modulation in the laser diode, which results in a frequency modulation of the light emitted by the laser diode. The current-modulation component (and the corresponding frequency modulation) may have any suitable frequency or shape (e.g., piecewise linear, sinusoidal, triangle-wave, or sawtooth). For example, the current-modulation component (and the resulting frequency modulation of the emitted light) may increase or decrease monotonically over a particular time interval. As another example, the current-modulation component may include a triangle or sawtooth wave with an electrical current that increases or decreases linearly over a particular time interval, and the light emitted by the laser diode may include a corresponding frequency modulation in which the optical frequency increases or decreases approximately linearly over the particular time interval. For example, a light source 110 that emits light with a linear frequency change of 200 MHz over a 2-μs time interval may be referred to as having a frequency modulation m of 1014 Hz/s (or, 100 MHz/μs).
In addition to producing frequency-modulated emitted light, a light source 110 may also produce frequency-modulated local-oscillator (LO) light. The LO light may be coherent with the emitted light, and the frequency modulation of the LO light may match that of the emitted light. The LO light may be produced by splitting off a portion of the emitted light prior to the emitted light exiting the lidar system. Alternatively, the LO light may be produced by a seed laser diode or a direct-emitter laser diode that is part of the light source 110. For example, the LO light may be emitted from the back facet of a seed laser diode or a direct-emitter laser diode, or the LO light may be split off from the seed light emitted from the front facet of a seed laser diode. The received light (e.g., emitted light that is scattered by a target 130) and the LO light may each be frequency modulated, with a frequency difference or offset that corresponds to the distance to the target 130. For a linearly chirped light source (e.g., a frequency modulation that produces a linear change in frequency with time), the larger the frequency difference is between the received light and the LO light, the farther away the target 130 is located.
A frequency difference between received light and LO light may be determined by mixing the received light with the LO light (e.g., by coupling the two beams onto a detector so they are coherently mixed together at the detector) and determining the resulting beat frequency. For example, a photocurrent signal produced by an APD may include a beat signal resulting from the coherent mixing of the received light and the LO light, and a frequency of the beat signal may correspond to the frequency difference between the received light and the LO light. The photocurrent signal from an APD (or a voltage signal that corresponds to the photocurrent signal) may be analyzed to determine the frequency of the beat signal. If a linear frequency modulation m (e.g., in units of Hz/s) is applied to a CW laser, then the round-trip time T may be related to the frequency difference ΔF between the received scattered light and the LO light by the expression T=ΔF/m. Additionally, the distance D from the target 130 to the lidar system 100 may be expressed as D=(ΔF/m)·c/2, where c is the speed of light. For example, for a light source 110 with a linear frequency modulation of 1014 Hz/s, if a frequency difference (between the received scattered light and the LO light) of 33 MHz is measured, then this corresponds to a round-trip time of approximately 330 ns and a distance to the target of approximately 50 meters. As another example, a frequency difference of 133 MHz corresponds to a round-trip time of approximately 1.33 μs and a distance to the target of approximately 200 meters. A receiver or processor of a FMCW lidar system may determine a frequency difference between received scattered light and LO light, and the distance to a target may be determined based on the frequency difference. The frequency difference ΔF between received scattered light and LO light corresponds to the round-trip time T (e.g., through the relationship T=ΔF/m), and determining the frequency difference may correspond to or may be referred to as determining the round-trip time.
In the example of
A scan pattern 200 may include multiple pixels 210, and each pixel 210 may be associated with one or more optical pulses or one or more distance measurements. Additionally, a scan pattern 200 may include multiple scan lines 230, where each scan line represents one scan across at least part of a field of regard, and each scan line 230 may include multiple pixels 210. In
A pixel 210 may refer to a data element that includes (i) distance information (e.g., a distance from a lidar system 100 to a target 130 from which an associated pulse of light was scattered) or (ii) an elevation angle and an azimuth angle associated with the pixel (e.g., the elevation and azimuth angles along which the associated pulse of light was emitted). Each pixel 210 may be associated with a distance (e.g., a distance to a portion of a target 130 from which an associated pulse of light was scattered) or one or more angular values. As an example, a pixel 210 may be associated with a distance value and two angular values (e.g., an azimuth and altitude) that represent the angular location of the pixel 210 with respect to the lidar system 100. A distance to a portion of target 130 may be determined based at least in part on a time-of-flight measurement for a corresponding pulse. An angular value (e.g., an azimuth or altitude) may correspond to an angle (e.g., relative to reference line 220) of output beam 125 (e.g., when a corresponding pulse is emitted from lidar system 100) or an angle of input beam 135 (e.g., when an input signal is received by lidar system 100). An angular value may be determined based at least in part on a position of a component of a scanner 120. As an example, an azimuth or altitude value associated with a pixel 210 may be determined from an angular position of one or more corresponding scan mirrors of the scanner 120.
A polygon mirror 301 may be configured to rotate along a Θx or Θy direction and scan output beam 125 along a substantially horizontal or vertical direction, respectively. A rotation along a Θx direction may refer to a rotational motion of mirror 301 that results in output beam 125 scanning along a substantially horizontal direction. Similarly, a rotation along a Θy direction may refer to a rotational motion that results in output beam 125 scanning along a substantially vertical direction. In
A polygon mirror 301 may refer to a multi-sided object having reflective surfaces 320 on two or more of its sides or faces. As an example, a polygon mirror may include any suitable number of reflective faces (e.g., 2, 3, 4, 5, 6, 7, 8, or 10 faces), where each face includes a reflective surface 320. A polygon mirror 301 may have a cross-sectional shape of any suitable polygon, such as for example, a triangle (with three reflecting surfaces 320), square (with four reflecting surfaces 320), pentagon (with five reflecting surfaces 320), hexagon (with six reflecting surfaces 320), heptagon (with seven reflecting surfaces 320), or octagon (with eight reflecting surfaces 320). In
A polygon mirror 301 may be continuously rotated in a clockwise or counterclockwise rotation direction about a rotation axis of the polygon mirror 301. The rotation axis may correspond to a line that is perpendicular to the plane of rotation of the polygon mirror 301 and that passes through the center of mass of the polygon mirror 301. In
In
A scanner 120 may be configured to scan both a light-source field of view and a receiver field of view across a field of regard of the lidar system 100. Multiple pulses of light may be emitted and detected as the scanner 120 scans the FOVL and FOVR across the field of regard of the lidar system 100 while tracing out a scan pattern 200. The light-source field of view and the receiver field of view may be scanned synchronously with respect to one another, so that as the FOVL is scanned across a scan pattern 200, the FOVR follows substantially the same path at the same scanning speed. Additionally, the FOVL and FOVR may maintain the same relative position to one another as they are scanned across the field of regard. As an example, the FOVL may be substantially overlapped with or centered inside the FOVR (as illustrated in
An output beam of light 125 emitted by light source 110 may be a collimated optical beam having any suitable beam divergence, such as for example, a full-angle beam divergence ΘL of approximately 0.5 to 10 milliradians (mrad). A divergence ΘL of output beam 125 (which may be referred to as an angular size of the output beam) may correspond to an angular measure of an increase in beam size (e.g., a beam radius or beam diameter) as output beam 125 travels away from light source 110 or lidar system 100. An output beam 125 may have a substantially circular cross section with a beam divergence characterized by a single divergence value. As an example, an output beam 125 with a circular cross section and a full-angle beam divergence ΘL of 2 mrad may have a beam diameter or spot size of approximately 20 cm at a distance of 100 m from lidar system 100. An output beam 125 may have a substantially elliptical cross section characterized by two divergence values. As an example, output beam 125 may have a fast axis and a slow axis, where the fast-axis divergence is greater than the slow-axis divergence. As another example, output beam 125 may be an elliptical beam with a fast-axis divergence of 4 mrad and a slow-axis divergence of 2 mrad.
The angular size ΘR of a FOVR may correspond to an angle over which the receiver 140 may receive and detect light. The receiver field of view may be any suitable size relative to the light-source field of view. As an example, the receiver field of view may be smaller than, substantially the same size as, or larger than the angular size of the light-source field of view. The light-source field of view may have an angular size of less than or equal to 50 milliradians, and the receiver field of view may have an angular size of less than or equal to 50 milliradians. The FOVL may have any suitable angular size ΘL, such as for example, an angular size of approximately 0.1 mrad, 0.2 mrad, 0.5 mrad, 1 mrad, 1.5 mrad, 2 mrad, 3 mrad, 5 mrad, 10 mrad, 20 mrad, 40 mrad, or 50 mrad. Similarly, the FOVR may have any suitable angular size ΘR, such as for example, an angular size of approximately 0.1 mrad, 0.2 mrad, 0.5 mrad, 1 mrad, 1.5 mrad, 2 mrad, 3 mrad, 5 mrad, 10 mrad, 20 mrad, 40 mrad, or 50 mrad. The light-source field of view and the receiver field of view may have approximately equal angular sizes. As an example, ΘL and ΘR may both be approximately equal to 0.5 mrad, 1 mrad, or 2 mrad. Alternatively, the receiver field of view may be larger than the light-source field of view, or the light-source field of view may be larger than the receiver field of view. As an example, ΘL may be approximately equal to 1 mrad, and ΘR may be approximately equal to 2 mrad. As another example, ΘR may be approximately L times larger than ΘL, where L is any suitable factor, such as for example, 1.1, 1.2, 1.5, 2, 3, 5, or 10.
A unidirectional scan pattern 200 may be produced by a scanner 120 that includes a polygon mirror (e.g., polygon mirror 301 of
A light source 110 of a lidar system 100 with spectrally encoded light pulses may include a seed laser that produces seed light and an optical amplifier that amplifies the seed light to produce the emitted pulses of light 400. The emitted pulses of light 400 may be part of an output beam 125 that is scanned by a scanner 120 across a field of regard of the lidar system 100. The pulses of light 400 emitted by the light source 110 may have one or more of the following optical characteristics: a wavelength between 900 nm and 2000 nm; a pulse energy between 0.01 μJ and 100 μJ; a pulse repetition frequency between 80 kHz and 10 MHz; and a pulse duration between 0.1 ns and 100 ns. For example, the light source 110 may emit pulses of light 400 with a wavelength of approximately 1550 nm, a pulse energy of approximately 0.5 μJ per pulse, a pulse repetition frequency of approximately 750 kHz, and a pulse duration of approximately 3 ns. As another example, the light source 110 may emit pulses of light 400 with a wavelength between approximately 1400 nm and approximately 1600 nm. As another example, the light source 110 may emit pulses of light 400 with a wavelength greater than or equal to 1500 nm and less than or equal to 1510 nm.
A lidar system with spectrally encoded light pulses may include a scanner 120 that scans an output beam 125 (which includes emitted pulses of light 400) across a field of regard of the lidar system 100. The scanner 120 may receive the output beam 125 from the light source 110, and the scanner 120 may include one or more scanning mirrors that scan the output beam 125. In addition to scanning the output beam 125, the scanner may also scan a FOV of a detector 340 across the field of regard so that the output beam 125 (which corresponds to the light-source FOV) and the detector FOV (which corresponds to the input beam 135) are scanned synchronously, where the scanning speeds of the light-source FOV and the detector FOV are equal. Additionally, the light-source FOV and the detector FOV may have the same relative position to one another as they are scanned across the field of regard (e.g., the light-source FOV and the detector FOV may be fully or partially overlapped, and the amount of overlap may remain approximately fixed as they are scanned). Alternatively, the lidar system 100 may be configured so that only the output beam 125 is scanned, and the detector may have a static FOV that is not scanned. In this case, the input beam 135 (which includes received pulses of light 410) may bypass the scanner 120 and be directed to the receiver 140 without passing through the scanner 120.
A lidar system with spectrally encoded light pulses may include a receiver 140 that detects received pulses of light 410. A received pulse of light 410 may include light from an emitted pulse of light 400 that is scattered by a target 130 located a distance D from the lidar system 100. A receiver 140 may include a lens 330 that focuses an input beam 135 (which includes a received pulse of light 410) onto the detector 340. In response to the received pulse of light 410, the detector 340 may produce a photocurrent signal i that corresponds to the received pulse of light 410. A detector 340 of a receiver 140 may include an avalanche photodiode (APD), a PIN photodiode, or any other suitable type of detector. A photocurrent signal i may be referred to as a photocurrent, electrical-current signal, electrical current, or current.
A receiver 140 may include one or more detectors 340, and each detector may be configured to produce a photocurrent signal i that corresponds to a received pulse of light 410. The lidar system 100 in
A detector 340 producing a photocurrent signal i that corresponds to a received pulse of light 410 may refer to the detector 340 producing a pulse of current in response to receiving or detecting the pulse of light 410. Additionally, a photocurrent signal i (which includes a pulse of current) and a pulse of light 410 that correspond to one another may refer to the pulse of current and the pulse of light 410 having similar pulse characteristics (e.g., similar rise times, fall times, shapes, or durations). For example, the pulse of electrical current may have a rise time, fall time, or duration that is approximately equal to or somewhat greater than that of the pulse of light 410 (e.g., a rise time, fall time, or duration between 1× and 2× that of the pulse of light 410). The pulse of electrical current may have a somewhat longer rise time, fall time, or duration due to a limited electrical bandwidth of the detector 340 or the detector circuitry. As another example, the pulse of light 410 may have a 1-ns rise time and a 4-ns duration, and the corresponding pulse of electrical current produced by the detector 340 may have a 1.2-ns rise time and a 5-ns duration.
The photocurrent signal i produced by a detector 340 of a receiver 140 may be sent to an electronic amplifier 350. The amplifier 350 in
A lidar system with spectrally encoded light pulses may include a frequency-detection circuit 600 that determines a spectral signature of a received pulse of light 410. The received pulse of light 410 in
A lidar system with spectrally encoded light pulses may include a pulse-detection circuit 365 that determines a time-of-arrival for a received pulse of light 410. The time-of-arrival for a received pulse of light 410 may correspond to a time associated with a rising edge, falling edge, peak, or temporal center of the received pulse of light 410. The time-of-arrival of a received pulse of light 410 may be determined based on a corresponding photocurrent signal i produced by a detector 340. The photocurrent signal i may include a pulse of current corresponding to a received pulse of light 410, and an electronic amplifier 350 may produce a voltage signal 360 with a voltage pulse that corresponds to the pulse of current. The pulse-detection circuit 365 may determine the time-of-arrival of the received pulse of light 410 based on a characteristic of the voltage pulse (e.g., based on a time associated with a rising edge, falling edge, peak, or temporal center of the voltage pulse). Since the voltage signal 360 corresponds to the photocurrent signal i, determining a time-of-arrival based on a photocurrent signal i may include determining the time-of-arrival from a corresponding voltage signal 360. For example, the pulse-detection circuit 365 in
The receiver 140 in
The receiver 140 in
A portion of a frequency-detection circuit 600 may be included in a controller 150, or vice versa. For example, a frequency-detection circuit 600 may include a part of a controller 150, or a controller 150 may include a part of a frequency-detection circuit 600. Depending on the configuration of the frequency-detection circuit 600 and the controller 150, the spectral signature of a received pulse of light 410 being determined by a frequency-detection circuit 600 may refer to the spectral signature being determined by (i) the frequency-detection circuit 600, (ii) the frequency-detection circuit 600 and the controller 150, or (iii) the controller 150.
A portion of a pulse-detection circuit 365 may be included in a controller 150, or vice versa. For example, a pulse-detection circuit 365 may include a part of a controller 150, or a controller 150 may include a part of a pulse-detection circuit 365. Depending on the configuration of the pulse-detection circuit 365 and the controller 150, the time-of-arrival for a received pulse of light 410 being determined by a pulse-detection circuit 365 may refer to the time-of-arrival being determined by (i) the pulse-detection circuit 365, (ii) the pulse-detection circuit 365 and the controller 150, or (iii) the controller 150.
A lidar system with spectrally encoded light pulses may include a processor (e.g., controller 150) that determines the distance to a target 130 based at least in part on a time-of-arrival for a received pulse of light 410. The time-of-arrival for the received pulse of light 410 may correspond to a round-trip time (ΔT) for at least a portion of an emitted pulse of light 400 to travel to the target 130 and back to the lidar system 100, where the portion of the emitted pulse of light 400 that travels back to the target 130 corresponds to the received pulse of light 410. For example, the distance D to the target 130 may be determined from the time-of-arrival for the received pulse of light 410 and from the expression D=c ΔT/2. The round-trip time of flight may be determined from the expression ΔT=T2−T1, where T2 is the time-of-arrival of the received pulse of light 410, and T1 is a time at which the corresponding pulse of light 400 was emitted. For example, if the pulse-detection circuit 365 determines that the time ΔT between emission of optical pulse 400 and the time-of-arrival of optical pulse 410 is 1 μs, then the controller 150 may determine that the distance to the target 130 is approximately 150 m. Depending on the configuration of the pulse-detection circuit 365 and the controller 150, the distance D to a target 130 being determined by a controller 150 may refer to the distance to the target 130 being determined by (i) the pulse-detection circuit 365, (ii) the pulse-detection circuit 365 and the controller 150, or (iii) the controller 150.
A lidar system with spectrally encoded light pulses may include one or more data links 425 that couple together one or more components of the lidar system. Each link 425 in
A lidar system with spectrally encoded light pulses may allow the determination of whether a received pulse of light 410 is associated with a particular emitted pulse of light 400. For example, a received pulse of light 410 may be unambiguously associated with an emitted pulse of light 400 based on the spectral signature of the received pulse of light 410 matching the spectral signature of the emitted pulse of light 400. A received pulse of light 410 being associated with an emitted pulse of light 400 may refer to the received pulse of light 410 including a portion of the emitted pulse of light 400. For example, if a received pulse of light 410 detected by a receiver 140 includes a portion of scattered light from an emitted pulse of light 400, then the received pulse of light 410 and the emitted pulse of light 400 may be referred to as being associated with one another. Additionally, the received pulse of light 410 and the emitted pulse of light 400 may have spectral signatures that match. In
A light source 110 of a lidar system 100 with spectrally encoded light pulses may include an electronic driver 480 that (i) supplies electrical current to a seed laser 450 and (ii) supplies electrical current to a SOA 460. In
In
A pulsed optical amplifier may refer to an optical amplifier that is operated in a pulsed mode so that the output beam 125 emitted by the optical amplifier includes pulses of light 400. For example, a pulsed optical amplifier may include a SOA 460 that is operated in a pulsed mode by supplying the SOA 460 with pulses of current. The seed light 440 may include CW light or light having a substantially constant optical power, and each pulse of current supplied to the SOA 460 may amplify a temporal portion of seed light to produce an emitted pulse of light 400. As another example, a pulsed optical amplifier may include an optical amplifier along with an optical modulator. The optical modulator may be any suitable optical modulator (e.g., an acousto-optic modulator (AOM), electro-optic modulator (EOM), or electro-absorption modulator (EAM)) operated in a pulsed mode so that the modulator selectively transmits pulses of light. The SOA 460 may also be operated in a pulsed mode in synch with the optical modulator to amplify the temporal portions of the seed light, or the SOA 460 may be supplied with substantially DC current to operate as a CW optical amplifier. The optical modulator may be located between the seed laser diode 450 and the SOA 460, and the optical modulator may be operated in a pulsed mode to transmit temporal portions of the seed light 440 which are then amplified by the SOA 460. Alternatively, the optical modulator may be located after the SOA 460, and the optical modulator may be operated in a pulsed mode to transmit the emitted pulses of light 400.
The seed laser diode 450 illustrated in
A waveguide 463 may include a semiconductor optical waveguide formed at least in part by the semiconductor material of the SOA 460, and the waveguide 463 may confine light along transverse directions while the light propagates through the SOA 460. A waveguide 463 may have a waveguide width that is substantially fixed along the length of the SOA (e.g., the width at the input end 461 is approximately equal to the width at the output end 462), or a waveguide 463 may have a tapered width (e.g., as illustrated in
The input end 461 or the output end 462 of a SOA 460 may be a discrete facet formed by a semiconductor-air interface. Additionally, the input end 461 or the output end 462 may include a dielectric coating (e.g., an anti-reflection coating to reduce the reflectivity of the input end 461 or the output end 462). An anti-reflection (AR) coating may have a reflectivity at the seed-laser operating wavelength of less than 5%, 2%, 0.5%, 0.1%, or any other suitable reflectivity value. In
A light source 110 may include a seed laser diode 450 and a SOA 460 that are integrated together and disposed on or in a single chip or substrate. For example, a seed laser diode 450 and a SOA 460 may each be fabricated separately and then attached to the same substrate (e.g., using epoxy, adhesive, or solder). The substrate may be electrically or thermally conductive, and the substrate may have a coefficient of thermal expansion (CTE) that is approximately equal to the CTE of the seed laser 450 and the SOA 460. As another example, the seed laser diode 450 and the SOA 460 may be fabricated together on the same substrate (e.g., using semiconductor-fabrication processes, such as for example, lithography, deposition, and etching). The seed laser diode 450 and the SOA 460 may each include InGaAs or InGaAsP semiconductor structures, and the substrate may include indium phosphide (InP). The InP substrate may be n-doped or p-doped so that it is electrically conductive, and a portion of the InP substrate may act as an anode or cathode for the seed laser diode 450 or the SOA 460. The substrate may be thermally coupled to (i) a heat sink that dissipates heat produced by the seed laser diode 450 or the SOA 460 or (ii) a temperature-control device (e.g., a thermoelectric cooler) that stabilizes the temperature of the seed laser diode 450 or the SOA 460 to a particular temperature setpoint or to within a particular temperature range. In the example of
In
During a period of time between two successive temporal portions of seed light 440, a SOA 460 may be configured to optically absorb most of the seed light 440 propagating in the SOA 460. The seed light 440 from the seed laser diode 450 may be coupled into the waveguide 463 of the SOA 460. Depending on the amount of SOA current I2 supplied to the SOA 460, the seed light 440 may be optically amplified or optically absorbed while propagating along the waveguide 463. If the SOA current I2 exceeds a threshold gain value (e.g., 100 mA) that overcomes the optical loss of the SOA 460, then the seed light 440 may be optically amplified by stimulated emission of photons. Otherwise, if the SOA current I2 is less than the threshold gain value, then the seed light 440 may be optically absorbed. The process of optical absorption of the seed light 440 may include photons of the seed light 440 being absorbed by electrons located in the semiconductor structure of the SOA 460.
The SOA current I2 may include pulses of current separated by a period of time that corresponds to the pulse period τ of the light source 110, and each pulse of current may result in the emission of a pulse of light 400. For example, if the SOA current I2 includes 20-A current pulses with a 10-ns duration, then for each current pulse, a corresponding 10-ns temporal portion of the seed light 440 may be amplified, resulting in the emission of a pulse of light 400. During the time periods τ between successive pulses of current, the SOA current I2 may be set to approximately zero or to some other value below the threshold gain value, and the seed light 440 present in the SOA 460 during those time periods may be optically absorbed. The optical absorption of the SOA 460 when the SOA current I2 is zero may be greater than or equal to approximately 10 decibels (dB), 15 dB, 20 dB, 25 dB, or 30 dB. For example, if the optical absorption is greater than or equal to 20 dB, then less than or equal to 1% of the seed light 440 that is coupled into the input end 461 of the waveguide 463 may be emitted from the output end 462 as unwanted leakage light. Having most of the seed light 440 absorbed in the SOA 460 may prevent unwanted seed light 440 (e.g., seed light 440 located between successive pulses of light 400) from leaking out of the SOA 460 and propagating through the rest of the lidar system 100. Additionally, optically absorbing the unwanted seed light 440 may allow the seed laser 450 to be operated with a substantially constant current I1 or a substantially constant output power so that the wavelength of the seed light 440 is stable and substantially constant.
A SOA 460 may be electrically configured as a diode with a p-doped region and an n-doped region that form a p-n junction. The SOA may include an anode and a cathode that transmit SOA current I2 from an electronic driver 480 into or out of the p-n junction of the SOA 460. The anode may correspond to the p-doped side of the semiconductor p-n junction, and the cathode may correspond to the n-doped side. For example, the anode of the SOA 460 may include or may be electrically coupled to the p-doped region of the SOA 460, and the p-doped region may be electrically coupled to an electrically conductive electrode material (e.g., gold) deposited onto a surface of the SOA 460. The cathode may include or may be electrically coupled to a n-doped substrate located on the opposite side of the SOA 460. Alternatively, the anode of the SOA 460 may include or may be electrically coupled to a p-doped substrate of the SOA 460, and the cathode may include or may be electrically coupled to an electrode and a n-doped region of the SOA 460. The anode and cathode may be electrically coupled to the electronic driver 480, and the driver 480 may supply a positive SOA current I2 that flows from the driver 480 into the anode, through the SOA 460, out of the cathode, and back to the driver 480. A positive SOA current I2 flowing through the SOA 460 may correspond to the p-n junction of the SOA being in a forward-biased state which allows the current to flow. When considering the electrical current as being made up of a flow of electrons, then for a positive SOA current, the electrons may be viewed as flowing in the opposite direction (e.g., from the driver 480 into the cathode, through the SOA 460, and out of the anode and back to the driver 480).
An electronic driver 480 may be configured to electrically couple the SOA anode to the SOA cathode during a period of time between two successive pulses of current. For example, for most or all of the time period τ between two successive pulses of current, the electronic driver 480 may electrically couple the anode and cathode of the SOA 460. Electrically coupling the anode and cathode may include electrically shorting the anode directly to the cathode or coupling the anode and cathode through a particular electrical resistance (e.g., approximately 1Ω, 10Ω, or 100Ω). Alternatively, electrically coupling the anode and the cathode may include applying a reverse-bias voltage (e.g., approximately −1 V, −5 V, or −10 V) to the anode and cathode, where the reverse-bias voltage has a polarity that is opposite the forward-bias polarity associated with the applied pulses of current. By electrically coupling the anode to the cathode, the optical absorption of the SOA may be increased. For example, the optical absorption of the SOA 460 when the anode and cathode are electrically coupled may be increased (compared to the anode and cathode not being electrically coupled) by approximately 3 dB, 5 dB, 10 dB, 15 dB, or 20 dB. The optical absorption of the SOA 460 when the anode and cathode are electrically coupled may be greater than or equal to approximately 20 dB, 25 dB, 30 dB, 35 dB, or 40 dB. For example, the optical absorption of a SOA 460 when the SOA current I2 is zero and the anode and cathode are not electrically coupled may be 20 dB. When the anode and cathode are electrically shorted together, the optical absorption may increase by 10 dB to an optical absorption of 30 dB. If the optical absorption of the SOA 460 is greater than or equal to 30 dB, then less than or equal to 0.1% of the seed light 440 that is coupled into the input end 461 of the waveguide 463 may be emitted from the output end 462 as unwanted leakage light.
A light source 110 that includes a seed laser diode 450 and a SOA 460 may be electrically configured as a three-terminal device. A three-terminal light source may include (i) a common cathode and separate, electrically isolated anodes or (ii) a common anode and separate, electrically isolated cathodes. A seed laser diode 450 may be electrically configured as a diode with a p-doped region (coupled to a seed laser anode) and a n-doped region (coupled to a seed laser cathode), where the p-doped and n-doped regions form a p-n junction. Similarly, a SOA 460 may be electrically configured as a diode with a p-doped region (coupled to a SOA anode) and a n-doped region (coupled to a SOA cathode), where the p-doped and n-doped regions form a p-n junction. A seed laser diode 450 and a SOA 460 may each have a cathode and an anode, and a common-cathode configuration may refer to the cathodes of the seed laser diode 450 and the SOA 460 being electrically connected together into a single electrical terminal or contact that is connected to an electronic driver 480. A light source 110 configured as a three-terminal common-cathode device may include a seed laser anode, a SOA anode, and a common cathode. The seed laser anode and the SOA anode may be electrically isolated from one another, and the seed laser cathode and the SOA cathode may be electrically connected together to form the common cathode. Alternatively, a light source 110 may be configured as a three-terminal common-anode device that includes a seed laser cathode, a SOA cathode, and a common anode. The seed laser cathode and the SOA cathode may be electrically isolated from one another, and the seed laser anode and the SOA anode may be electrically connected together to form the common anode.
Two terminals (e.g., two anodes or two cathodes) being electrically isolated from one another may refer to the two terminals having greater than a particular value of electrical resistance between them (e.g., the resistance between two electrically isolated anodes may be greater than 1 kΩ, 10 kΩ, 100 kΩ, or 1 MΩ). Two terminals (e.g., two anodes or two cathodes) being electrically connected may refer to the two terminals having less than a particular value of electrical resistance between them (e.g., the resistance between two electrically connected cathodes may be less than 1 kΩ, 100 Ω, 10Ω, or 1Ω). A common-anode or common-cathode configuration may be provided by combining or electrically connecting the respective anodes or cathodes through an electrically conductive substrate. For example, a seed laser diode 450 and a SOA 460 may be fabricated separately and then affixed to an electrically conductive substrate so that their anodes or cathodes are electrically connected. As another example, a substrate may include an electrically conductive semiconductor material on which a seed laser diode 450 and SOA 460 are grown. The seed laser diode 450 and the SOA 460 may each include an InGaAs or InGaAsP semiconductor structure grown on an InP substrate. The InP substrate may be n-doped so that it is electrically conductive, and the cathodes of the seed laser diode 450 and the SOA 460 may each be electrically connected to the InP substrate so that the InP substrate acts as a common cathode. Alternatively, the InP substrate may be p-doped, and the anodes of the seed laser diode 450 and the SOA 460 may each be electrically connected to the InP substrate, which acts as a common anode.
One or more of the light sources 110 illustrated in
A light source 110 that includes a seed laser diode 450 and a SOA 460 may be configured as a four-terminal device. In a four-terminal light source 110, the seed laser anode and the SOA anode may be electrically isolated from one another, and instead of having a common cathode, the seed laser cathode and the SOA cathode may also be electrically isolated from one another. One or more of the light sources 110 described herein may be configured as a four-terminal device. For example, the light source 110 in each of
A SOA 460 and a fiber-optic amplifier 500 may each have an optical power gain of 10 dB, 15 dB, 20 dB, 25 dB, 30 dB, 35 dB, 40 dB, or any other suitable optical power gain. In the example of
A fiber-optic amplifier 500 may include an optical gain fiber 501 that is optically pumped (e.g., provided with energy) by one or more pump lasers 510. The optically pumped gain fiber 501 may provide optical gain to each input pulse of light 400a while propagating through the gain fiber 501. The pump-laser light may travel through the gain fiber 501 in the same direction (co-propagating) as the pulse of light 400a or in the opposite direction (counter-propagating). The fiber-optic amplifier 500 in
The fiber-optic core of a gain fiber 501 may be doped with a gain material that absorbs pump-laser light and provides optical gain to pulses of light 400a as they propagate along the gain fiber 501. The gain material may include rare-earth ions, such as for example, erbium (Er3+), ytterbium (Yb3+), neodymium (Nd3+), praseodymium (Pr3+), holmium (Ho′), thulium (Tm3+), dysprosium (Dy3+), or any other suitable rare-earth element, or any suitable combination thereof. For example, the gain fiber 501 may include a core doped with erbium ions or with a combination of erbium and ytterbium ions. The rare-earth dopants absorb pump-laser light and are “pumped” or promoted into excited states that provide amplification to the pulses of light 400a through stimulated emission of photons. The rare-earth ions in excited states may also emit photons through spontaneous emission, resulting in the production of amplified spontaneous emission (ASE) light by the gain fiber 501.
A gain fiber 501 may include a single-clad or multi-clad optical fiber with a core diameter of approximately 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 12 μm, 20 μm, 25 μm, or any other suitable core diameter. A single-clad gain fiber 501 may include a core surrounded by a cladding material, and the pump light and the pulses of light 400a may both propagate substantially within the core of the gain fiber 501. A multi-clad gain fiber 501 may include a core, an inner cladding surrounding the core, and one or more additional cladding layers surrounding the inner cladding. The pulses of light 400a may propagate substantially within the core, while the pump light may propagate substantially within the inner cladding and the core. The length of gain fiber 501 in an amplifier 500 may be approximately 0.5 m, 1 m, 2 m, 4 m, 6 m, 10 m, 20 m, or any other suitable gain-fiber length.
A fiber-optic amplifier 500 may include one or more optical filters 560 located at the input or output side of the amplifier 500. An optical filter 560 (which may include an absorptive filter, dichroic filter, long-pass filter, short-pass filter, band-pass filter, notch filter, Bragg grating, or fiber Bragg grating) may transmit light over a particular optical pass-band and substantially block light outside of the pass-band. The optical filter 560 in
A fiber-optic amplifier 500 may include one or more optical isolators 530. An isolator 530 may reduce or attenuate backward-propagating light, which may destabilize or cause damage to a seed laser diode 450, SOA 460, pump laser 510, or gain fiber 501. The isolators 530 in
A fiber-optic amplifier 500 may include one or more optical splitters 470 and one or more detectors 550. A splitter 470 may split off a portion of light (e.g., approximately 0.1%, 0.5%, 1%, 2%, or 5% of light received by the splitter 470) and direct the split off portion to a detector 550. In
A fiber-optic amplifier 500 may include an input optical fiber configured to receive input pulses of light 400a from a SOA 460. The input optical fiber may be part of or may be coupled or spliced to one of the components of the fiber-optic amplifier 500. For example, pulses of light 400a may be coupled into an optical fiber which is spliced to an input optical fiber of the isolator 530 located at the input to the amplifier 500. As another example, the pulses of light 400a from a SOA 460 may be part of a free-space beam that is coupled into an input optical fiber of fiber-optical amplifier 500 using one or more lenses. As another example, an input optical fiber of fiber-optic amplifier 500 may be positioned at or near the output end 462 of a SOA 460 so that the pulses of light 400a are directly coupled from the SOA 460 into the input optical fiber.
The optical components of a fiber-optic amplifier 500 may be free-space components, fiber-coupled components, or a combination of free-space and fiber-coupled components. As an example, each optical component in
A light source 110 may include (i) a passive optical waveguide that includes an optical filter and (ii) a SOA 460, where the passive optical waveguide and the SOA 460 are optically coupled to one another. Additionally, the light source 110 may include an electronic driver 480 that supplies pulses of electrical current to the SOA 460, where each pulse of current causes the SOA to produce an emitted pulse of light 400. A passive optical waveguide may refer to an optical waveguide that provides optical guidance or confinement to light propagating through the waveguide but does not provide optical gain to the propagating light and does not produce light. The passive optical waveguide may act as an external optical cavity coupled to the SOA 460, and the optical filter may reflect a portion of light produced by the SOA back to the SOA. The optical filter may include a discrete optical filter that is attached to or integrated into the passive optical waveguide (e.g., the optical filter may include a dielectric coating deposited onto a back face of the waveguide). Additionally or alternatively, the optical filter may include a distributed optical filter, such as for example, a distributed Bragg reflector that includes a refractive index that varies along all or part of the length of the waveguide. Since the passive optical waveguide is optically coupled to the SOA 460, the passive optical waveguide may receive a portion of light produced by the SOA 460 when a pulse of current is applied. The optical filter of the passive optical waveguide may transmit a portion of the received light, and the transmitted portion may exit the waveguide through the back face. Additionally, the optical filter may reflect a portion of the received light back to the SOA 460, and the reflected portion may include light within a particular wavelength range, based on the configuration of the optical filter. For example, the optical filter may reflect light within a particular wavelength range and may transmit light outside of the particular wavelength range. As another example, the portion of light produced by the SOA 460 that is received by the passive optical waveguide may include light with an optical spectrum from approximately 1540 nm to approximately 1560 nm, and the portion of light reflected back to the SOA 460 by the optical filter may include light from approximately 1549 nm to approximately 1551 nm. The optical characteristics or the spectral signature of an emitted pulse of light 400 resulting from a pulse of current supplied to the SOA 460 may depend at least in part on (i) the electrical characteristics of the pulse of current (e.g., rise time, fall time, amplitude, or duration) and (ii) the optical characteristics of the passive optical waveguide and the optical filter (e.g., waveguide length, the filter reflection or transmission bandwidth, or other filter characteristics).
A light source 110 that includes a passive optical waveguide and a SOA 460 may be similar to the light source 110 illustrated in
A light source 110 of a lidar system 100 with spectrally encoded light pulses may be configured to emit test pulses of light 400t. In addition to producing an output beam 125 with emitted pulses of light 400, a light source 110 may also produce a test beam 402 that includes test pulses of light 400t, where each test pulse of light 400t is associated with one of the emitted pulses of light 400. Each test pulse of light 400t may include a small portion of an associated emitted pulse of light 400. For example, the test pulse 400t in
A light source 110 may include an optical splitter 470 that splits off a portion of each emitted pulse of light 400 to produce an associated test pulse of light 400t. The light source 110 in each of
The output beam 125 in
After the test pulse of light 400t is detected by the receiver 140, the receiver may detect a received pulse of light 410 that includes scattered light from the associated emitted pulse of light 400. The frequency-detection circuit 600 may determine the spectral signature of the received pulse of light 410, and a controller 150 may determine that the spectral signature of the received pulse of light 410 matches the spectral signature of the test pulse of light 400t. Based on the spectral signature of the received pulse of light 410 matching the spectral signature of the test pulse of light 400t, the controller 150 may determine that the spectral signature of the received pulse of light 410 matches the spectral signature of the emitted pulse of light 400. Since the test pulse of light 400t may include substantially the same spectral signature as the associated emitted pulse of light 400, determining that the spectral signature of a received pulse of light 410 matches the spectral signature of the emitted pulse of light 400 may include determining that the spectral signature of the received pulse of light 410 matches the spectral signature of the test pulse 400t associated with the emitted pulse of light 400. Similarly, determining that the spectral signature of a second received pulse of light does not match the spectral signature of the emitted pulse of light 400 may include determining that the spectral signature of the second received pulse of light does not match the spectral signature of the test pulse 400t associated with the emitted pulse of light 400. Additionally, determining that the spectral signature of the second received pulse of light matches the spectral signature of a second emitted pulse of light may include determining that the spectral signature of the second received pulse of light matches the spectral signature of a test pulse associated with the second emitted pulse of light.
A lidar system 100 may include a receiver 140 that detects and determines the spectral signatures of a received pulse of light 410 and a test pulse of light 400t. The same detector 340 may be used to detect both the received pulse of light 410 and the test pulse of light 400t, or a receiver 140 may include separate detectors for detecting the two pulses of light separately. Additionally, the same frequency-detection circuit 600 of a receiver 140 may be used to determine the spectral signatures of both a received pulse of light 410 and a test pulse of light 400t. Alternatively, a receiver may include separate circuits that determine the spectral signatures of the two pulses of light separately.
In
The SOA current I2 in
In
An electronic driver 480 may supply current pulses to a SOA 460 having two or more different pulse characteristics, and the different pulse characteristics may result in emitted pulses of light that have different respective spectral signatures. For example, an electronic driver 480 may alternate between supplying pulses of current to the SOA 460 having two or more different amplitudes IS2, two or more different offset currents IS2-O, two or more different durations tD, two or more different rise times tR, two or more different fall times tF, two or more different shapes, or any suitable combination thereof. As another example, an electronic driver 480 may supply pulses of current to the SOA 460 with an amplitude IS2 of 30 A, a rise time tR of 1 ns, a fall time tF of 2 ns, and a duration tD that alternates between 4 ns and 8 ns. The two different durations may result in emitted pulses of light 400 that alternate between two different spectral signatures. As another example, an electronic driver 480 may supply pulses of current to the SOA 460 with an amplitude IS2 of 20 A, a duration tD of 5 ns, a fall time tF of 1 ns, and a rise time tR that alternates between 0.5 ns and 1 ns. The two different rise times may result in each emitted pulse of light 400 having one of two different spectral signatures, each spectral signature corresponding to one of the rise times. For example, a first pulse of light produced from a current pulse with a 0.5-ns rise time may have a first spectral signature that is associated with a beat signal having a 500-MHz beat frequency, and a second pulse of light produced from a current pulse with a 1-ns rise time may have a second spectral signature that is associated with a beat signal having a 300-MHz beat frequency. As another example, a first pulse of light produced from a current pulse with a 0.5-ns rise time may have a first spectral signature associated with a beat frequency between 450 MHz and 550 MHz, and a second pulse of light produced from a current pulse with a 1-ns rise time may have a second spectral signature associated with a beat frequency between 250 MHz and 350 MHz.
The SOA current I2 in
The time interval to in
In
An electronic driver 480 may supply seed current pulses and SOA current pulses having two or more different pulse characteristics, and the different pulse characteristics may result in emitted pulses of light that have different respective spectral signatures. For example, an electronic driver 480 may alternate between supplying pulses of current to the seed laser 450 and the SOA 460 having two or more different amplitudes IS1, two or more different offset currents IS1-O, two or more different durations tD1, two or more different rise times tR1, two or more different fall times tF1, two or more different amplitudes IS2, two or more different offset currents IS2-O, two or more different durations tD2, two or more different rise times tR2, two or more different fall times tF2, two or more different shapes, two or more different temporal offsets to, or any suitable combination thereof. As another example, an electronic driver 480 may supply pulses of current to the seed laser 450 with an amplitude IS1 of 500 mA, a duration tD1 of 20 ns, a rise time tR1 of 3 ns, and a fall time tF1 of 5 ns. Additionally, the electronic driver 480 may supply pulses of current to the SOA 460 with an amplitude IS2 of 10 A, a duration tD2 of 5 ns, a fall time tF2 of 3 ns, a temporal offset to of 6 ns, and a rise time tR2 that alternates between 1 ns and 2 ns. The two different rise times may result in emitted pulses of light 400 that alternate between two different spectral signatures.
The photocurrent signal i in
The time-domain graph of the photocurrent signal i (and the corresponding voltage signal 360) includes temporal pulsations that correspond to a beat signal. A beat signal may include a series of temporal pulsations, where each pulsation includes an increase and decrease in an amplitude of current or voltage. The beat signal in
In
The spectral signature of the emitted pulse of light 400 in
A light source 110 of a lidar system 100 with spectrally encoded light pulses may emit pulses of light 400, where the light source imparts to each emitted pulse of light a spectral signature of multiple different spectral signatures. Each spectral signature may include or may be associated with two or more optical-frequency components. For example, a spectral signature of an emitted pulse of light 400 may include 2, 3, 4, 5, 10, or any other suitable number of optical-frequency components. An optical-frequency component, which may be referred to as a frequency component or a spectral-signature frequency component, may include a particular frequency or a range of frequencies of an optical spectrum of a pulse of light 400. For example, a peak frequency or a frequency range around a peak may correspond to an optical-frequency component. As another example, an optical-frequency component may include or may overlap with a peak, a portion of a peak, a valley, a substantially flat region, a wing, or any other suitable portion of the optical spectrum of a pulse of light. As another example, an optical-frequency component may include a frequency or a range of frequencies within a frequency range from approximately 150 THz to approximately 330 THz (which corresponds to a wavelength or a range of wavelengths between approximately 900 nm and approximately 2000 nm).
The optical spectrum in
An emitted pulse of light 400, a test pulse of light 400t, or a received pulse of light 410 may be detected by a detector 340. In response to detecting the pulse of light, the detector 340 may produce a photocurrent signal i that includes one or more beat signals. Each beat signal may include a beat frequency that is approximately equal to the frequency difference Δf between two optical-frequency components of the spectral signature of the pulse of light. A beat signal may include a temporal variation (e.g., temporal pulsations) in the photocurrent signal, and the frequency of the temporal variation may equal the beat frequency of the beat signal. The photocurrent signal i in
In the example of
The spectral signature of a pulse of light (e.g., an emitted pulse of light 400, a test pulse of light 400t, or a received pulse of light 410) may be determined based on a photocurrent signal i or a corresponding voltage signal 360. Determining the spectral signature of a pulse of light may include determining one or more beat frequencies associated with the pulse of light. Since a spectral signature may be associated with optical-frequency components of a pulse of light, determining the spectral signature of the pulse of light may include determining one or more beat frequencies associated with the optical-frequency components of the pulse of light. The spectral signature of the pulse of light in
An optical-frequency component that is part of a spectral signature of a pulse of light may have a frequency in the 150-330 THz range (which corresponds to a wavelength between approximately 900 nm and approximately 2000 nm). A beat signal produced by detection of the pulse of light may have a beat frequency in the 100 MHz to 40 GHz range, which is orders of magnitude less than the frequency of the optical-frequency component. The coherent mixing of two optical-frequency components (e.g., with 150-330 THz frequencies) at a detector results in a frequency down-conversion that may produce an electrical signal with a frequency below 40 GHz, for example. A technological advantage of the techniques disclosed herein is that by down-converting the optical-frequency components of a pulse of light into the range of RF or microwave signals, a spectral signature of the pulse of light may be determined using an electronic-based technique rather than an optical-based technique. Additionally, since the optical-frequency components that make up a spectral signature are part of a pulse of light, coherent mixing between the optical-frequency components may occur at a detector 340 without an additional optical signal, such as a local oscillator, needing to be supplied. Another technological advantage of a lidar system with spectrally encoded light pulses is that the spectral encoding may be used to disambiguate a received pulse of light 410 by determining which emitted pulse of light 400 the received pulse of light 410 is associated with. A received pulse of light 410 may be unambiguously associated with an emitted pulse of light based on the spectral signature of the received pulse of light 410 matching the spectral signature of the emitted pulse of light 400.
A light source 110 may include a seed laser diode 450 that produces seed light 440 and a SOA 460 that amplifies temporal portions of the seed light to produce emitted pulses of light 400. The seed laser 450 may produce seed light 440 having a substantially constant optical power and a relatively narrow spectral linewidth. Amplifying a temporal portion of the seed light 440 to produce a pulse of light 400 may result in the seed-light linewidth being effectively broadened according to the inverse relationship between pulse duration and spectral linewidth. For example, the seed light 440 may have a spectral width of 1 MHz, and a temporal portion of the seed light may be amplified to produce an emitted pulse of light 400 with a 2-ns pulse duration and a spectral linewidth of greater than or equal to 220 MHz.
A spectral signature imparted to an emitted pulse of light may result from at least one or both of (i) spectral broadening due to the inverse time-bandwidth relationship between pulse duration and spectral linewidth and (ii) one or more nonlinear optical effects. In addition to providing a broadened spectral linewidth to an emitted pulse of light 400 based on the time-bandwidth relationship, a light source 110 may also impart at least part of a spectral signature to the emitted pulse of light 400 through one or more nonlinear optical effects that may occur in a light source 110. For example, in a light source 110 that includes a seed laser diode 450 and a SOA 460, one or more of the following nonlinear optical effects occurring in the seed laser diode 450 or the SOA 460 may impart a spectral signature to an emitted pulse of light: four-wave mixing, Kerr nonlinear optical effect, self-phase modulation, coupled-cavity effects between the seed laser diode and the SOA, stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and plasma dispersion effect. A spectral signature associated with one or more nonlinear optical effects may cause a broadening of the spectral linewidth of an emitted pulse of light 400 or a shift in the optical frequency of an emitted pulse of light 400. An emitted pulse of light 400 may have a spectral signature that results from a combination of spectral broadening due to the inverse time-bandwidth relationship and one or more nonlinear optical effects. As an example, for an emitted pulse of light with a 4-ns pulse duration and a 500-MHz spectral linewidth Δν, approximately 300 MHz of the 500-MHz spectral linewidth may be attributed to spectral broadening related to the time-bandwidth relationship. Additionally, approximately 200 MHz of the spectral linewidth may be attributed to one or more nonlinear optical effects occurring in the light source.
A light source 110 may impart spectral signatures to emitted pulses of light 400 where the spectral signatures change from pulse to pulse in an approximately random manner. For a light source 110 that includes a seed laser diode 450 and a SOA 460, the type or characteristics of a spectral signature imparted to an emitted pulse of light may depend at least in part on electrical-current characteristics of the seed current I1 and the SOA current I2, as discussed with respect to
A light source 110 that imparts spectral signatures to emitted pulses of light 400 in a random manner (e.g., the imparted spectral signatures change from pulse to pulse in an approximately random manner) may include an optical splitter 470. The optical splitter 470 may split off a portion of each emitted pulse of light 400 to produce an associated test pulse of light 400t. The test pulse of light 400t may be directed to a receiver 140 that determines the spectral signature of the test pulse of light 400t (which corresponds to the spectral signature of the associated emitted pulse of light). A controller 150 of a lidar system 100 may receive the spectral-signature information from the receiver 140, and the controller may store the spectral-signature information for comparison to the spectral signature of a subsequently received pulse of light 410. For example, the controller may store the spectral signatures of the P most recently emitted pulses of light, where P is an integer greater than or equal to 2. The stored spectral signatures of the P emitted pulses of light may be compared with the spectral signature of a received pulse of light to determine whether the received pulse of light is associated with one of the P emitted pulses of light. The value of P may be 2, 3, 4, 5, 10, 20, 50, 100, or any other suitable value greater than or equal to 2 and less than or equal to approximately 100.
The receiver 140 in
The voltage signal 360 produced by the amplifier 350 in
The pulse-detection circuit 365 in
A pulse-detection output signal 145 may include an electrical signal that corresponds to a received pulse of light 410. For example, the output signal 145 in
A pulse-detection output signal 145 may include one or more digital values that correspond to a time interval between (1) a time when a pulse of light 400 is emitted and (2) a time when a received pulse of light 410 is detected by a receiver 140. The output signal 145 in
In
The example voltage signal 360 illustrated in the dashed-line inset of
A receiver 140 may include a pulse-detection circuit 365 and a frequency-detection circuit 600. The pulse-detection circuit may determine a time-of-arrival of a received pulse of light 410, and the frequency-detection circuit may determine a spectral signature of the received pulse of light. The receiver 140 in each of
A frequency-detection circuit 600 may include multiple parallel frequency-measurement channels, and each frequency-measurement channel may include a filter 610 and a corresponding amplitude detector 620. Each filter 610 may receive a voltage signal 360 (which corresponds to a photocurrent signal i) and produce a filtered signal that is sent to a corresponding amplitude detector. In
In addition to the M electronic filters 610, the frequency-detection circuit 600 in
Each amplitude detector 620 may include a sample-and-hold circuit, a peak-detector circuit, an integrator circuit, a comparator, or an ADC. For example, amplitude detector 620-M may include a sample-and-hold circuit and an ADC. The sample-and-hold circuit may produce an analog voltage corresponding to the amplitude of a filtered signal received from filter 610-M, and the ADC may produce a digital value that represents the analog voltage. As another example, amplitude detector 620-M may include an integrator circuit followed by a comparator. The comparator may produce a digital-high value (e.g., digital value “1”) if a signal from the integrator circuit is greater than or equal to a particular threshold voltage. A digital-high value produced by the comparator may indicate that the voltage signal 360 includes a beat signal with a beat frequency of approximately fM. A digital-low value from the comparator may indicate that the voltage signal 360 does not include a beat signal with a beat frequency of approximately fM.
The output signal 145 produced by a frequency-detection circuit 600 may include one or more amplitude signals from one or more amplitude detectors 620. For example, the output signal 145b in
A frequency-detection circuit may be configured to determine a spectral signature of a received pulse of light 410 based on a corresponding photocurrent signal i. Determining the spectral signature of the received pulse of light 410 may include determining an electronic frequency spectrum of the photocurrent signal i. For example, an amplifier 350 may produce a voltage signal 360 that corresponds to the photocurrent signal i, and a frequency-detection circuit may determine a frequency spectrum of the voltage signal (which corresponds to a frequency spectrum of the photocurrent signal). A frequency spectrum associated with an emitted pulse of light 400 or a received pulse of light 410 may be determined from an output signal 145 produced by (i) a pulse-detection and frequency-detection circuit that includes multiple comparators 370 and TDCs 380 (e.g., as illustrated in
A controller 150 may determine whether the spectral signatures of a received pulse of light 410 and an emitted pulse of light 400 match based on the associated frequency spectra of the pulses of light. Determining whether the spectral signature of a received pulse of light 410 matches the spectral signature of an emitted pulse of light 400 may include comparing a frequency spectrum associated with the received pulse of light to a frequency spectrum associated with the emitted pulse of light. For example, a controller 150 may compare the frequency spectrum of a voltage signal 360 associated with the received pulse of light to a frequency spectrum of a voltage signal associated with the emitted pulse of light. The comparison of the frequency spectra may include determining a measure of correlation between the frequency spectrum associated with the received pulse of light and the frequency spectrum associated with the emitted pulse of light. For example, a convolution or a cross-correlation between the two frequency spectra may be calculated to determine the measure of correlation, and if the measure of correlation exceeds a particular threshold value, then the spectral signatures of the received and emitted pulses of light may be determined to match.
In another embodiment, instead of using an analog differentiator to determine the derivative of a voltage signal 360, a digital or numerical technique may be employed. For example, the output signal 145a from a pulse-detection circuit 365 may be provided to a controller 150, and the controller may determine the derivative of the voltage signal 360 from the output signal. A pulse-detection circuit 365 that includes multiple comparators and TDCs (e.g., as illustrated in
The lidar system 100 in
Determining whether the spectral signatures of two pulses of light match may include determining whether the pulses of light are associated with approximately the same beat frequencies (e.g., each of the one or more beat frequencies associated with each pulse of light are approximately equal). A pulse of light may be associated with one or more beat signals having one or more respective beat frequencies, and the spectral signature of a received pulse of light 410 may be determined to match the spectral signature of an emitted pulse of light 400 if the beat frequencies associated with each of the pulses of light are approximately equal. For example, the spectral signatures may be determined to match if each pair of beat frequencies associated with each pulse of light is approximately equal (e.g., each pair of beat frequencies may be equal to within ±1%, ±2%, ±5%, or ±10% of one another). Additionally, spectral signatures of a received pulse of light 410 and an emitted pulse of light 400 may be determined not to match if one or more beat frequencies associated with one pulse of light is not also associated with the other pulse of light. For example, a first pulse of light with an associated beat frequency of 500 MHz and a second pulse of light with an associated beat frequency of 505 MHz may be determined to have spectral signatures that match. As another example, a first pulse of light with an associated beat frequency of 500 MHz and a second pulse of light with an associated beat frequency of 800 MHz may be determined to have spectral signatures that do not match. As another example, a first pulse of light with associated beat frequencies 200 MHz and 800 MHz and a second pulse of light with associated beat frequencies 205 MHz and 790 MHz may be determined to have spectral signatures that match. As another example, a first pulse of light with associated beat frequencies 200 MHz and 800 MHz and a second pulse of light with associated beat frequencies 205 MHz, 500 MHz, and 805 MHz may be determined to have spectral signatures that do not match. As another example, a first pulse of light with associated beat frequencies 200 MHz and 800 MHz and a second pulse of light with associated beat frequencies 205 MHz and 500 MHz may be determined to have spectral signatures that do not match.
In
Determining whether the spectral signatures of two pulses of light match may include determining whether a particular threshold number or percentage of beat frequencies associated with each pulse of light are approximately equal. For example, instead of requiring all the associated beat frequencies to be equal in order for two pulses of light to have matching spectral signatures, two spectral signatures may be determined to match if at least a particular percentage (e.g., 70%, 80%, or 90%) of their associated beat frequencies are approximately equal. Two pulses of light that have four out of five beat frequencies that are approximately equal (e.g., 80% of the associated beat frequencies are approximately equal) may be determined to have spectral signatures that match. As another example, a frequency-detection circuit 600 may include five frequency-measurement channels that measure the amplitudes of five different frequency components of a voltage signal. For two pulses of light, if the amplitudes of at least four of the five frequencies are approximately equal, then the two pulses of light may be determined to have spectral signatures that match. Alternatively, if less than or equal to three of the five frequencies are approximately equal, then the two pulses of light may be determined to have spectral signatures that do not match.
Determining whether the spectral signatures of two pulses of light match may include determining whether a measure of correlation between the two spectral signatures is greater than a particular threshold correlation value. If the measure of correlation between the spectral signatures is greater than the threshold correlation value, then a controller 150 may determine that the two spectral signatures match. For example, a controller 150 may compare the frequency spectrum of a voltage signal 360 associated with a received pulse of light 410 to the frequency spectrum of a voltage signal associated with an emitted pulse of light 400. The comparison of the frequency spectra may include determining a measure of correlation between the frequency spectrum associated with the received pulse of light and the frequency spectrum associated with the emitted pulse of light. A measure of correlation may be determined by calculating a convolution or cross-correlation between the two frequency spectra, and if the measure of correlation exceeds the threshold correlation value, then the spectral signatures of the received and emitted pulses of light may be determined to match. The threshold value for determining that two spectral signatures match may be any suitable value, such as for example, 1.0 (indicating a 100% correlation between the two spectral signatures), 0.9 (indicating a 90% correlation), or 0.8 (indicating an 80% correlation). In
A measure of correlation between the spectral signatures of two pulses of light may be determined based on the zero crossings of derivative signals 632 associated with each of the pulses of light. For example, a receiver 140 may include a derivative circuit 630 that produces a derivative signal 632 and a zero-crossing circuit 640 that determines the zero-crossing times of the derivative signal. A controller 150 may compare the zero crossings associated with a received pulse of light 410 to the zero crossings associated with an emitted pulse of light 400 to determine an amount of correlation between the two sets of zero-crossing data. A measure of correlation may be determined by calculating a convolution or cross-correlation between the two sets of zero-crossing data, and if the measure of correlation exceeds a threshold correlation value, then the spectral signatures of the received and emitted pulses of light may be determined to match. In
Comparing two sets of zero crossings may include a direct comparison of time values. For example the time intervals t2-t1, t3-t1, t4-t1, etc. in
A measure of correlation between the spectral signatures of two pulses of light may be determined based on output signals 145 associated with each of the pulses of light. For example, a pulse-detection circuit 365 may include multiple comparators and TDCs (e.g., as illustrated in
Determining which of two or more emitted pulses of light 400 a received pulse of light 410 is associated with may include determining a measure of correlation between the received pulse of light and each of the emitted pulses of light. For example, a frequency-detection circuit 600 may determine the spectral signatures of the P most recently emitted pulses of light 400 (where P is an integer greater than or equal to 2), and a controller 150 may store the P spectral signatures. The parameter P may have a value of 2, 3, 4, 5, 10, 20, 50, 100, or any other suitable value less than or equal to approximately 100, and each of the P most recently emitted pulses of light may have a different spectral signature. The spectral signature of a received pulse of light 410 may be compared with the each of the stored spectral signatures of the P emitted pulses of light 400 to determine P measures of correlation between the received pulse of light and each of the emitted pulses of light. The measures of correlation may be determined based on frequency spectra, zero crossings, or output signals 145 associated with the pulses of light. A controller may determine that the spectral signature of the received pulse of light 410 matches the spectral signature of a particular emitted pulse of light, based on the particular emitted pulse of light having the highest measure of correlation with the received pulse of light (which indicates that the received pulse of light is associated with the particular emitted pulse of light). The measure of correlation between the spectral signatures of the received pulse of light and the particular emitted pulse of light may be greater than each of the (P−1) measures of correlation between the spectral signatures of the received pulse of light and the other (P−1) emitted pulses of light.
If none of the P measures of correlation exceeds a minimum threshold value (e.g., a minimum threshold value of 70% correlation), then the controller may determine that the spectral signature of the received pulse of light 410 does not match any of the P different spectral signatures of the most recently emitted pulses of light. For example, the received pulse of light 410 may be an interfering optical signal that is not associated with any of the P most recently emitted pulses of light. The received pulse of light may originate from a light source external to the lidar system (e.g., the pulse of light may originate from another lidar system), and the received pulse of light may be determined to be an invalid or interfering optical signal. If a received pulse of light is determined to be an interfering optical signal, the interfering optical signal may be discarded or ignored since it is not associated with any of the emitted pulses of light 400. A lidar system 100 may refrain from determining a time-of-arrival or determining a distance to a target 130 until a received pulse of light 410 is determined to be valid. For example, a receiver 140 or controller 150 may first verify that a received pulse of light 410 is valid (e.g., based on a measure of correlation) before determining a time-of-arrival for the received pulse of light or determining a distance to a target 130 associated with the received pulse of light. If a received pulse of light 410 is determined to be an interfering optical signal, the receiver 140 may not perform further analysis to determine the time-of-arrival or to determine a distance to a target.
In
Computer system 2600 may take any suitable physical form. As an example, computer system 2600 may be an embedded computer system, a system-on-chip (SOC), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a single-board computer system (SBC), a desktop computer system, a laptop or notebook computer system, a mainframe, a mesh of computer systems, a server, a tablet computer system, or any suitable combination of two or more of these. As another example, all or part of computer system 2600 may be combined with, coupled to, or integrated into a variety of devices, including, but not limited to, a camera, camcorder, personal digital assistant (PDA), mobile telephone, smartphone, electronic reading device (e.g., an e-reader), game console, smart watch, clock, calculator, television monitor, flat-panel display, computer monitor, vehicle display (e.g., odometer display or dashboard display), vehicle navigation system, lidar system, ADAS, autonomous vehicle, autonomous-vehicle driving system, cockpit control, camera view display (e.g., display of a rear-view camera in a vehicle), eyewear, or head-mounted display. Where appropriate, computer system 2600 may include one or more computer systems 2600; be unitary or distributed; span multiple locations; span multiple machines; span multiple data centers; or reside in a cloud, which may include one or more cloud components in one or more networks. Where appropriate, one or more computer systems 2600 may perform without substantial spatial or temporal limitation one or more steps of one or more methods described or illustrated herein. As an example, one or more computer systems 2600 may perform in real time or in batch mode one or more steps of one or more methods described or illustrated herein. One or more computer systems 2600 may perform at different times or at different locations one or more steps of one or more methods described or illustrated herein, where appropriate.
As illustrated in the example of
Processor 2610 may include hardware for executing instructions, such as those making up a computer program. As an example, to execute instructions, processor 2610 may retrieve (or fetch) the instructions from an internal register, an internal cache, memory 2620, or storage 2630; decode and execute them; and then write one or more results to an internal register, an internal cache, memory 2620, or storage 2630. A processor 2610 may include one or more internal caches for data, instructions, or addresses. Processor 2610 may include any suitable number of any suitable internal caches, where appropriate. As an example, processor 2610 may include one or more instruction caches, one or more data caches, or one or more translation lookaside buffers (TLBs). Instructions in the instruction caches may be copies of instructions in memory 2620 or storage 2630, and the instruction caches may speed up retrieval of those instructions by processor 2610. Data in the data caches may be copies of data in memory 2620 or storage 2630 for instructions executing at processor 2610 to operate on; the results of previous instructions executed at processor 2610 for access by subsequent instructions executing at processor 2610 or for writing to memory 2620 or storage 2630; or other suitable data. The data caches may speed up read or write operations by processor 2610. The TLBs may speed up virtual-address translation for processor 2610. Processor 2610 may include one or more internal registers for data, instructions, or addresses. Processor 2610 may include any suitable number of any suitable internal registers, where appropriate. Where appropriate, processor 2610 may include one or more arithmetic logic units (ALUs); may be a multi-core processor; or may include one or more processors 2610.
Memory 2620 may include main memory for storing instructions for processor 2610 to execute or data for processor 2610 to operate on. As an example, computer system 2600 may load instructions from storage 2630 or another source (such as, for example, another computer system 2600) to memory 2620. Processor 2610 may then load the instructions from memory 2620 to an internal register or internal cache. To execute the instructions, processor 2610 may retrieve the instructions from the internal register or internal cache and decode them. During or after execution of the instructions, processor 2610 may write one or more results (which may be intermediate or final results) to the internal register or internal cache. Processor 2610 may then write one or more of those results to memory 2620. One or more memory buses (which may each include an address bus and a data bus) may couple processor 2610 to memory 2620. Bus 2660 may include one or more memory buses. One or more memory management units (MMUs) may reside between processor 2610 and memory 2620 and facilitate accesses to memory 2620 requested by processor 2610. Memory 2620 may include random access memory (RAM). This RAM may be volatile memory, where appropriate. Where appropriate, this RAM may be dynamic RAM (DRAM) or static RAM (SRAM). Memory 2620 may include one or more memories 2620, where appropriate.
Storage 2630 may include mass storage for data or instructions. As an example, storage 2630 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disc, a magneto-optical disc, magnetic tape, or a Universal Serial Bus (USB) drive or a combination of two or more of these. Storage 2630 may include removable or non-removable (or fixed) media, where appropriate. Storage 2630 may be internal or external to computer system 2600, where appropriate. Storage 2630 may be non-volatile, solid-state memory. Storage 2630 may include read-only memory (ROM). Where appropriate, this ROM may be mask ROM (MROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), flash memory, or a combination of two or more of these. Storage 2630 may include one or more storage control units facilitating communication between processor 2610 and storage 2630, where appropriate. Where appropriate, storage 2630 may include one or more storages 2630.
I/O interface 2640 may include hardware, software, or both, providing one or more interfaces for communication between computer system 2600 and one or more I/O devices. Computer system 2600 may include one or more of these I/O devices, where appropriate. One or more of these I/O devices may enable communication between a person and computer system 2600. As an example, an I/O device may include a keyboard, keypad, microphone, monitor, mouse, printer, scanner, speaker, camera, stylus, tablet, touch screen, trackball, another suitable I/O device, or any suitable combination of two or more of these. An I/O device may include one or more sensors. Where appropriate, I/O interface 2640 may include one or more device or software drivers enabling processor 2610 to drive one or more of these I/O devices. I/O interface 2640 may include one or more I/O interfaces 2640, where appropriate.
Communication interface 2650 may include hardware, software, or both providing one or more interfaces for communication (such as, for example, packet-based communication) between computer system 2600 and one or more other computer systems 2600 or one or more networks. As an example, communication interface 2650 may include a network interface controller (NIC) or network adapter for communicating with an Ethernet or other wire-based network or a wireless NIC (WNIC); a wireless adapter for communicating with a wireless network, such as a WI-FI network; or an optical transmitter (e.g., a laser or a light-emitting diode) or an optical receiver (e.g., a photodetector) for communicating using fiber-optic communication or free-space optical communication. Computer system 2600 may communicate with an ad hoc network, a personal area network (PAN), an in-vehicle network (IVN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), or one or more portions of the Internet or a combination of two or more of these. One or more portions of one or more of these networks may be wired or wireless. As an example, computer system 2600 may communicate with a wireless PAN (WPAN) (such as, for example, a BLUETOOTH WPAN), a WI-FI network, a Worldwide Interoperability for Microwave Access (WiMAX) network, a cellular telephone network (such as, for example, a Global System for Mobile Communications (GSM) network), or other suitable wireless network or a combination of two or more of these. As another example, computer system 2600 may communicate using fiber-optic communication based on 100 Gigabit Ethernet (100 GbE), 10 Gigabit Ethernet (10 GbE), or Synchronous Optical Networking (SONET). Computer system 2600 may include any suitable communication interface 2650 for any of these networks, where appropriate. Communication interface 2650 may include one or more communication interfaces 2650, where appropriate.
Bus 2660 may include hardware, software, or both coupling components of computer system 2600 to each other. As an example, bus 2660 may include an Accelerated Graphics Port (AGP) or other graphics bus, a controller area network (CAN) bus, an Enhanced Industry Standard Architecture (EISA) bus, a front-side bus (FSB), a HYPERTRANSPORT (HT) interconnect, an Industry Standard Architecture (ISA) bus, an INFINIBAND interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel Architecture (MCA) bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCIe) bus, a serial advanced technology attachment (SATA) bus, a Video Electronics Standards Association local bus (VLB), or another suitable bus or a combination of two or more of these. Bus 2660 may include one or more buses 2660, where appropriate.
Various modules, circuits, systems, methods, or algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or any suitable combination of hardware and software. Computer software (which may be referred to as software, computer-executable code, computer code, a computer program, computer instructions, or instructions) may be used to perform various functions described or illustrated herein, and computer software may be configured to be executed by or to control the operation of computer system 2600. As an example, computer software may include instructions configured to be executed by processor 2610. Owing to the interchangeability of hardware and software, the various illustrative logical blocks, modules, circuits, or algorithm steps have been described generally in terms of functionality. Whether such functionality is implemented in hardware, software, or a combination of hardware and software may depend upon the particular application or design constraints imposed on the overall system.
A computing device may be used to implement various modules, circuits, systems, methods, or algorithm steps disclosed herein. As an example, all or part of a module, circuit, system, method, or algorithm disclosed herein may be implemented or performed by a general-purpose single- or multi-chip processor, a digital signal processor (DSP), an ASIC, a FPGA, any other suitable programmable-logic device, discrete gate or transistor logic, discrete hardware components, or any suitable combination thereof. A general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
One or more implementations of the subject matter described herein may be implemented as one or more computer programs (e.g., one or more modules of computer-program instructions encoded or stored on a computer-readable non-transitory storage medium). As an example, the steps of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable non-transitory storage medium. A computer-readable non-transitory storage medium may include any suitable storage medium that may be used to store or transfer computer software and that may be accessed by a computer system. Herein, a computer-readable non-transitory storage medium or media may include one or more semiconductor-based or other integrated circuits (ICs) (such, as for example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)), hard disk drives (HDDs), hybrid hard drives (HHDs), optical discs (e.g., compact discs (CDs), CD-ROM, digital versatile discs (DVDs), Blu-ray discs, or laser discs), optical disc drives (ODDs), magneto-optical discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs), magnetic tapes, flash memories, solid-state drives (SSDs), RAM, RAM-drives, ROM, SECURE DIGITAL cards or drives, any other suitable computer-readable non-transitory storage media, or any suitable combination of two or more of these, where appropriate. A computer-readable non-transitory storage medium may be volatile, non-volatile, or a combination of volatile and non-volatile, where appropriate.
Certain features described herein in the context of separate implementations may also be combined and implemented in a single implementation. Conversely, various features that are described in the context of a single implementation may also be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
While operations may be depicted in the drawings as occurring in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all operations be performed. Further, the drawings may schematically depict one more example processes or methods in the form of a flow diagram or a sequence diagram. However, other operations that are not depicted may be incorporated in the example processes or methods that are schematically illustrated. For example, one or more additional operations may be performed before, after, simultaneously with, or between any of the illustrated operations. Moreover, one or more operations depicted in a diagram may be repeated, where appropriate. Additionally, operations depicted in a diagram may be performed in any suitable order. Furthermore, although particular components, devices, or systems are described herein as carrying out particular operations, any suitable combination of any suitable components, devices, or systems may be used to carry out any suitable operation or combination of operations. In certain circumstances, multitasking or parallel processing operations may be performed. Moreover, the separation of various system components in the implementations described herein should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems may be integrated together in a single software product or packaged into multiple software products.
Various embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures may not necessarily be drawn to scale. As an example, distances or angles depicted in the figures are illustrative and may not necessarily bear an exact relationship to actual dimensions or layout of the devices illustrated.
One or more of the figures described herein may include example data that is prophetic. For example, the example graphs illustrated in
The scope of this disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments described or illustrated herein that a person having ordinary skill in the art would comprehend. The scope of this disclosure is not limited to the example embodiments described or illustrated herein. Moreover, although this disclosure describes or illustrates respective embodiments herein as including particular components, elements, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend.
The term “or” as used herein is to be interpreted as an inclusive or meaning any one or any combination, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, the expression “A or B” means “A, B, or both A and B.” As another example, herein, “A, B or C” means at least one of the following: A; B; C; A and B; A and C; B and C; A, B and C. An exception to this definition will occur if a combination of elements, devices, steps, or operations is in some way inherently mutually exclusive.
As used herein, words of approximation such as, without limitation, “approximately, “substantially,” or “about” refer to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skill in the art recognize the modified feature as having the required characteristics or capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “approximately” may vary from the stated value by ±0.5%, ±1%, ±2%, ±3%, ±4%, ±5%, ±10%, ±12%, or ±15%. The term “substantially constant” refers to a value that varies by less than a particular amount over any suitable time interval. For example, a value that is substantially constant may vary by less than or equal to 20%, 10%, 1%, 0.5%, or 0.1% over a time interval of approximately 104 s, 103 s, 102 s, 10 s, 1 s, 100 ms, 10 ms, 1 ms, 100 μs, 10 μs, or 1 μs. The term “substantially constant” may be applied to any suitable value, such as for example, an optical power, a pulse repetition frequency, an electrical current, a wavelength, an optical or electrical frequency, or an optical or electrical phase.
As used herein, the terms “first,” “second,” “third,” etc. may be used as labels for nouns that they precede, and these terms may not necessarily imply a particular ordering (e.g., a particular spatial, temporal, or logical ordering). As an example, a system may be described as determining a “first result” and a “second result,” and the terms “first” and “second” may not necessarily imply that the first result is determined before the second result.
As used herein, the terms “based on” and “based at least in part on” may be used to describe or present one or more factors that affect a determination, and these terms may not exclude additional factors that may affect a determination. A determination may be based solely on those factors which are presented or may be based at least in part on those factors. The phrase “determine A based on B” indicates that B is a factor that affects the determination of A. In some instances, other factors may also contribute to the determination of A. In other instances, A may be determined based solely on B.
This application claims the benefit of U.S. Provisional Patent Application No. 63/253,720, filed 8 Oct. 2021, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63253720 | Oct 2021 | US |